No CrossRef data available.
Published online by Cambridge University Press: 26 January 2019
We consider the Cauchy problem $$\left\{ {\matrix{ {u_t = \Delta u + u^p,\quad } \hfill & {x\in {\bf R}^N,\;t \leq 0,} \hfill \cr {u(x,0) = u_0(x),\quad } \hfill & {x\in {\bf R}^N,} \hfill \cr } } \right.$$
$$\left\{ {\matrix{ {u_t = \Delta u + u^p,\quad } \hfill & {x\in {\bf R}^N,\;t \leq 0,} \hfill \cr {u(x,0) = u_0(x),\quad } \hfill & {x\in {\bf R}^N,} \hfill \cr } } \right.$$
 $\Delta u + {\textstyle{1 \over 2}}x\cdot \nabla u + f(u) = 0$. Arch. Rational Mech. Anal.  94 (1986), 83–99.CrossRefGoogle Scholar
$\Delta u + {\textstyle{1 \over 2}}x\cdot \nabla u + f(u) = 0$. Arch. Rational Mech. Anal.  94 (1986), 83–99.CrossRefGoogle Scholar