No CrossRef data available.
Published online by Cambridge University Press: 30 April 2021
The Toms–Winter conjecture is verified for those separable, unital, nuclear, infinite-dimensional real C*-algebras for which the complexification has a tracial state space with compact extreme boundary of finite covering dimension.
 -stable C*-algebras. Preprint April 2019, ArXiv:1811.00447v2Google Scholar
-stable C*-algebras. Preprint April 2019, ArXiv:1811.00447v2Google Scholar -absorption of nuclear C*-algebras, Acta Math. 209(1) (2012), 179–196.10.1007/s11511-012-0084-4CrossRefGoogle Scholar
-absorption of nuclear C*-algebras, Acta Math. 209(1) (2012), 179–196.10.1007/s11511-012-0084-4CrossRefGoogle Scholar -stability of crossed products by strongly outer actions II, Amer. J. Math. 136(6) (2014), 1441–1496.CrossRefGoogle Scholar
-stability of crossed products by strongly outer actions II, Amer. J. Math. 136(6) (2014), 1441–1496.CrossRefGoogle Scholar -absorbing C*-algebras, Internat. J. Math. 15(10) (2004), 1065–1084.CrossRefGoogle Scholar
-absorbing C*-algebras, Internat. J. Math. 15(10) (2004), 1065–1084.CrossRefGoogle Scholar -absorbing C*-algebras, Operator Algebras Math Phys., Adv. Stud. Pure Math., Volume 80 (Math. Soc., Japan, Tokyo, 2019), 189–210Google Scholar
-absorbing C*-algebras, Operator Algebras Math Phys., Adv. Stud. Pure Math., Volume 80 (Math. Soc., Japan, Tokyo, 2019), 189–210Google Scholar -stability and finite-dimensional tracial boundaries, Int. Math. Res. Not. IMRN 10 (2015), 2702–2727.Google Scholar
-stability and finite-dimensional tracial boundaries, Int. Math. Res. Not. IMRN 10 (2015), 2702–2727.Google Scholar -stability, Invent. Math. 179(2) (2010), 229–301.CrossRefGoogle Scholar
-stability, Invent. Math. 179(2) (2010), 229–301.CrossRefGoogle Scholar -stability of pure C*-algebras, Invent. Math. 187(2) (2012), 259–342.CrossRefGoogle Scholar
-stability of pure C*-algebras, Invent. Math. 187(2) (2012), 259–342.CrossRefGoogle Scholar