The Kerridge [(1961). Inaccuracy and inference. Journal of the Royal Statistical Society: Series B 23(1): 184-194] inaccuracy measure is the mathematical expectation of the information content of the true distribution with respect to an assumed distribution, reflecting the inaccuracy introduced when the assumed distribution is used. Analyzing the dispersion of information around such measures helps us understand their consistency. The study of dispersion of information around the inaccuracy measure is termed varinaccuracy. Recently, Balakrishnan et al. [(2024). Dispersion indices based on Kerridge inaccuracy measure and Kullback–Leibler divergence. Communications in Statistics – Theory and Methods 53(15): 5574-5592] introduced varinaccuracy, to compare models where lower variance indicates greater precision. As interval inaccuracy is crucial for analyzing the evolution of system reliability over time, examining its variability strengthens the validity of the extracted information. This article introduces the varinaccuracy measure for doubly truncated random variables and demonstrates its significance. The measure has been studied under transformations, and bounds are also provided to broaden the applicability of the measure where direct evaluation is challenging. Additionally, an estimator for the measure is proposed, and its consistency is analyzed using simulated data through a kernel-smoothed nonparametric estimation technique. The estimator is validated on real data sets of COVID-19 mortality rates for Mexico and Italy. Furthermore, the article illustrates the practical value of the measure in selecting the best alternative to a given distribution within an interval, following the minimum information discrimination principle, thereby highlighting the effectiveness of the study.