No CrossRef data available.
Published online by Cambridge University Press: 19 September 2022
Let $G$
 be a compact connected simple Lie group of type $(n_{1},\,\ldots,\,n_{l})$
, where $n_{1}<\cdots < n_{l}$
. Let $\mathcal {G}_k$
 be the gauge group of the principal $G$
-bundle over $S^{4}$
 corresponding to $k\in \pi _3(G)\cong \mathbb {Z}$
. We calculate the mod-$p$
 homology of the classifying space $B\mathcal {G}_k$
 provided that $n_{l}< p-1$
.