Hostname: page-component-7dd5485656-g8tfn Total loading time: 0 Render date: 2025-10-28T07:18:52.990Z Has data issue: false hasContentIssue false

Research on the robot-assisted navigation technology in mandibular reconstruction surgery

Published online by Cambridge University Press:  08 September 2025

Xingtao Wang
Affiliation:
State Grid Information and Telecommunication Group Co., Ltd., Beijing, China
Zhen Qiu
Affiliation:
State Grid Information and Telecommunication Group Co., Ltd., Beijing, China
Xingchen Liu
Affiliation:
State Grid Information and Telecommunication Group Co., Ltd., Beijing, China
Chuanbin Guo
Affiliation:
Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
Xiaojing Liu
Affiliation:
Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
Jing Wang
Affiliation:
Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
Xingguang Duan
Affiliation:
School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
Changsheng Li
Affiliation:
School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
Jiang Deng
Affiliation:
Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Stomatology, Chongqing Medicine University, Chongqing, China
Yubin Xue*
Affiliation:
Department of Otolaryngology Head and Neck Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
*
Corresponding author: Yubin Xue; Email: xueyubin2000@163.com

Abstract

The mandible is crucial for human physiological functions, as well as facial esthetics and expressions. The mandibular reconstruction surgery has dual challenges of restoration of both facial form and physiological function, which demands high precision in positioning and orientation of the bone graft. The traditional manual surgery heavily relies on surgeon’s experience. Although the computer image-guided surgery improves the positioning accuracy, the manual manipulation is still difficult to achieve precise spatial orientation of objects, resulting in unsatisfactory intraoperative execution of preoperative surgical design. This paper integrates computer image navigation and robotic technology to assist mandible reconstruction surgery, which empowers surgeons to achieve precise spatial localization and orientation adjustment of bone grafts. The kinematic analysis is conducted, and an improved Iterative Closest Point (ICP) algorithm is proposed for spatial registration. A novel hand-eye calibration method for multi-arm robot and spatial registration of free bone blocks are proposed. The precision experiment of the image-guided navigation and the animal experiments are carried out. The impact of registration point numbers on spatial registration accuracy is analyzed. The results show the feasibility of the robot-assisted navigation for mandibular reconstruction surgery. The robotic system can improve the orientation accuracy of bone blocks to enhance the effectiveness of surgery.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Inchingolo, A. M., Patano, A., Piras, F., Ruvo, E. D., Ferrante, L., Noia, A. D., Dongiovanni, L., Palermo, A., Inchingolo, F., Inchingolo, A. D. and Dipalma, G., “Orthognathic surgery and relapse: A systematic review,” Bioengineering 10(9), 1071 (2023).CrossRefGoogle ScholarPubMed
Shao, L., Li, X., Fu, T., Meng, F., Zhu, Z., Zhao, R., Huo, M., Xiao, D., Fan, J., Lin, Y., Zhang, T. and Yang, J., “Robot-assisted augmented reality surgical navigation based on optical tracking for mandibular reconstruction surgery,” Med. Phys. 51(1), 363377 (2024).CrossRefGoogle ScholarPubMed
Wolfaardt, J. F., Brecht, L. E., Taft, R. M. and Grant, G. T., “The future of maxillofacial prosthodontics in North America: The role of advanced digital technology and artificial intelligence – A discussion document,” J. Prosthetic Dent. 131(6), 1253.e11253.e34 (2024).CrossRefGoogle ScholarPubMed
Troise, S., Arena, A., Barone, S., Raccampo, L., Salzano, G., Abbate, V., Bonavolontà, P., Romano, A., Sembronio, S., Robiony, M., Califano, L. and Dell’Aversana Orabona, G., “Transoral robotic surgery in maxillofacial surgery: Systematic review of literature on current situation and future perspectives,” Curr. Prob. Surg. 61, 101504 (2024).CrossRefGoogle ScholarPubMed
Wu, G., “Commentary on: Assessment of robot-assisted mandibular contouring surgery in comparison with traditional surgery: A prospective, single-center, randomized controlled trial,” Aesthet. Surg. J. 42(6), 580581 (2022).CrossRefGoogle ScholarPubMed
Cheng, L., Carriere, J., Piwowarczyk, J., Aalto, D., Zemiti, N., de Boutray, M. and Tavakoli, M., “Admittance-controlled robotic assistant for fibula osteotomies in mandible reconstruction surgery,” Adv. Intell. Syst. 3(1), 2000158 (2021).CrossRefGoogle Scholar
Tolksdorf, K., Hohberger, F.-S., Ernst, C., Tietz, S., Schultze-Mosgau, S. and Tautenhahn, F., “First experience using a novel microsurgical robotic device for free flap surgery in cranio-and maxillofacial surgery,” J. Cranio. Maxill. Surg. 52(6), 704706 (2024).CrossRefGoogle ScholarPubMed
Lin, L., Zhao, Z., Han, W., Sun, M., Zhang, Z., Kim, B. S., Yan, Y., Chen, X., Aung, Z. M., Liu, X., Wang, X., Li, X., Yang, X., Wang, B., Chai, G. and Xu, H., “Advances in robot-assisted surgery for facial bone contouring surgery,” J. Craniofac. Surg. 34(2), 813816 (2023).CrossRefGoogle ScholarPubMed
Balasundaram, I., Al-Hadad, I. and Parmar, S., “Recent advances in reconstructive oral and maxillofacial surgery,” Br. J. Oral Maxillofac. Surg. 50(8), 695705 (2012).CrossRefGoogle ScholarPubMed
Lin, L., Shi, Y., Tan, A., Bogari, M., Zhu, M., Xin, Y., Xu, H., Zhang, Y., Xie, L. and Chai, G., “Mandibular angle split osteotomy based on a novel augmented reality navigation using specialized robot-assisted arms—A feasibility study,” J. Cranio. Maxill. Surg. 44(2), 215223 (2016).CrossRefGoogle ScholarPubMed
Alkhayatt, N. M., Alzahrani, H. H., Ahmed, S., Alotaibi, B. M., Alsaggaf, R. M., ALAlmuaysh, A. M. and Alomair, A. A., “Computer-assisted navigation in oral and maxillofacial surgery: A systematic review,” Saudi Dent. J. 36, 387394 (2024).CrossRefGoogle ScholarPubMed
Eugster, M., Merlet, J.-P., Gerig, N., Cattin, P. C. and Rauter, G., “Miniature parallel robot with submillimeter positioning accuracy for minimally invasive laser osteotomy,” Robotica 40, 10701097 (2022).CrossRefGoogle Scholar
Zhu, J.-H., Deng, J., Liu, X.-J., Wang, J., Guo, Y.-X. and Guo, C.-B., “Prospects of robot-assisted mandibular reconstruction with fibula flap: Comparison with a computer-assisted navigation system and freehand technique,” J. Reconstr. Microsurg. 32(9), 661669 (2016).CrossRefGoogle ScholarPubMed
Lopukhov, E. O., Frolov, I. A., Solovyev, M. A., Prokhorenko, L. S., Mishchenkov, D. S., Klimov, D. D., Vorotnikov, A. A., Poduraev, Y. V., Grin, A. A. and Levchenko, O. V., “Computer-guided navigation system efficiency evaluation using surgical instruments for spinal fusion,” Int. J. Med. Robot. Comput. Assist. Surg. 20(6), e70033 (2024).CrossRefGoogle ScholarPubMed
de Boutray, M., Cuau, L., Ohayon, M., Garrel, R., Poignet, P. and Zemiti, N., “Robot-guided osteotomy in fibula free flap mandibular reconstruction: A preclinical study,” Int. J. Oral Max. Surg. 53(4), 343346 (2024).CrossRefGoogle ScholarPubMed
Lin, L., Sun, M., Xu, C., Gao, Y., Xu, H., Yang, X., He, H., Wang, B., Xie, L. and Chai, G., “Assessment of robot-assisted mandibular contouring surgery in comparison with traditional surgery: a prospective, single-center, randomized controlled trial,” Aesthetic Surg. J. 42(6), 567579 (2022).CrossRefGoogle ScholarPubMed
Hu, J., Liu, J., Guo, Y., Cao, Z., Chen, X. and Zhang, C., “A collaborative robotic platform for sensor-aware fibula osteotomies in mandibular reconstruction surgery,” Comput. Biol. Med. 162, 107040 (2023).CrossRefGoogle ScholarPubMed
Lei, J. and Song, G., “Six-dimensional constraints and force feedback for robot-assisted teleoperated fracture reduction,” Robotica 42, 23282344 (2024).CrossRefGoogle Scholar
Nino, I. A. and Carretero J.L., C., “Robotic surgery: A pending subject in oral and maxillofacial surgery,” J. Dent. Sci. 19(2), 12821284 (2024).CrossRefGoogle Scholar
Gu, X. and Ren, H., “A survey of transoral robotic mechanisms: Distal dexterity, variable stiffness, and triangulation,” Cyborg. Bion. Syst. 4, 0007 (2023).CrossRefGoogle ScholarPubMed
Sun, M., Lin, L., Chen, X., Xu, C., Zin, M. A., Han, W. and Chai, G., “Robot-assisted mandibular angle osteotomy using electromagnetic navigation,” Ann. Transl. Med. 9(7), 567 (2021).CrossRefGoogle ScholarPubMed
Lei, Y., Du, F., Song, H. and Zhang, L., “Design and kinematics analysis of a cable-stayed notch manipulator for transluminal endoscopic surgery,” Biomimet. Intell. Robot. 4(4), 100191 (2024).CrossRefGoogle Scholar
Kwon, I. J., Kim, S. M. and Hwang, S. J., “Development of autonomous robot osteotomy for mandibular ramal bone harvest and evaluation of its accuracy: A phantom mandible-based trial,” Appl. Sci. 11(6), 2885 (2021).CrossRefGoogle Scholar
Meng, C., Li, D., Yuan, W., Wu, K. and Shen, H., “Oscillating saw calibration for mandibular osteotomy robots,” Appl. Sci. 13(17), 9773 (2023).CrossRefGoogle Scholar
Han, Z., Tian, H., Vercauteren, T., Liu, D., Li, C. and Duan, X., “Collaborative human-robot surgery for mandibular angle split osteotomy: Optical tracking based approach,” Biomed. Signal Process. 93, 106173 (2024).CrossRefGoogle Scholar
Zhao, Y., Liao, Y., Wu, X., Zhang, Y., Shi, B. and Yan, Q., “Effect of the number and distribution of fiducial markers on the accuracy of robot-guided implant surgery in edentulous mandibular arches: An in vitro study,” J. Dent. 134, 104529 (2023).CrossRefGoogle ScholarPubMed