Hostname: page-component-857557d7f7-ms8jb Total loading time: 0 Render date: 2025-11-22T12:48:41.567Z Has data issue: false hasContentIssue false

Revealing mass distributions of dwarf spheroidal galaxies in the Subaru-PFS era

Published online by Cambridge University Press:  30 October 2025

K. Hayashi*
Affiliation:
National Institute of Technology, Sendai College, Natori, Miyagi 981-1239, Japan National Institute of Technology, Ichinoseki College, Hagisho, Ichinoseki, Iwate 021-8511, Japan Astronomical Institute, Tohoku University, Sendai, Miyagi 980-8578, Japan
L. Dobos
Affiliation:
Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218, USA
C. Filion
Affiliation:
Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218, USA
E. Kirby
Affiliation:
Department of Physics and Astronomy, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA
M. Chiba
Affiliation:
Astronomical Institute, Tohoku University, Sendai, Miyagi 980-8578, Japan
R. Wyse
Affiliation:
Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218, USA

Abstract

The Galactic dwarf spheroidal galaxies (dSphs) provide valuable insight into dark matter (DM) properties and its role in galaxy formation. Their close proximity enables the measurement of line-of-sight velocities for resolved stars, which allows us to study DM halo structure. However, uncertainties in DM mass profile determination persist due to the degeneracy between DM mass density and velocity dispersion tensor anisotropy. Overcoming this requires large kinematic samples and identification of foreground contamination. With 1.25 deg2 and 2394 fibers, PFS plus pre-imaging with Hyper Suprime Cam will make significant progress in this undertaking.

Information

Type
Contributed Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Battaglia, G. & Nipoti, C. 2022, Nature Astronomy, 6, 659.CrossRefGoogle Scholar
Battaglia, G., Helmi, A., & Breddels, M. 2013, NewAR, 57, 52.CrossRefGoogle Scholar
Bullock, J. S. & Boylan-Kolchin, M. 2017, ARA&A, 55, 343.Google Scholar
Read, J. I., Walker, M. G., & Steger, P. 2019, MNRAS, 484, 1401.CrossRefGoogle Scholar
Hayashi, K., Chiba, M., & Ishiyama, T. 2020, ApJ, 904, 45.CrossRefGoogle Scholar
Lazar, A., Bullock, J. S., Boylan-Kolchin, M., et al. 2020, MNRAS, 497, 2393.CrossRefGoogle Scholar
Nishikawa, H., Boddy, K. K., & Kaplinghat, M. 2020, PRD, 101, 063009.CrossRefGoogle Scholar
Tamura, N., Takato, N., Shimono, A., et al. 2016, procspie, 9908, 99081M.Google Scholar
Takada, M., Ellis, R. S., Chiba, M., et al. 2014, PASJ, 66, R1.CrossRefGoogle Scholar
Sestito, F., Zaremba, D., Venn, K. A., et al. 2023, arXiv:2301.13214.Google Scholar
Binney, J. & Tremaine, S. 2008, Galactic Dynamics: Second Edition (Princeton, NJ: Princeton Univ. Press)CrossRefGoogle Scholar
Vasiliev, E. 2019, MNRAS, 482, 1525.CrossRefGoogle Scholar