Hostname: page-component-857557d7f7-nk9cn Total loading time: 0 Render date: 2025-11-29T08:58:47.332Z Has data issue: false hasContentIssue false

THE EXTERNAL VERSION OF A SUBCLASSICAL LOGIC

Published online by Cambridge University Press:  12 November 2025

MASSIMILIANO CARRARA
Affiliation:
DEPARTMENT OF PHILOSOPHY, SOCIOLOGY, PEDAGOGY, AND APPLIED PSYCHOLOGY UNIVERSITY OF PADUA ITALY E-mail: massimiliano.carrara@unipd.it
MICHELE PRA BALDI*
Affiliation:
DEPARTMENT OF PHILOSOPHY, SOCIOLOGY, PEDAGOGY, AND APPLIED PSYCHOLOGY UNIVERSITY OF PADUA ITALY E-mail: massimiliano.carrara@unipd.it

Abstract

A three-valued logic is subclassical when it is defined by a single matrix having the classical two-element matrix as a subreduct. In this case, the language of can be expanded with special unary connectives, called external operators. The resulting logic is called the external version of , a notion originally introduced by D. Bochvar in 1938 with respect to his weak Kleene logic. In this paper we study the semantic properties of the external version of a three-valued subclassical logic . We determine sufficient and necessary conditions to turn a model of into a model of . Moreover, we establish some distinctive semantic properties of .

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Albuquerque, H., Přenosil, A., & Rivieccio, U. (2017). An algebraic view of super-Belnap logics. Studia Logica, 105, 10511086.Google Scholar
Asenjo, F. G., & Tamburino, J. (1975). Logic of antinomies. Notre Dame Journal of Formal Logic, 16(1), 1744.Google Scholar
Avron, A. (1991). Natural 3-valued logic: Characterization and proof theory. Journal of Symbolic Logic, 56(1), 276294.Google Scholar
Beall, J. (2016). Off-topic: A new interpretation of weak-Kleene logic. The Australasian Journal of Logic, 13(6), 136142.Google Scholar
Blok, W. J., & Jónsson, B. (2006). Equivalence of consequence operations. Studia Logica, 83, 91110.Google Scholar
Blok, W. J., & Raftery, J. G. (2004). Fragments of $R$ -mingle. Studia Logica, 78, 59106.Google Scholar
Bochvar, D. (1981). On a three-valued logical calculus and its application to the analysis of the paradoxes of the classical extended functional calculus. History and Philosophy of Logic, 2(1–2), 87112. Translation of the original in Russian (Mathematicheskii Sbornik, 1938).Google Scholar
Bonzio, S., Paoli, F., & Pra Baldi, M. (2022). Logics of Variable Inclusion. Cham: Springer.Google Scholar
Bonzio, S., Paoli, F., & Pra Baldi, M. (2024). Bochvar algebras: A categorical equivalence and the generated variety. Preprint, arXiv:2412.14911.Google Scholar
Bonzio, S., & Baldi, M. P. (2025). On the structure of Bochvar algebras. The Review of Symbolic Logic, 18(1), 273299.Google Scholar
Burris, S., & Sankappanavar, H. P. (1981). A Course in Universal Algebra. Berlin: Springer.Google Scholar
Carnielli, W., Coniglio, M. E., & Marcos, J. (2007). Logics of formal inconsistency. In Gabbay, D., and Guenthner, F., editors. Handbook of Philosophical Logic. Dordrecht: Springer, pp. 193.Google Scholar
Carrara, M., Fazio, D., & Pra Baldi, M. (2024). Paraconsistent belief revision: An algebraic investigation. Erkenntnis, 89(2), 725753.Google Scholar
Carrara, M., & Zhu, W. (2021). Computational errors and suspension in a PWK epistemic agent. Journal of Logic and Computation, 31(7), 17401757.Google Scholar
Cignoli, R. (1965). Boolean elements in Łukasiewicz algebras. I. Proceedings of the Japan Academy, 41(8), 670675.Google Scholar
Cignoli, R. (2007). The algebras of Łukasiewicz many-valued logic: A historical overview. In Aguzzoli, S., Ciabattoni, A., Gerla, B., Manara, C., & Marra, V., editors. Algebraic and Proof-Theoretic Aspects of Non-classical Logics: Papers in Honor of Daniele Mundici on the Occasion of his 60th Birthday. Berlin: Springer, pp. 6983.Google Scholar
Cignoli, R., D’Ottaviano, I. M. L., & Mundici, D. (2000). Algebraic Foundations of Many-Valued Reasoning, volume 7 of Trends in Logic—Studia Logica Library. Dordrecht: Kluwer Academic Publishers.Google Scholar
Cintula, P., Hájek, P., & Noguera, C. (2011). Handbook of Mathematical Fuzzy Logic, Vol. 1. London: College Publications.Google Scholar
Ciucci, D., & Dubois, D. (2013). A map of dependencies among three-valued logics. Information Sciences, 250, 162177.Google Scholar
Ciucci, D., & Dubois, D. (2014). Three-valued logics, uncertainty management and rough sets. Transactions on Rough Sets, 17, 132.Google Scholar
Ciuni, R., & Carrara, M. (2020). Normality operators and classical recapture in many-valued logic. Logic Journal of the IGPL, 28(5), 657683.Google Scholar
Czelakowski, J. (2001). Protoalgebraic Logics. Dordrecht: Kluwer Academic Publishers.Google Scholar
Da Ré, B., Pailos, F., & Szmuc, D. (2020). Theories of truth based on four-valued infectious logics. Logic Journal of the IGPL, 28(5), 712746.Google Scholar
D’Ottaviano, I. M., & da Costa, N. C. (1970). Sur un probleme de Jaskowski. Comptes Rendus de l’Académie des Sciences de Paris, 270, 13491353.Google Scholar
D’Ottaviano, I. M. L., & Epstein, R. L. (1990). A Paraconsistent Logic: J3. Dordrecht: Springer, pp. 263287.Google Scholar
Ferguson, T. (2017). Meaning and Proscription in Formal Logic: Variations on the Propositional Logic of William T. Parry. Cham: Springer.Google Scholar
Font, J. (2016). Abstract Algebraic Logic: An Introductory Textbook. London: College Publications.Google Scholar
Font, J. M., & Pérez, G. R. (1992). A note on Sugihara algebras. Publicacions Matemàtiques, 36(2A), 591599.Google Scholar
Galatos, N., Jipsen, P., Kowalski, T., & Ono, H. (2007). Residuated Lattices: An Algebraic Glimpse at Substructural Logics, volume 151 of Studies in Logic and the Foundations of Mathematics. Amsterdam: Elsevier.Google Scholar
Galatos, N., & Tsinakis, C. (2005). Generalized mv-algebras. Journal of Algebra, 283(1), 254291.Google Scholar
Galatos, N., & Tsinakis, C. (2009). Equivalence of consequence relations: An order-theoretic and categorical perspective. The Journal of Symbolic Logic, 74(3), 780810.Google Scholar
Halldén, S. (1949). The Logic of Nonsense. Uppsala: Lundequista Bokhandeln.Google Scholar
Marcos, J. (2005). Nearly every normal modal logic is paranormal. Logique et Analyse, 48(189–192), 279300.Google Scholar
Parks, R. Z. (1972). A note on $R$ -mingle and Sobocinski’s three-valued logic. Notre Dame Journal of Formal Logic, 13(2), 227228.Google Scholar
Priest, G. (1979). The logic of paradox. Journal of Philosophical Logic, 8, 219241.Google Scholar
Priest, G. (2008). An Introduction to Non-classical Logic: From if to is. Cambridge: Cambridge University Press.Google Scholar
Raftery, J. G. (2006). The equational definability of truth predicates. Reports on Mathematical Logic, 41, 95149.Google Scholar
Szmuc, D. (2016). Defining LFI and LFU’S in extensions of infectious logic. Journal of Applied Non-Classical Logic, 26(4), 286314.Google Scholar
Szmuc, D. (2019). An epistemic interpretation of paraconsistent weak Kleene logic. Logic and Logical Philosophy, 28(2), 277330.Google Scholar