Hostname: page-component-857557d7f7-9f75d Total loading time: 0 Render date: 2025-12-01T10:43:17.467Z Has data issue: false hasContentIssue false

Structural stability of transonic shock flows with an external force

Published online by Cambridge University Press:  05 April 2024

Shangkun Weng
Affiliation:
School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei Province 430072, People's Republic of China (skweng@whu.edu.cn; yangwg@whu.edu.cn)
Wengang Yang
Affiliation:
School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei Province 430072, People's Republic of China (skweng@whu.edu.cn; yangwg@whu.edu.cn)

Abstract

This paper is devoted to the structural stability of a transonic shock passing through a flat nozzle for two-dimensional steady compressible flows with an external force. We first establish the existence and uniqueness of one-dimensional transonic shock solutions to the steady Euler system with an external force by prescribing suitable pressure at the exit of the nozzle when the upstream flow is a uniform supersonic flow. It is shown that the external force helps to stabilize the transonic shock in flat nozzles and the shock position is uniquely determined. Then we are concerned with the structural stability of these transonic shock solutions when the exit pressure is suitably perturbed. One of the new ingredients in our analysis is to use the deformation-curl decomposition to the steady Euler system developed by Weng and Xin [Sci. Sinica Math., 49 (2019), pp. 307–320] to deal with the transonic shock problem.

Information

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bers, L.. Mathematical Aspects of Subsonic and Transonic Gas Dynamics (John Wiley & Sons Inc, Chapman & Hall Ltd, New York/London, 1958).Google Scholar
Chen, C. and Xie, C.. Three dimensional steady subsonic Euler flows in bounded nozzles. J. Differ. Equ. 256 (2014), 36843708.10.1016/j.jde.2014.02.016CrossRefGoogle Scholar
Chen, S.. Stability on transonic shock fronts in two-dimensional Euler systems. Trans. Am. Math. Soc. 357 (2005), 287308.10.1090/S0002-9947-04-03698-0CrossRefGoogle Scholar
Chen, S.. Transonic shocks in 3-D compressible flow passing a duct with a general section for Euler systems. Trans. Am. Math. Soc. 360 (2008), 52655289.10.1090/S0002-9947-08-04493-0CrossRefGoogle Scholar
Chen, H.Yuan S.. Transonic shocks in compressible flow passing a duct for three-dimensional Euler systems. Arch. Ration. Mech. Anal. 187 (2008), 523556.10.1007/s00205-007-0079-zCrossRefGoogle Scholar
Chen, G. and Feldman, M.. Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type. J. Amer. Math. Soc. 16 (2003), 461494.10.1090/S0894-0347-03-00422-3CrossRefGoogle Scholar
Chen, G., Chen, J. and Song, K.. Transonic nozzle flows and free boundary problems for the full Euler equations. J. Differ. Equ. 229 (2006), 92120.10.1016/j.jde.2006.04.015CrossRefGoogle Scholar
Chen, G., Chen, J. and Feldman, M.. Transonic shocks and free boundary problems for the full Euler equations in infinite nozzles. J. Math. Pures Appl. (9) 88 (2007), 191218.10.1016/j.matpur.2007.04.008CrossRefGoogle Scholar
Courant, R. and Friedrichs, K. O.. Supersonic Flow and Shock Waves (Interscience Publishers, Inc., New York, 1948).Google Scholar
Embid, P., Goodman, J. and Majda, A.. Multiple steady states for 1-D transonic flow. SIAM J. Sci. Stat. Comput. 5 (1984), 2141.10.1137/0905002CrossRefGoogle Scholar
Fang, B. and Xin, Z.. On admissible locations of transonic shock fronts for steady euler flows in an almost flat finite Nozzle with prescribed receiver pressure. Comm. Pure Appl. Math. 74 (2021), 14931544.10.1002/cpa.21966CrossRefGoogle Scholar
Fang, B. and Gao, X.. On admissible positions of transonic shocks for steady euler flows in a 3-d axisymmetric cylindrical Nozzle. J. Differ. Equ. 288 (2021), 62117.10.1016/j.jde.2021.04.007CrossRefGoogle Scholar
Gilbarg, D. and Tudinger, N., Elliptic partial differential equations of second order, Vol. 224 of Grundlehren der Mathematischen Wissenschaften, 2nd ed. (Springer, Berlin-New York, 1983).Google Scholar
Liu, T.. Nonlinear stability and instability of transonic flows through a nozzle. Commun. Math. Phys. 83 (1982), 243260.10.1007/BF01976043CrossRefGoogle Scholar
Liu, L. and Yuan, H.. Stability of cylindrical transonic shocks for the two-dimensional steady compressible Euler system. J. Hyperbolic Differ. Equ. 5 (2008), 347379.10.1142/S0219891608001519CrossRefGoogle Scholar
Li, J., Xin, Z. and Yin, H.. On transonic shocks in a nozzle with variable end pressures. Commun. Math. Phys. 291 (2009), 111150.10.1007/s00220-009-0870-9CrossRefGoogle Scholar
Li, J., Xin, Z. and Yin, H.. A free boundary value problem for the full steady compressible Euler system and two dimensional transonic shocks in a large variable nozzle. Math. Res. Lett. 16 (2009), 777786.10.4310/MRL.2009.v16.n5.a3CrossRefGoogle Scholar
Li, J., Xin, Z. and Yin, H.. The existence and monotonicity of a three-dimensional transonic shock in a finite nozzle with axisymmetric exit pressure. Pacific J. Math. 247 (2010), 109161.10.2140/pjm.2010.247.109CrossRefGoogle Scholar
Li, J., Xin, Z. and Yin, H.. On transonic shocks in a conic divergent nozzle with axi-symmetric exit pressures. J. Differ. Equ. 48 (2010), 423469.10.1016/j.jde.2009.09.017CrossRefGoogle Scholar
Li, J., Xin, Z. and Yin, H.. Transonic shocks for the full compressible Euler system in a general two-dimensional De Laval nozzle. Arch. Rational Mech. Anal. 207 (2013), 533-581.10.1007/s00205-012-0580-xCrossRefGoogle Scholar
Liu, L., Xu, G. and Yuan, H.. Stability of spherically symmetric subsonic flows and transonic shocks under multidimensional perturbations. Adv. Math. 291 (2016), 696757.10.1016/j.aim.2016.01.002CrossRefGoogle Scholar
Serre, D.. Perfect fluid flow in two independent space variables. Reflection of a planar shock by a compressive wedge. Arch. Rational Mech. Anal. 132 (1995), 1536.10.1007/BF00390347CrossRefGoogle Scholar
Weng, S.. A new formulation for the 3-D Euler equations with an application to subsonic flows in a cylinder. Indiana Univ. Math. J. 64 (2015), 16091642.10.1512/iumj.2015.64.5704CrossRefGoogle Scholar
Weng, S., Xin, Z. and Yuan, H.. Steady compressible radially symmetric flows with nonzero angular velocity in an annulus. J. Differ. Equ. 286 (2021), 433454.10.1016/j.jde.2021.03.028CrossRefGoogle Scholar
Weng, S., Xin, Z. and Yuan, H.. On some smooth symmetric transonic flows with nonzero angular velocity and vorticity. Math. Models Methods Appl. Sci. 31 (2021), 27732817.10.1142/S0218202521500615CrossRefGoogle Scholar
Weng, S., Xie, C. and Xin, Z.. Structural stability of the transonic shock problem in a divergent three-dimensional axisymmetric perturbed nozzle. SIAM J. Math. Anal. 53 (2021), 279308.10.1137/20M1318869CrossRefGoogle Scholar
Weng, S. and Xin, Z.. A deformation-curl decomposition for three dimensional steady Euler equations (in Chinese). Sci. Sin. Math. 49 (2019), 307320.doi: 10.1360/N012018-00125Google Scholar
Weng, S.. A deformation-curl-Poisson decomposition to the three dimensional steady Euler-Poisson system with applications. J. Differ. Equ. 267 (2019), 65746603.10.1016/j.jde.2019.07.002CrossRefGoogle Scholar
Xin, Z., Yan, W. and Yin, H.. Transonic shock problem for the Euler system in a nozzle. Arch. Rational Mech. Anal. 194 (2009), 147.10.1007/s00205-009-0251-8CrossRefGoogle Scholar
Xin, Z. and Yin, H.. Transonic shock in a nozzle I, 2-D case. Commun. Pure Appl. Math. LVIII (2005), 9991050.10.1002/cpa.20025CrossRefGoogle Scholar
Xin, Z. and Yin, H.. 3-Dimensional transonic shock in a nozzle. Pac. J. Math. 236 (2008), 139193.10.2140/pjm.2008.236.139CrossRefGoogle Scholar
Xin, Z. and Yin, H.. Transonic shock in a curved nozzle, 2-D and 3-D complete Euler systems. J. Differ. Equ. 245 (2008), 10141085.10.1016/j.jde.2008.04.010CrossRefGoogle Scholar
Yuan, H.. On transonic shocks in two-dimensional variable-area ducts for steady Euler system. SIAM J. Math. Anal. 38 (2006), 13431370.10.1137/050642447CrossRefGoogle Scholar