Hostname: page-component-7857688df4-mqpdw Total loading time: 0 Render date: 2025-11-14T17:23:51.723Z Has data issue: false hasContentIssue false

Normalized solutions for p-Laplacian equation with general nonlinearities on bounded domain

Published online by Cambridge University Press:  13 November 2025

Fengshuang Gao*
Affiliation:
School of Mathematics, Nanjing University of Aeronautics and Astronautics, Jiangsu, P.R. China (gfs@nuaa.edu.cn)
Yuxia Guo
Affiliation:
Department of Mathematical Science, Tsinghua University, Beijing, P.R. China (yguo@mail.tsinghua.edu.cn)
*
*Corresponding author.

Abstract

We consider the existence, nonexistence and multiplicity of normalized solutions to the $p$-Laplacian equation on a bounded domain(0.1)

\begin{equation}\left\{\begin{array}{ll}-\Delta_p u+\lambda |u|^{p-2}u=g(u),&\text{in }\Omega,\\\int_\Omega |u|^p=\rho, u=0&\text{on }\partial \Omega,\end{array}\right.\end{equation}

where $\Omega$ is a bounded domain, $p\geq 2$. Firstly, under suitable assumptions on $\rho$, if $g$ is at most mass-critical at infinity, we prove the existence of infinitely many solutions. Secondly, for $\rho$ large, if $g$ is mass-supercritical, we perform a blow-up analysis to show the nonexistence of finite Morse index solutions. At last, for $\rho$ suitably small, combining with the monotonicity argument, we obtain a multiplicity result. In particular, when $p=2$, we obtain the existence of infinitely many normalized solutions.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bartsch, T., Molle, R., Rizzi, M. and Verzini, G.. Normalized solutions of mass supercritical Schrödinger equations with potential. Comm. Partial Differential Equations. 46 (2021), 17291756.10.1080/03605302.2021.1893747CrossRefGoogle Scholar
Bartsch, T., Qi, S. and Zou, W.. Normalized solutions to Schrödinger equations with potential and inhomogeneous nonlinearities on large smooth domains. Math. Ann 390 (2024), 147.10.1007/s00208-024-02857-1CrossRefGoogle Scholar
Bartsch, T., Zhong, X. and Zou, W.. Normalized solutions for a coupled Schrödinger system. Math. Ann. 380 (2021), 17131740.10.1007/s00208-020-02000-wCrossRefGoogle Scholar
Borthwick, J., Chang, X., Jeanjean, L. and Soave, N.. Bounded Palais-Smale sequences with Morse type information for some constrained functionals. Trans. Am. Math. Soc. 377 (2024), 44814517.Google Scholar
Carrillo, P., Galant, D., Jeanjean, L. and Troestler, C.. Infinitely many normalized solutions of $ L^ 2$-supercritical NLS equations on noncompact metric graphs with localized nonlinearities. Discrete Cont. Dyn. (2025).10.3934/dcds.2025085CrossRefGoogle Scholar
Chang, X., Jeanjean, L. and Soave, N.. Normalized solutions of $L^2$-supercritical NLS equations on compact metric graphs. Ann. Inst. H. Poincaré Anal. Non Linéaire. 41 (2024), 933959.10.4171/aihpc/88CrossRefGoogle Scholar
Damascelli, L., Farina, A., Sciunzi, B. and Valdinoci, E.. Liouville results for m-Laplace equations of Lane-Emden-Fowler type. Ann. Inst. H. Poincaré C Anal. Non Linéaire. 26 (2009), 10991119.Google Scholar
Ding, Y. and Zhong, X.. Normalized solution to the Schrödinger equation with potential and general nonlinear term: mass super-critical case. J. Differ. Equations. 334 (2022), 194215.10.1016/j.jde.2022.06.013CrossRefGoogle Scholar
Esposito, P. and Petralla, M.. Pointwise blow-up phenomena for a Dirichlet problem. Comm. Partial Differ.Equ. 36 (2011), 16541682.10.1080/03605302.2011.574304CrossRefGoogle Scholar
Farina, A., Mercuri, C. and Willem, M.. A Liouville theorem for the p-Laplacian and related questions. Calc. Var. Partial Differential Equations. 58 (2019), 113.10.1007/s00526-019-1596-yCrossRefGoogle Scholar
Gu, L., Zeng, X. and Zhou, H.. Eigenvalue problem for a p-Laplacian equation with trapping potentials. Nonlinear Anal. 148 (2017), 212227.10.1016/j.na.2016.10.002CrossRefGoogle Scholar
Guedda, M. and Veron, L.. Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal. Theory Methods Applic. 13 (1989), 879902.10.1016/0362-546X(89)90020-5CrossRefGoogle Scholar
Jeanjean, L.. Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. Theory Methods Applic. 28 (1997), 16331659.10.1016/S0362-546X(96)00021-1CrossRefGoogle Scholar
Jeanjean, L.. On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $\mathbb{R}^N$. P. Roy. Soc. Edinb. A. 129 (1999), 787809.10.1017/S0308210500013147CrossRefGoogle Scholar
Jeanjean, L. and Le, T. T.. Multiple normalized solutions for a Sobolev critical Schrödinger equation. Math. Ann. 384 (2022), 101134.10.1007/s00208-021-02228-0CrossRefGoogle Scholar
Jeanjean, L., Zhang, J. and Zhong, X.. A global branch approach to normalized solutions for the Schrödinger equation. J. Math. Pures Appl. 183 (2024), 4475.10.1016/j.matpur.2024.01.004CrossRefGoogle Scholar
Li, G. and Yan, S.. Eigenvalue problems for quasilinear elliptic-equations on $\mathbb{R}^N$. Commun. Partial Differ. Equ. 14 (1991), 12911414.Google Scholar
Liu, X. and Zhao, J.. p-Laplacian equations in $\mathbb{R}^N$ with finite potential via the truncation method. Adv. Nonlinear Stud. 17 (2017), 595610.10.1515/ans-2015-5059CrossRefGoogle Scholar
Molle, R., Riey, G. and Verzini, G.. Normalized solutions to mass supercritical Schrödinger equations with negative potential. J. Diff. Equations. 333 (2022), 302331.10.1016/j.jde.2022.06.012CrossRefGoogle Scholar
Noris, B., Tavares, H. and Verzini, G.. Existence and orbital stability of the ground states with prescribed mass for the $L^2$-critical and supercritical NLS on bounded domains. Anal. PDE. 7 (2014), 18071838.10.2140/apde.2014.7.1807CrossRefGoogle Scholar
Noris, B., Tavares, H. and Verzini, G.. Normalized solutions for nonlinear Schrödinger systems on bounded domains. Nonlinearity. 32 (2019), 10441072.10.1088/1361-6544/aaf2e0CrossRefGoogle Scholar
Pierotti, D. and Verzini, G.. Normalized bound states for the nonlinear Schrödinger equation in bounded domains. Calc. Var. Partial Differential Equations. 56 (2017), 27 133.10.1007/s00526-017-1232-7CrossRefGoogle Scholar
Pierotti, D., Verzini, G. and Yu, J.. Normalized solutions for Sobolev critical Schrödinger equations on bounded domains. Siam J. Math. Ana. 57 (2025), 262285.10.1137/24M1656281CrossRefGoogle Scholar
Qi, S. and Zou, W.. Normalized solutions of nonhomogeneous mass supercritical Schrödinger equations in bounded domains. J. Geom. Anal. 34 (2024), 59.10.1007/s12220-023-01504-6CrossRefGoogle Scholar
Song, L. and Zou, W.. Two positive normalized solutions on star-shaped bounded domains to the Brézis-Nirenberg problem. I: Existence, arXiv preprint arXiv:2404.11204, 2024.Google Scholar
Struwe, M.. Variational methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems 4th ed. (Springer-Verlag, 2008).Google Scholar
Stuart, C. A.. Bifuration from the continuous spectrum in $L^2$-theory of elliptic equations on $\mathbb{R}^N$. In Recent Methods in Nonlinear Analysis and Applications., Liguori, Napoli (1981)Google Scholar
Stuart, C. A.. Bifurcation in $L^p({R}_N)$ for a semilinear elliptic equation. Proc. London Math. Soc. 57 (1988), 511541.10.1112/plms/s3-57.3.511CrossRefGoogle Scholar
Vazquez, J. L.. A strong maximum principle for some quasilinear elliptic equations. Applied Mathematics and optimization. 12 (1984), 191202.10.1007/BF01449041CrossRefGoogle Scholar
Wei, J. and Wu, Y.. Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities. J. Funct. Anal. 283 (2022), 46 109574.10.1016/j.jfa.2022.109574CrossRefGoogle Scholar
Zhang, Z. and Zhang, Z.. Normalized solutions to p-Laplacian equations with combined nonlinearities. Nonlinearity. 35 (2022), 56215663.10.1088/1361-6544/ac902cCrossRefGoogle Scholar