Hostname: page-component-7857688df4-fwx92 Total loading time: 0 Render date: 2025-11-14T04:26:35.342Z Has data issue: false hasContentIssue false

Physical measures for mostly sectionally expanding flows

Published online by Cambridge University Press:  12 November 2025

Vitor Araújo*
Affiliation:
Instituto de Matemática e Estatística, Universidade Federal da Bahia, Av. Ademar de Barros s/n, 40170-110 Salvador, Brazil (vitor.araujo.im.ufba@gmail.com)
Luciana Salgado
Affiliation:
Universidade Federal do Rio de Janeiro, Instituto de Matemática Avenida Athos da Silveira Ramos 149 Cidade Universitária, P.O. Box 68530, 21941-909 Rio de Janeiro, RJ, Brazil (lsalgado@im.ufrj.br, sergio.sousa@ufrj.br)
Sergio Sousa
Affiliation:
Universidade Federal do Rio de Janeiro, Instituto de Matemática Avenida Athos da Silveira Ramos 149 Cidade Universitária, P.O. Box 68530, 21941-909 Rio de Janeiro, RJ, Brazil (lsalgado@im.ufrj.br, sergio.sousa@ufrj.br)
*
*Corresponding author.

Abstract

We prove that a partially hyperbolic attracting set for a $C^2$ vector field, having slow recurrence to equilibria, supports an ergodic physical/SRB measure if, and only if, the trapping region admits non-uniform sectional expansion on a positive Lebesgue measure subset. Moreover, in this case, the attracting set supports at most finitely many ergodic physical/SRB measures, which are also Gibbs states along the central-unstable direction. This extends to continuous time systems a similar well-known result obtained for diffeomorphisms, encompassing the presence of equilibria accumulated by regular orbits within the attracting set. In codimension two the same result holds, assuming only the trajectories on the trapping region admit a sequence of times with asymptotical sectional expansion, on a positive volume subset. We present several examples of application, including the existence of physical measures for asymptotically sectional hyperbolic attracting sets, and obtain physical measures in an alternative unified way for many known examples: Lorenz-like and Rovella attractors, and sectional-hyperbolic attracting sets (including the multidimensional Lorenz attractor).

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alves, J., Dias, C. L., Luzzatto, S. and Pinheiro, V., SRB measures for partially hyperbolic systems whose central direction is weakly expanding, J. Eur. Math. Soc. 19(10) (2017), 29112946.CrossRefGoogle Scholar
Alves, J. F., Nonuniformly hyperbolic attractors: geometric and probabilistic aspects., (Springer International Publishing, 2020).CrossRefGoogle Scholar
Alves, J. F. and Araujo, V., Hyperbolic times: frequency versus integrability, Ergodic Theory and Dynamical Systems 24(2) (2004), 118.CrossRefGoogle Scholar
Alves, J. F., Bonatti, C. and Viana, M., SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math. 140(2) (2000), 351398.CrossRefGoogle Scholar
Alves, J. F., Luzzatto, S. and Pinheiro, V., Markov structures and decay of correlations for non-uniformly expanding dynamical systems, Ann. Inst. H. Poincaré Anal. Non Linéaire 22(6) (2005), 817839.CrossRefGoogle Scholar
Alves, J. F. and Pinheiro, V., Gibbs-markov structures and limit laws for partially hyperbolic attractors with mostly expanding central direction, Advances in Mathematics 223(5) (2010), 17061730.CrossRefGoogle Scholar
Araújo, V. and Trindade, E., Robust exponential mixing and convergence to equilibrium for singular-hyperbolic attracting sets, Journal of Dynamics and Differential Equations 35(3) (2021), 24872536. doi:10.1007/s10884-021-10100-7.CrossRefGoogle Scholar
Araujo, V., Sinks and sources for C $^1$ dynamics whose Lyapunov exponents have constant sign, Kyoto Journal of Mathematics 57(4) (2020), 751788.Google Scholar
Araujo, V., Finitely many physical measures for sectional-hyperbolic attracting sets and statistical stability, Ergodic Theory and Dynamical Systems 41(9) (2021), 27062733.CrossRefGoogle Scholar
Araujo, V., On the statistical stability of families of attracting sets and the contracting Lorenz attractor, Journal of Statistical Physics 182(3) (2021), 5368 doi:10.1007/s10955-021-02729-x.CrossRefGoogle Scholar
Araujo, V., On the number of ergodic physical/SRB measures of singular-hyperbolic attracting sets, Journal of Differential Equations 354 (may) (2023), 373402. doi:10.1016/j.jde.2023.02.008.CrossRefGoogle Scholar
Araujo, V. and Melbourne, I, Exponential decay of correlations for nonuniformly hyperbolic flows with a $C^{1+\unicode{x03B1}}$ stable foliation, including the classical Lorenz attractor, Annales Henri Poincaré 17(11) (2016), 29753004. doi:10.1007/s00023-016-0482-9.CrossRefGoogle Scholar
Araujo, V. and Melbourne, I, Existence and smoothness of the stable foliation for sectional hyperbolic attractors, Bulletin of the London Mathematical Society 49(2) (2017), 351367.CrossRefGoogle Scholar
Araujo, V. and Melbourne, I, Mixing properties and statistical limit theorems for singular hyperbolic flows without a smooth stable foliation, Advances in Mathematics 349 (2019), 212245.CrossRefGoogle Scholar
Araujo, V., Melbourne, I and Varandas, P., Rapid Mixing for the Lorenz Attractor and Statistical Limit Laws for Their Time-1 Maps, Communications in Mathematical Physics 340(3) (2015), 901938.CrossRefGoogle Scholar
Araujo, V. and Pacifico, M. J., Three-dimensional flows. Of Results in Mathematics and Related Areas. 3rd Series. A Series Of Modern Surveys in Mathematics., Volume 53, (Springer, Heidelberg, 2010).Google Scholar
Araujo, V., Pacifico, M. J., Pujals, E. R. and Viana, M., Singular-hyperbolic attractors are chaotic, Transactions of the A.M.S. 361(5) (2009), 24312485. doi:10.1090/S0002-9947-08-04595-9.CrossRefGoogle Scholar
Araujo, V. and Salgado, L., Infinitesimal Lyapunov functions for singular flows, Mathematische Zeitschrift 275(3-4) (2013), 863897. doi:10.1007/s00209-013-1163-8.CrossRefGoogle Scholar
Araujo, V., Souza, A. and Trindade, E., Upper large deviations bound for singular-hyperbolic attracting sets, Journal of Dynamics and Differential Equations 31(2) (2019), 601652.CrossRefGoogle Scholar
Arbieto, A. and Salgado, L., On critical orbits and sectional hyperbolicity of the nonwandering set for flows, Journal of Differential Equations 250(6) (2011), 29272939.CrossRefGoogle Scholar
Barreira, L. and Pesin, Y., Dynamics of systems with nonzero Lyapunov exponents. Of Encyclopedia Of Mathematics and its Applications., Volume 115, (Cambridge University Press, Cambridge, 2007).Google Scholar
Barreira, L. and Valls, C., Hölder Grobman-Hartman linearization, Disc. Cont. Dyn. Syst. A 18(1) (2007), 187197. doi:10.3934/dcds.2007.18.187.CrossRefGoogle Scholar
Bonatti, C., Diaz, L. J. and Viana, M., Dynamics beyond uniform hyperbolicity. Of Encyclopaedia Of Mathematical Sciences., Volume 102, (Springer-Verlag, Mathematical Physics, III, 2005). A global geometric and probabilistic perspective.Google Scholar
Bonatti, C., Pumariño, A. and Viana, M., Lorenz attractors with arbitrary expanding dimension, C. R. Acad. Sci. Paris Sér. I Math. 325(8) (1997), 883888.CrossRefGoogle Scholar
Bonatti, C. and Viana, M., SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math. 115(1) (2000), 157193. doi:10.1007/BF02810585.CrossRefGoogle Scholar
Bowen, R., Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Of Lecture Notes in Mathematics, Volume 470, (Berlin: Springer Verlag, 1975). doi:10.1007/978-3-540-77695-6.Google Scholar
Bowen, R. and Ruelle, D., The ergodic theory of Axiom A flows, Invent. Math. 29(3) (1975), 181202. doi:10.1007/bf01389848.CrossRefGoogle Scholar
Bruin, H. and Canales Farías, H. H., Mixing rates of the geometrical neutral lorenz model, Journal of Statistical Physics 190(12) (2023), 15729613. doi:10.1007/s10955-023-03212-5.CrossRefGoogle ScholarPubMed
Burguet, D. and Yang, D., Srb measures for mostly expanding partially hyperbolic diffeomorphisms via the variational approach, International Mathematics Research Notices 2025(6) (2025), 124. doi:10.1093/imrn/rnaf053.CrossRefGoogle Scholar
Cao, Y., Mi, Z. and Zou, R., C $^1$ pesin (un)stable manifolds without domination, International Mathematics Research Notices 2025(19) (2025), 1687–0247. doi:10.1093/imrn/rnaf298.CrossRefGoogle Scholar
Carvalho, M., Coelho, V., Salgado, L. and Varandas, P., Sensitivity and historic behavior for continuous maps on baire metric spaces, Ergodic Theory and Dynamical Systems 44(1) (2023), 130. doi:10.1017/etds.2023.3.CrossRefGoogle Scholar
Catsigeras, E., Cerminara, M. and Enrich, H., The Pesin entropy formula for $C^1$ diffeomorphisms with dominated splitting, Ergodic Theory Dynam. Systems 35(3) (2015), 737761.CrossRefGoogle Scholar
Crovisier, S., Wang, X., Yang, D. and Zhang, J., On physical measures of multi-singular hyperbolic vector fields, Transactions of the AMS 377(10) (2024), 69376980. doi:10.1090/tran/9161.Google Scholar
Dolgopyat, D., On dynamics of mostly contracting diffeomorphisms, Comm. Math. Phys. 213(1) (2000), 181201.CrossRefGoogle Scholar
Fisher, T. and Hasselblatt, B., Hyperbolic Flows., (European Mathematical Society Publishing House, Zuerich, Switzerland, 2019).CrossRefGoogle Scholar
Gourmelon, N., Adapted metrics for dominated splittings, Ergodic Theory Dynam. Systems 27(6) (2007), 18391849.CrossRefGoogle Scholar
Jiang, D. -Q., Qian, M. and Qian, M. -P., Lyapunov exponents of hyperbolic attractors, pp. 189214, (Springer, Berlin Heidelberg, 2003).Google Scholar
Katok, A. and Hasselblatt, B., Introduction to the modern theory of dynamical systems. Of Encyclopeadia Appl. Math., Volume 54, (Cambridge University Press, Cambridge, 1995). volume.Google Scholar
Kiriki, S., Li, X., Nakano, Y. and Soma, T., Abundance of Observable Lyapunov Irregular Sets, Communications in Mathematical Physics 391(3) (2022), 12411269.CrossRefGoogle Scholar
Ledrappier, F. and Young, L. S., The metric entropy of diffeomorphisms I. Characterization of measures satisfying Pesin’s entropy formula, Annals of Mathematics 122(3) (1985), 509539. doi:10.2307/1971328.CrossRefGoogle Scholar
Leplaideur, R. and Yang, D., SRB measure for higher dimensional singular partially hyperbolic attractors, Annales de l’Institut Fourier 67(2) (2017), 27032717.CrossRefGoogle Scholar
Mañé, R., Ergodic Theory and Differentiable dynamics., (Springer Verlag, New York, 1987).CrossRefGoogle Scholar
Martín, B. S. and Vivas, K., The Rovella attractor is asymptotically sectional-hyperbolic, NonLinearity 33(6) (2020), 30363049.CrossRefGoogle Scholar
Martín, B. S. and Vivas, K., Physical measures for ASH attractors, Journal of Differential Equations 367(sep) (2023), 366381. doi:10.1016/j.jde.2023.05.003.CrossRefGoogle Scholar
Metzger, R. J., Sinai-Ruelle-Bowen measures for contracting Lorenz maps and flows, Ann. Inst. H. Poincaré Anal. Non Linéaire 17(2) (2000), 247276.CrossRefGoogle Scholar
Metzger, R. J., Stochastic stability for contracting Lorenz maps and flows, Comm. Math. Phys. 212(2) (2000), 277296.CrossRefGoogle Scholar
Mi, Z., Cao, Y. and Yang, D., SRB measures for attractors with continuous invariant splittings, Mathematische Zeitschrift 288(1-2) (2017), 135165. doi:10.1007/s00209-017-1883-2.CrossRefGoogle Scholar
Morales, C. A., Pacifico, M. J. and Pujals, E. R., Singular hyperbolic systems, Proc. Amer. Math. Soc. 127(11) (1999), 33933401.CrossRefGoogle Scholar
Morales, C. A., Pacifico, M. J. and Pujals, E. R., Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. of Math 160(2) (2004), 375432.CrossRefGoogle Scholar
Ott, W. and Yorke, J. A., When Lyapunov exponents fail to exist, Physical Review E 78(5) (2008), 056203. doi:10.1103/physreve.78.056203.CrossRefGoogle ScholarPubMed
Palis, J. and de Melo, W., Geometric theory of dynamical systems., (Springer Verlag, 1982).CrossRefGoogle Scholar
Pesin, Y. B., Characteristic Lyapunov exponents and Smooth Ergodic Theory, Russian Math. Surveys 324(4) (1977), 55114. doi:10.1070/rm1977v032n04abeh001639.CrossRefGoogle Scholar
Pesin, Y. and Sinai, Y., Gibbs measures for partially hyperbolic attractors, Ergod. Th. & Dynam. Sys. 2(3-4) (1982), 417438. doi:10.1017/s014338570000170x.CrossRefGoogle Scholar
Philipp, W. and Stout, W., Almost sure invariance principles for partial sums of weakly dependent random variables. Memoirs of the AMS., (AMS, 1975).Google Scholar
Pinheiro, V., Sinai-Ruelle-Bowen measures for weakly expanding maps, Nonlinearity 19(5) (2006), 11851200.CrossRefGoogle Scholar
Pinheiro, V., Expanding measures. Annales de l Institut Henri Poincaré, Analyse non Linéaire, 28(dec) (2011), 899939. doi:10.1016/j.anihpc.2011.07.001.Google Scholar
Pomeau, Y. and Manneville, P., Intermittent Transition to Turbulence in Dissipative Dynamical Systems, Communications in Mathematical Physics 74(2) (1980), 189197.CrossRefGoogle Scholar
Pugh, C. and Shub, M., Ergodic elements of ergodic actions, Compositio Math. 23(1) (1971), 115122.Google Scholar
Pugh, C., Shub, M. and Wilkinson, A., Hölder foliations, Duke Math. J. 86(1) (1997), 517546. doi:10.1215/S0012-7094-97-08616-6.CrossRefGoogle Scholar
Rovella, A., The dynamics of perturbations of the contracting Lorenz attractor, Bull. Braz. Math. Soc. 24(2) (1993), 233259.CrossRefGoogle Scholar
Sinai, Y., Gibbs measures in ergodic theory, Russian Math. Surveys 27(4) (1972), 2169. doi:10.1070/RM1972v027n04ABEH001383.CrossRefGoogle Scholar
Tahzibi, A., Stably ergodic diffeomorphisms which are not partially hyperbolic, Israel Journal of Mathematics 142(1) (2004), 315344. doi:10.1007/BF02771539.CrossRefGoogle Scholar
Takens, F., Heteroclinic attractors: time averages and moduli of topological conjugacy, Bull. Braz. Math. Soc. 25(1) (1994), 107120. doi:10.1007/bf01232938.CrossRefGoogle Scholar
Viana, M. and Oliveira, K., Foundations of ergodic theory. Of Cambridge Studies in Advanced Mathematics., Volume 151, (Cambridge University Press, Cambridge, 2016).Google Scholar