Hostname: page-component-857557d7f7-d5hhr Total loading time: 0 Render date: 2025-11-24T13:22:34.167Z Has data issue: false hasContentIssue false

Nonlocal carrier’s double phase problem

Published online by Cambridge University Press:  13 November 2025

Giuseppe Failla*
Affiliation:
Department of Mathematics and Computer Sciences, Physical Sciences and Earth Sciences (MIFT), University of Messina, Viale Ferdinando Stagno d’Alcontres, Messina, Italy (giuseppe.failla@studenti.unime.it)
Leszek Gasiński
Affiliation:
Department of Mathematics, University of the National Education Commission, ul. Podchorążych 2, Kraków, Poland (leszek.gasinski@uken.krakow.pl)
*
*Corresponding author.

Abstract

We study the existence and multiplicity of positive bounded solutions for a class of nonlocal, non-variational elliptic problems governed by a nonhomogeneous operator with unbalanced growth, specifically the double phase operator. To tackle these challenges, we employ a combination of analytical techniques, including the sub-super solution method, variational and truncation approaches, and set-valued analysis. Furthermore, we examine a one-dimensional fixed-point problem.To the best of our knowledge, this is the first workaddressing nonlocal double phase problems using these methods.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adams, R. A. and Fournier, J. J. F.. Sobolev spaces. Pure Appl. Math. (Amst.), Second, Vol.140, (Elsevier/Academic Press, Amsterdam, 2003).Google Scholar
Arora, R., Fiscella, A., Mukherjee, T. and Winkert, P.. On critical double phase Kirchhoff problems with singular nonlinearity. Rend. Circ. Mat. Palermo. 71 (2022), 10791106.10.1007/s12215-022-00762-7CrossRefGoogle Scholar
Arora, R., Fiscella, A., Mukherjee, T. and Winkert, P.. On double phase Kirchhoff problems with singular nonlinearity. Adv. Nonlinear Anal. 12 (2023), 20220312, 24.10.1515/anona-2022-0312CrossRefGoogle Scholar
Bahrouni, A., Radulescu, V. D. and Repovs, D. D.. Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves. Nonlinearity. 32 (2019), 24812495.10.1088/1361-6544/ab0b03CrossRefGoogle Scholar
Bai, Y., Papageorgiou, N. S. and Zeng, S.. Positive solutions for a double phase eigenvalue problem. Positivity. 26 (2022), 81, 9.10.1007/s11117-022-00945-7CrossRefGoogle Scholar
Baldelli, L. and Guarnotta, U.. Existence and regularity for a $p$-Laplacian problem in $\mathbb{R}^{N}$ with singular, convective, and critical reaction. Adv. Nonlinear Anal. 13 (2024), 20240033, 26.10.1515/anona-2024-0033CrossRefGoogle Scholar
Baroni, P., Colombo, M. and Mingione, G.. Regularity for general functionals with double phase. Calc. Var. Partial Differential Equations. 57 (2018), 62, 48.10.1007/s00526-018-1332-zCrossRefGoogle Scholar
Benci, V., D’Avenia, P., Fortunato, D. and Pisani, L.. Solitons in several space dimensions: Derrick’s problem and infinitely many solutions. Arch. Ration. Mech. Anal. 154 (2000), 297324.CrossRefGoogle Scholar
Bonheure, D., D’Avenia, P. and Pomponio, A.. On the electrostatic Born-Infeld equation with extended charges. Commun. Math. Phys. 346 (2016), 877906.10.1007/s00220-016-2586-yCrossRefGoogle Scholar
Borowski, M., Chlebicka, I, De Filippis, F. and Miasojedow, B.. Absence and presence of Lavrentiev’s phenomenon for double phase functionals upon every choice of exponents. Calc. Var. Partial Differential Equations. 63 (2024), 35, 23.10.1007/s00526-023-02640-1CrossRefGoogle Scholar
Brézis, H.. Functional analysis, Sobolev Spaces and Partial Differential equations. (Springer, New York, NY, 2011).10.1007/978-0-387-70914-7CrossRefGoogle Scholar
Bueno, H., Ercole, G., Ferreira, W. and Zumpano, A.. Existence and multiplicity of positive solutions for the $p$-Laplacian with nonlocal coefficient. J. Math. Anal. Appl. 343 (2008), 151158.10.1016/j.jmaa.2008.01.001CrossRefGoogle Scholar
Candito, P., Failla, G., Gasiński, L. and Livrea, R.. Multiple positive solutions for quasilinear nonlocal problem via minimal solution and set-valued analysis. (Preprint).Google Scholar
Candito, P., Failla, G. and Livrea, R.. Pairs of positive solutions for a Carrier $p(x)$-Laplacian type equation. Mathematics. 12 (2024), 2441.10.3390/math12162441CrossRefGoogle Scholar
Candito, P., Gasiński, L., Livrea, R. and Júnior, J. R. S.. Multiplicity of positive solutions for a degenerate nonlocal problem with $p$-Laplacian. Adv. Nonlinear Anal. 11 (2022), 357368.10.1515/anona-2021-0200CrossRefGoogle Scholar
Carl, S., Le, V. K. and Motreanu, D.. Nonsmooth Variational Problems and Their inequalities. Comparison Principles and Applications Springer Monogr. Math. (Springer, New York, 2007).10.1007/978-0-387-46252-3CrossRefGoogle Scholar
Carrier, G. F.. On the non-linear vibration problem of the elastic string. Q. J. Appl. Math. 3 (1945), 151165.Google Scholar
Chang, N. -H. and Chipot, M.. Nonlinear nonlocal evolution problems. RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 97 (2003), 423445.Google Scholar
Charkaoui, A., Ben-Loghfyry, A. and Zeng, S.. A novel parabolic model driven by double phase flux operator with variable exponents: application to image decomposition and denoising. Comput. Math. Appl. 174 (2024), 97141.10.1016/j.camwa.2024.08.021CrossRefGoogle Scholar
Cherfils, L. and Il’yasov, Y.. On the stationary solutions of generalizedreaction diffusion equations with $p$ & $q$-Laplacian. Commun. Pure Appl. Anal. 4, (2005), 922.10.3934/cpaa.2005.4.9CrossRefGoogle Scholar
Chipot, M. and Lovat, B.. Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal, Proceedings of the Second World Congress of ysts, Part Vol7 (Athens) 30, (1997), 46194627.Google Scholar
Chipot, M. and Lovat, B.. On the asymptotic behaviour of some nonlocal problems. Positivity. 3 (1999), 6581.CrossRefGoogle Scholar
Chipot, M. and Molinet, L.. Asymptotic behaviour of some nonlocal diffusion problems. Appl. Anal. 80 (2001), 279315.Google Scholar
Chipot, M. and Rodrigues, J. F.. On a class of nonlocal nonlinear elliptic problems. RAIRO Modél. Math. Anal. Numér. 26 (1992), 447467.10.1051/m2an/1992260304471CrossRefGoogle Scholar
Chipot, M. and Siegwart, M.. On the asymptotic behaviour of some nonlocal mixed boundary value problems. Nonlinear analysis and applications: to V. Lakshmikantham on his 80th birthday., 1, (2003), 431449.Google Scholar
Colasuonno, F. and Perera, K.. Critical growth double phase problems: The local case and a Kirchhoff type case. J. Differential Equations. 422 (2025), 426488.10.1016/j.jde.2024.12.027CrossRefGoogle Scholar
Colasuonno, F. and Squassina, M.. Eigenvalues for double phase variational integrals. Ann. Mat. Pura Appl. 195 (2016), 19171959.10.1007/s10231-015-0542-7CrossRefGoogle Scholar
Colombo, M. and Mingione, G.. Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215 (2015), 443496.10.1007/s00205-014-0785-2CrossRefGoogle Scholar
Corrêa, F. J. S. A.. On positive solutions of nonlocal and nonvariational elliptic problems. Nonlinear Anal. 59 (2004), 11471155.10.1016/j.na.2004.08.010CrossRefGoogle Scholar
Corrêa, F. J. S. A., Menezes, S. D. B. and Ferreira, J.. On a class of problems involving a nonlocal operator. Appl. Math. Comput. 147 (2004), 475489.Google Scholar
Costa, D. G.. An Invitation to Variational Methods in Differential Equations. (Birkhäuser, Basel, 2007).10.1007/978-0-8176-4536-6CrossRefGoogle Scholar
Crespo-Blanco, A., Failla, G. and Vassallo, B.. Multiple solutions for nonlocal Neumann $p$-Laplacian problem. Nonlinear Anal. Real World Appl. 87 (2026), 104449.10.1016/j.nonrwa.2025.104449CrossRefGoogle Scholar
Crespo-Blanco, A., Gasiński, L., Harjulehto, P. and Winkert, P.. A new class of double phase variable exponent problems: existence and uniqueness. J. Differential Equations. 323 (2022), 182228.10.1016/j.jde.2022.03.029CrossRefGoogle Scholar
Crespo-Blanco, A., Gasiński, L. and Winkert, P.. Least energy sign-changing solution for degenerate Kirchhoff double phase problems. J. Differential Equations. 411 (2024), 5189.10.1016/j.jde.2024.07.034CrossRefGoogle Scholar
Crespo-Blanco, A., Papageorgiou, N. S. and Winkert, P.. Parametric superlinear double phase problems with singular term and critical growth on the boundary. Math. Methods Appl. Sci. 45 (2022), 22762298.10.1002/mma.7924CrossRefGoogle Scholar
Crespo-Blanco, A. and Winkert, P.. Nehari manifold approach for superlinear double phase problems with variable exponents. Ann. Mat. Pura Appl. 203 (2024), 605634.10.1007/s10231-023-01375-2CrossRefGoogle Scholar
D’Aguì, G., Sciammetta, A., Tornatore, E. and Winkert, P.. Parametric Robin double phase problems with critical growth on the boundary. Discrete Contin. Dyn. Syst. Ser. S. 16 (2023), 12861299.10.3934/dcdss.2022156CrossRefGoogle Scholar
De Filippis, C. and Mingione, G.. On the regularity of minima of non-autonomous functionals. J. Geom. Anal. 30 (2020), 15841626.CrossRefGoogle Scholar
Denkowski, Z., Migórski, S. and Papageorgiou, N. S.. An Introduction to Nonlinear analysis: theory. (Kluwer Academic Publishers, Boston, MA, 2003).10.1007/978-1-4419-9158-4CrossRefGoogle Scholar
Faraci, F., Motreanu, D. and Puglisi, D.. Positive solutions of quasi-linear elliptic equations with dependence on the gradient. Calc. Var. Partial Differential Equations. 54 (2015), 525538.CrossRefGoogle Scholar
Figueiredo-Sousa, T. S., Morales-Rodrigo, C. and Suárez, A.. A non-local non-autonomous diffusion problem: linear and sublinear cases. Z. Angew. Math. Phys. 68 (2017), 108.10.1007/s00033-017-0856-yCrossRefGoogle Scholar
Furter, J. and Grinfeld, M.. Local vs. nonlocal interactions in population dynamics. J. Math. Biol. 27 (1989), 6580.10.1007/BF00276081CrossRefGoogle Scholar
Gambera, L., Guarnotta, U. and Papageorgiou, N. S.. Continuous spectrum for a double-phase unbalanced growth eigenvalue problem. Mediterr. J. Math. 21 (2024), 124, 13.10.1007/s00009-024-02664-7CrossRefGoogle Scholar
Gasiński, L. and Júnior, J. R. S.. Multiplicity of positive solutions for an equation with degenerate nonlocal diffusion. Comput. Math. Appl. 78 (2019), 136143.CrossRefGoogle Scholar
Gasiński, L. and Júnior, J. R. S.. Nonexistence and multiplicity of positive solutions for an equation with degenerate nonlocal diffusion. Bull. Lond. Math. Soc. 52 (2020), 489497.10.1112/blms.12342CrossRefGoogle Scholar
Gasiński, L., Júnior, J. R. S. and Siciliano, G.. Positive solutions for a class of nonlocal problems with possibly singular nonlinearity. J. Fixed Point Theory Appl. 24 (2022), 65, 15.10.1007/s11784-022-00982-5CrossRefGoogle Scholar
Gasiński, L. and Papageorgiou, N. S.. Nonlinear analysis. Ser. Math. Anal. Appl., Vol.9, (Chapman & Hall/CRC, Boca Raton, FL, 2006).Google Scholar
Gasiński, L. and Papageorgiou, N. S.. Constant sign and nodal solutions for superlinear double phase problems. Adv. Calc. Var. 14 (2021), 613626.10.1515/acv-2019-0040CrossRefGoogle Scholar
Gasiński, L. and Papageorgiou, N. S.. Double phase logistic equations with superdiffusive reaction. Nonlinear Anal. Real World Appl. 70 (2023), 15.10.1016/j.nonrwa.2022.103782CrossRefGoogle Scholar
Gasiński, L. and Winkert, P.. Existence and uniqueness results for double phase problems with convection term. J. Differential Equations. 268 (2020), 41834193.CrossRefGoogle Scholar
Gasiński, L. and Winkert, P.. Sign changing solution for a double phase problem with nonlinear boundary condition via the Nehari manifold. J. Differential Equations. 274 (2021), 10371066.CrossRefGoogle Scholar
Gou, T. and Radulescu, V. D.. Non-autonomous double phase eigenvalue problems with indefinite weight and lack of compactness. Bull. Lond. Math. Soc. 56 (2024), 734755.10.1112/blms.12961CrossRefGoogle Scholar
Guarnotta, U., Livrea, R. and Winkert, P.. The sub-supersolution method for variable exponent double phase systems with nonlinear boundary conditions. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 34 (2023), 617639.Google Scholar
Harjulehto, P. and Hästö, P.. Orlicz spaces and generalized Orlicz spaces. Lecture Notes in Math. 2236, (Springer, Cham, 2019).Google Scholar
Harjulehto, P. and Hästö, P.. Double phase image restoration. J. Math. Anal. Appl. 501 (2021), 123832, 12.10.1016/j.jmaa.2019.123832CrossRefGoogle Scholar
Ho, K. and Winkert, P.. New embedding results for double phase problems with variable exponents and a priori bounds for corresponding generalized double phase problems. Calc. Var. Partial Differential Equations. 62 (2023), 227, 38.10.1007/s00526-023-02566-8CrossRefGoogle Scholar
Júnior, J. R. S. and Siciliano, G.. Positive solutions for a Kirchhoff problem with vanishing nonlocal term. J. Differential Equations. 265 (2018), 20342043.10.1016/j.jde.2018.04.027CrossRefGoogle Scholar
Jing, Z., Liu, Z. and Papageorgiou, N. S.. An Eigenvalue Problem for the Double Phase Differential Operator. Mediterr. J. Math. 22 (2025), 11.10.1007/s00009-024-02779-xCrossRefGoogle Scholar
Klein, E. and Thompson, A.. Theory of correspondences. Including applications to mathematical economics. Canad. Math. Soc. Ser. Monogr. Adv. Texts Wiley-Intersci. Publ. John, (Wiley & Sons, Inc, New York, 1984).Google Scholar
Liu, W. and Dai, G.. Existence and multiplicity results for double phase problem. J. Differential Equations. 265 (2018), 43114334.10.1016/j.jde.2018.06.006CrossRefGoogle Scholar
Liu, Z., Motreanu, D. and Zeng, S.. Positive solutions for nonlinear singular elliptic equations of $p$-Laplacian type with dependence on the gradient. Calc. Var. Partial Differential Equations. 58 (2019), 28, 22.10.1007/s00526-018-1472-1CrossRefGoogle Scholar
Marcellini, P.. Regularity of minimizers of integrals in the calculus of variations with nonstandard growth conditions. Arch. Ration. Mech. Anal. 105 (1989), 267284.10.1007/BF00251503CrossRefGoogle Scholar
Marcellini, P.. Regularity and existence of solutions of elliptic equations with $p-q$-growth conditions. J. Differ. Equ. 90 (1991), 130.10.1016/0022-0396(91)90158-6CrossRefGoogle Scholar
Marino, G. and Winkert, P.. Existence and uniqueness of elliptic systems with double phase operators and convection terms. J. Math. Anal. Appl. 492 (2020), 13.10.1016/j.jmaa.2020.124423CrossRefGoogle Scholar
Migórski, S., Ochal, A. and Sofonea, M.. Nonlinear inclusions and hemivariational inequalities. Models and analysis of contact problems. Adv. Mech. Math., Vol.26, (Springer, New York, 2013).Google Scholar
Motreanu, D., Motreanu, V. V. and Papageorgiou, N. S.. Topological and Variational Methods With Applications to Nonlinear Boundary Value problems. (Springer, New York, NY, 2014).10.1007/978-1-4614-9323-5CrossRefGoogle Scholar
Papageorgiou, N. S.. Double phase problems: a survey of some recent results. Opuscula Math. 42 (2022), 257278.10.7494/OpMath.2022.42.2.257CrossRefGoogle Scholar
Papageorgiou, N. S., Pudełko, A. and Radulescu, V. D.. Non-autonomous $(p,q)$-equations with unbalanced growth. Math. Ann. 385 (2023), 17071745.10.1007/s00208-022-02381-0CrossRefGoogle Scholar
Papageorgiou, N. S., Radulescu, V. D. and Repovš, D. D.. Ground state and nodal solutions for a class of double phase problems. Z. Angew. Math. Phys. 71 (2020), 15, 15.10.1007/s00033-019-1239-3CrossRefGoogle Scholar
Papageorgiou, N. S., Radulescu, V. D. and Zhang, W.. Multiple solutions with sign information for double-phase problems with unbalanced growth. Bull. London Math. Soc. 57 (2025), 638656.10.1112/blms.13218CrossRefGoogle Scholar
Papageorgiou, N. S., Radulescu, V. D. and Zhang, Y.. Resonant double phase equations. Nonlinear Anal. Real World Appl. 64 (2022), 20.10.1016/j.nonrwa.2021.103454CrossRefGoogle Scholar
Papageorgiou, N. S., Vetro, C. and Vetro, F.. Solutions for parametric double phase Robin problems. Asymptot. Anal. 121 (2021), 159170.Google Scholar
Papageorgiou, N. S. and Winkert, P.. Applied Nonlinear Functional Analysis. (De Gruyter, Berlin, 2024).10.1515/9783111286952CrossRefGoogle Scholar
Perera, K. and Squassina, M.. Existence results for double-phase problems via Morse theory. Commun. Contemp. Math. 20 (2018), 14.10.1142/S0219199717500237CrossRefGoogle Scholar
Ragusa, M. A. and Tachikawa, A.. Regularity of minimizers for double phase functionals of borderline case with variable exponents. Adv. Nonlinear Anal. 13 (2024), 20240017, pg27.10.1515/anona-2024-0017CrossRefGoogle Scholar
Sciammetta, A., Tornatore, E. and Winkert, P.. Bounded weak solutions to superlinear Dirichlet double phase problems. Anal. Math. Phys. 13 (2023), 23, 18.10.1007/s13324-023-00783-0CrossRefGoogle Scholar
Zhikov, V. V.. Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), 675710.Google Scholar
Zhikov, V. V.. On Lavrentiev’s phenomenon. Russian J. Math. Phys. 3 (1995), 249269.Google Scholar
Zhikov, V. V.. On variational problems and nonlinear elliptic equations with nonstandard growth conditions. J. Math. Sci. (N.Y.). 173 (2011), 463570.10.1007/s10958-011-0260-7CrossRefGoogle Scholar
Ziemer, W. P.. Weakly differentiable functions. Sobolev spaces and functions of bounded variation. Grad. Texts in Math., Vol.120, (Springer-Verlag, New York, 1989).Google Scholar