Detection approaches based on environmental DNA (eDNA) are widely used for free-living species but remain underutilized for parasite species. This study applies eDNA detection methods to elucidate the life cycle of the trematode Curtuteria arguinae, which infects the socioeconomically and ecologically important edible cockle (Cerastoderma edule) as its second intermediate host along the northeastern Atlantic coast, including Arcachon Bay, France. The first intermediate and definitive hosts remained unknown. To identify these hosts – presumed to be a gastropod and a shorebird – we developed a quantitative PCR (qPCR)-based eDNA approach targeting partial cox1 and SSU gene regions of C. arguinae. We tested for C. arguinae eDNA presence in water samples containing separately five dominant gastropod species and fecal samples from known cockle predators, the European oystercatcher (Haematopus ostralegus) and gulls (Larus spp.), collected in Arcachon Bay. C. arguinae eDNA was only detected in water containing the needle snail (Bittium reticulatum), with cercarial emergence confirming infection in 1.6% of individual hosts. Morphological analysis of the cercarial and metacercarial stages revealed variability in collar spine visibility. Additionally, C. arguinae was detected by qPCR in 42% of oystercatcher feces and no gull feces, suggesting oystercatchers are the definitive host. This study is the first to elucidate the complete life cycle of C. arguinae, identifying B. reticulatum as its first intermediate host and H. ostralegus as its definitive host. Our findings highlight the potential of eDNA approaches for resolving parasite life cycles and enabling advances in ecological research on C. arguinae.