Hostname: page-component-857557d7f7-nbs69 Total loading time: 0 Render date: 2025-12-09T13:25:25.239Z Has data issue: false hasContentIssue false

High resolution spectroscopy of stars in the outskirts of the Tucana II ultra-faint dwarf galaxy

Published online by Cambridge University Press:  30 October 2025

A. Chiti*
Affiliation:
Department of Astronomy & Astrophysics, University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637, USA Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss recent results from high-resolution Magellan/MIKE spectroscopy of five stars in the outskirts (up to ∼ 1 kpc) of the Tucana II ultra-faint dwarf galaxy (UFD), complemented by prior observations of seven stars closer to the galaxy’s center. These outer stars were identified via their low SkyMapper photometric metallicities and consistent Gaia DR2 proper motions, and their membership was confirmed through follow-up medium-resolution spectroscopy. The high-resolution spectroscopy presented here provides detailed chemical abundances and more precise velocities, facilitating a revised dynamical analysis for signs of tidal disruption and a collective analysis of the detailed chemistry to evaluate astrophysical scenarios for the origin of the spatially extended feature. We discuss these signatures here and assess the evidence for several formation scenarios for the extended feature of Tucana II, highlighting how such studies of the outskirts of the UFD population as a whole can inform which scenarios may be preferred.

Information

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bechtol, K., Drlica-Wagner, A., Balbinot, E., et al. 2015, ApJ, 807, 50.Google Scholar
Brown, T. M., Tumlinson, J., Geha, M., et al. 2014, ApJ, 796, 91.Google Scholar
Chiti, A., Frebel, A., Jerjen, H., et al. 2020, ApJ, 891, 8.Google Scholar
Chiti, A., Frebel, A., Simon, J. D., et al. 2021, Nature Astronomy, 5, 392.CrossRefGoogle Scholar
Chiti, A., Frebel, A., Ji, A. P., et al. 2023, AJ, 165, 55.Google Scholar
Drlica-Wagner, A., Bechtol, K., Rykoff, E. S., et al. 2015, ApJ, 813, 109.Google Scholar
Filion, C. & Wyse, R. F. G. 2021, ApJ, 923, 218.Google Scholar
Frebel, A., Simon, J. D., & Kirby, E. N. 2014, ApJ, 786, 74.Google Scholar
Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, A&Ap, 616, A1.Google Scholar
Gaia Collaboration, Vallenari, A., Brown, A. G. A., et al. 2022, arXiv:2208.00211.Google Scholar
Hammer, F., Li, H., Mamon, G. A., et al. 2023, MNRAS, 519, 5059.Google Scholar
Johnston, K. V., Spergel, D. N., & Hernquist, L. 1995, ApJ, 451, 598.Google Scholar
Ji, A. P., Simon, J. D., Frebel, A., et al. 2019, ApJ, 870, 83.Google Scholar
Keller, S. C., Schmidt, B. P., Bessell, M. S., et al. 2007, PASA, 24, 1.Google Scholar
Kirby, E. N., Cohen, J. G., Smith, G. H., et al. 2011, ApJ, 727, 79.Google Scholar
Kirby, E. N., Xie, J. L., Guo, R., et al. 2019, ApJ, 881, 45.Google Scholar
Li, T. S., Simon, J. D., Kuehn, K., et al. 2018, ApJ, 866, 22.Google Scholar
Li, H., Hammer, F., Babusiaux, C., et al. 2021, ApJ, 916, 8.Google Scholar
Longeard, N., Jablonka, P., Arentsen, A., et al. 2022, MNRAS, 516, 2348.Google Scholar
Longeard, N., Jablonka, P., Battaglia, G., et al. 2023, arXiv:2304.13046.Google Scholar
Maoz, D., Mannucci, F., & Brandt, T. D. 2012, MNRAS, 426, 3282.Google Scholar
Moskowitz, A. G. & Walker, M. G. 2020, ApJ, 892, 27.Google Scholar
Pace, A. B., Erkal, D., & Li, T. S. 2022, ApJ, 940, 136.Google Scholar
Rey, M. P., Pontzen, A., Agertz, O., et al. 2019, ApJL, 886, L3.Google Scholar
Roderick, T. A., Jerjen, H., Mackey, A. D., et al. 2015, ApJ, 804, 134.Google Scholar
Sand, D. J., Strader, J., Willman, B., et al. 2012, ApJ, 756, 79.Google Scholar
Sestito, F., Roediger, J., Navarro, J. F., et al. 2023, MNRAS.Google Scholar
Sestito, F., Zaremba, D., Venn, K. A., et al. 2023, arXiv:2301.13214.Google Scholar
Simon, J. D. & Geha, M. 2007, ApJ, 670, 313.Google Scholar
Simon, J. D. 2018, ApJ, 863, 89.Google Scholar
Simon, J. D. 2019, ARA&A, 57, 375.Google Scholar
Starkenburg, E., Martin, N., Youakim, K., et al. 2017, MNRAS, 471, 2587.Google Scholar
Tarumi, Y., Yoshida, N., & Frebel, A. 2021, ApJL, 914, L10.Google Scholar
Waller, F., Venn, K. A., Sestito, F., et al. 2023, MNRAS, 519, 1349.Google Scholar
Yang, Y., Hammer, F., Jiao, Y., et al. 2022, MNRAS, 512, 4171.Google Scholar