Hostname: page-component-68c7f8b79f-pbt68 Total loading time: 0 Render date: 2026-01-07T23:07:26.603Z Has data issue: false hasContentIssue false

A passive form-sensing gripper featuring a mechanically adaptive variable torque joint

Published online by Cambridge University Press:  06 January 2026

Juhyeok Park
Affiliation:
School of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyang-si, Gyeonggi-do, Republic of Korea
Hae-Sung Yoon*
Affiliation:
School of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyang-si, Gyeonggi-do, Republic of Korea Department of Smart Air Mobility, Korea Aerospace University, Goyang-si, Gyeonggi-do, Republic of Korea
*
Corresponding author: Hae-Sung Yoon; Email: hsyoon7@kau.ac.kr

Abstract

Robot grippers have drawn a lot of attention due to their various applications in the fields of manufacturing, agriculture, etc. The shape and mass of the workable objects have been considerable issues. For effective gripping, many studies have sought to control gripping forces; however, force control often requires complex external control structures. Here, it is aimed to develop a gripper of simple structure that resists moments, grasps object edges in the absence of complete object envelopment, and does not tilt the object. Moment resistance and edge grasping are key capabilities in ensuring stable object gripping. To ensure an energy-efficient, simple structure, a mechanical trigger and a variable torque joint link the output torque to the finger actuation angle without electrical sensing. The variable torque joint creates different torques for each finger, thus ensuring the sufficient reactive moments required for stable gripping without tilting the object. To implement the output torque profile, a mechanical cam was designed and utilized in the torque joint. The developed gripper effectively resists moments and grasps object edges without the need for electrical components such as sensors, wires, or batteries. This study shows that form-sensing data can be used in various scenarios to ensure successful gripping.

Information

Type
Research Article
Copyright
© The Author(s), 2026. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Fu, J., Yu, Z., Guo, Q., Zheng, L. and Gan, D., “A variable stiffness robotic gripper based on parallel beam with vision-based force sensing for flexible grasping,” Robotica 42(12), 40364054 (2024). https://doi.org/10.1017/S026357472300156XCrossRefGoogle Scholar
Stroppa, F., Majeed, F. J., Batiya, J., Baran, E. and Sarac, M., “Optimizing soft robot design and tracking with and without evolutionary computation: An intensive survey,” Robotica 42(8), 28482884 (2024). https://doi.org/10.1017/S0263574724001152CrossRefGoogle Scholar
Rybak, L., Carbone, G., Mohan, S., Gaponenko, E., Malyshev, D. and Voloshkin, A., “New design and construction of a mechanical grippin device with a telescopic link of a fruit harvesting robot,” Robotica 43(1), 6985 (2025). https://doi.org/10.1017/S0263574724001127CrossRefGoogle Scholar
Shin, J. H., Park, J. G., Kim, D. I. and Yoon, H.-S., “A universal soft gripper with the optimized fin ray finger,” Int. J. Precis. Eng. Manuf. Green Technol. 8(3), 889899 (2021). https://doi.org/10.1007/s40684-021-00348-1CrossRefGoogle Scholar
Samadikhoshkho, Z., Zareinia, K. and Janabi-Sharifi, F., “A Brief Review on Robotic Grippers Classifications,” In: 2019 IEEE Canadian Conference of Electrical and Computer Engineering (IEEE, 2019) pp. 14. https://doi.org/10.1109/CCECE.2019.8861780CrossRefGoogle Scholar
Hawkes, E. W., Jiang, H., Christensen, D. L., Han, A. K. and Cutkosky, M. R., “Grasping without squeezing: Design and modeling of shear-activated grippers,” IEEE Trans. Robot. 34(2), 303316 (2018). https://doi.org/10.1109/TRO.2017.2776312CrossRefGoogle Scholar
Sui, D., Zhu, Y., Zhao, S., Wang, T., Agrawal, S. K., Zhang, H. and Zhao, J., “A bioinspired soft swallowing gripper for universal adaptable grasping,” Soft Robot. 9(1), 3656 (2022). https://doi.org/10.1089/soro.2019.0106CrossRefGoogle ScholarPubMed
Thuruthel, T. G., Abidi, S. H., Cianchetti, M., Laschi, C. and Falotico, E., “A Bistable Soft Gripper with Mechanically Embedded Sensing and Actuation for Fast Grasping,” In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (IEEE, 2020) pp. 10491054. https://doi.org/10.1109/RO-MAN47096.2020.9223487CrossRefGoogle Scholar
Nguyen, T.-A. and Wang, D.-A., “A Gripper Based on a Compliant Bitable Mechanism for Gripping and Active Release of Objects,” In: 2016 International Conference on Manipulation, Automation and Robotics as Small Scales (IEEE, 2016) pp. 14. https://doi.org/10.1109/MARSS.2016.7561701CrossRefGoogle Scholar
Hsiao, H., Sun, J., Zhang, H. and Zhao, J., “A mechanically intelligent and passive gripper for aerial perching and grasping,” IEEE/ASME Trans. Mechatr. 27(6), 52435253 (2022). https://doi.org/10.1109/TMECH.2022.3175649CrossRefGoogle Scholar
Amend, J. and Lipson, H., “The JamHand: Dexterous manipulation with minimal actuation,” Soft Robot. 4(1), 7080 (2017). https://doi.org/10.1089/soro.2016.0037CrossRefGoogle ScholarPubMed
Mo, A., Fu, H. and Zhang, W., “A Universal Gripper Base on Pivoted Pin Array with Chasing Tip,” In: Proceedings of International Conference on Intelligent Robotics and Applications (ICIRA), vol. 10985 (Springer, 2018) pp. 100111. https://doi.org/10.1007/978-3-319-97589-4_9CrossRefGoogle Scholar
Ma, R. and Dollar, A. M., “An Underactuated Hand for Efficient Finger-gaiting-based Dexterous Manipulation,” In: 2014 IEEE International Conference on Robotics and Biomimetics (IEEE, 2014) pp. 22142219. https://doi.org/10.1109/ROBIO.2014.7090666CrossRefGoogle Scholar
Zhu, T., Yang, H. and Zhang, W., “A Spherical Self-Adaptive Gripper with Shrinking of an Elastic Membrane,” In: 2016 IEEE/ASME Transactions On Mechatronics (IEEE, 2016) pp. 512517. https://doi.org/10.1109/ICARM.2016.7606973Google Scholar
Odhner, L. U., Jentoft, L. P., Claffee, M. R., Corson, N., Tenzer, Y., Ma, R. R., Buehler, M., Kohout, R., Howe, R. D. and Dollar, A. M., “A compliant, underactuated hand for robust manipulation,” Int. J. Robot. Res. 33(5), 736752 (2014). https://doi.org/10.1177/0278364913514466CrossRefGoogle Scholar
Lu, Q., Wang, J., Zhang, Z., Chen, G., Wang, H. and Rojas, N., “An Underactuated Gripper Based on Car Differentials for Self-adaptive Grasping with Passive Disturbance Rejection,” In: 2021 IEEE International Conference on Robotics and Automation (IEEE, 2021) pp. 26052611. https://doi.org/10.1109/ICRA48506.2021.9561725CrossRefGoogle Scholar
Wang, Y. Z., Gupta, U., Parulekar, N. and Zhu, J., “A soft gripper of fast speed and low energy consumption,” Sci. China Technol. Sci. 62(1), 3138 (2019). https://doi.org/10.1007/s11431-018-9358-2CrossRefGoogle Scholar
Odhner, L. U., Ma, R. R. and Dollar, A. M., “Open-Loop Precision Grasping with Underactuated Hands Inspired by a Human Manipulation Strategy,” In: IEEE Transactions On Automation Science and Engineering (IEEE, 2013) pp. 625633. https://doi.org/10.1109/TASE.2013.2240298Google Scholar
Brown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., Zakin, M. R., Lipson, H. and Jaeger, H. M., “Universal robotic gripper based on the jamming of granular material,” Proc. Natl. Acad. Sci. 107(44), 1880918814 (2010). https://doi.org/10.1073/pnas.1003250107CrossRefGoogle Scholar
Gu, G. Y., Zhu, J., Zhu, L. M. and Zhu, X., “A survey on dielectric elastomer actuators for soft robots,” Bioinspir. Biomim. 12(1), 011003 (2017). https://doi.org/10.1088/1748-3190/12/1/011003CrossRefGoogle ScholarPubMed
Jo, S. M. and Yoon, H.-S., “Energy-efficient tristable soft gripper using shape memory alloy wires for gripping convex and concave objects,” J. Mech. Robot. 16(2), 021013022024 (2024). https://doi.org/10.1115/1.4062983CrossRefGoogle Scholar
Kim, S. E. and Yoon, H.-S., “Development of a universal-purpose settlement gripper using a flexible sub-arm and triggering mechanism,” Int. J. Precis. Eng. Man. 23(12), 14311441 (2022). https://doi.org/10.1007/s12541-022-00714-2CrossRefGoogle Scholar
Lee, E. S. and Yoon, H.-S., “Development of a rod gripper for drones using flexible fingers and bistable structures,” Int. J. Precis. Eng. Man. 23(11), 13251335 (2022). https://doi.org/10.1007/s12541-022-00697-0CrossRefGoogle Scholar
Nguyen, V. P., Dhyan, S. B., Mai, V., Han, B. S. and Chow, W. T., “Bioinspiration and biomimetic art in robotic grippers,” Micromachines-BASEL 14(9), 1772 (2023). https://doi.org/10.3390/mi14091772CrossRefGoogle ScholarPubMed
Nilsen, T., Hermann, M., Eriksen, C. S., Dagfinrud, H., Mowinckel, P. and Kjeken, I., “Grip force and pinch grip in an adult population: Reference values and factors associated with grip force,” Scand. J. Occup. Ther. 19(3), 288296 (2012). https://doi.org/10.3109/11038128.2011.553687CrossRefGoogle Scholar
Kim, G.-M., Lee, J.-W., Lee, S.-J. and Kim, C.-L., “Friction property of hierarchical micro/nanopatterned PDMS,” Materials 15(24), 8736 (2022). https://doi.org/10.3390/ma15248736CrossRefGoogle ScholarPubMed
Yoon, H.-S., “An intelligent passive form-sensing gripper with a variable torque joint” (2023). https://youtu.be/wv9I-8s9lUY (2023, accessed 30 July 2025).Google Scholar
Kim, Y. and Yoon, H.-S., “A model for predicting the friction of micro patterns fabricated by precision machining,” Tribol. Int. 175, 107862 (2022). https://doi.org/10.1016/j.triboint.2022.107862CrossRefGoogle Scholar
Kim, G.-M., Lee, S.-J. and Kim, C.-L., “Assessment of the physical, mechanical, and tribological properties of PDMS thin films based on different curing conditions,” Materials 14(16), 4489 (2021). https://doi.org/10.3390/ma14164489CrossRefGoogle ScholarPubMed
Ezhe, O. H. and Susmel, L., “On the fatigue strength of 3D-printed polylactide (PLA),” Proc. Struct. Integrity 9, 2936 (2018). https://doi.org/10.1016/j.prostr.2018.06.007CrossRefGoogle Scholar
Supplementary material: File

Park and Yoon supplementary material

Park and Yoon supplementary material
Download Park and Yoon supplementary material(File)
File 22.6 MB