Hostname: page-component-cb9f654ff-fg9bn Total loading time: 0 Render date: 2025-09-09T10:37:59.565Z Has data issue: false hasContentIssue false

ON REPRESENTATIONS OF SOME ALGEBRAS ASSOCIATED WITH $\mathfrak {sl}_2$

Published online by Cambridge University Press:  27 August 2025

HONGJIA CHEN
Affiliation:
School of Mathematical Sciences https://ror.org/04c4dkn09 University of Science and Technology of China Hefei 230026, Anhui P. R. China hjchen@ustc.edu.cn
DASHU XU*
Affiliation:
School of Mathematical Sciences https://ror.org/04c4dkn09 University of Science and Technology of China Hefei 230026, Anhui P. R. China

Abstract

This article focuses on the representation theory of algebras associated with $\mathfrak {sl}_2$, including the affine Lie algebra $\widehat {\mathfrak {sl}_2}$, the affine Kac–Moody algebra $\widetilde {\mathfrak {sl}_2}$, and the affine-Virasoro algebra $\mathfrak {Vir}\ltimes \widehat {\mathfrak {sl}_2}$. First, we classify certain modules over these algebras, which are free of rank one when restricted to some specific subalgebras. We demonstrate a connection between these modules and modules over the Weyl algebras, which allows us to construct large families of modules that are free of arbitrary finite rank when restricted to the Cartan subalgebra. We then investigate the simplicity of these modules. For reducible modules, we fully characterize their composition factors. Through a comparison with existing simple modules in the literature, we have identified a novel family of simple modules over the affine Kac–Moody algebra $\widetilde {\mathfrak {sl}_2}$. Finally, we turn our attention to a class of tensor product modules over the affine-Virasoro algebra $\mathfrak {Vir}\ltimes \widehat {\mathfrak {sl}_2}$. We derive a necessary and sufficient condition for the simplicity of these modules and determine their isomorphism classes.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical Journal

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adamović, D., , R. and Zhao, K., Whittaker modules for the affine Lie algebra ${A}_1^{(1)}$ , Adv. Math. 289 (2016), 438479.10.1016/j.aim.2015.11.020CrossRefGoogle Scholar
Block, R., The irreducible representations of the Lie algebra $\mathfrak{sl}(2)$ and of the Weyl algebra , Adv. Math. 39 (1981), 69110.10.1016/0001-8708(81)90058-XCrossRefGoogle Scholar
Cai, Y., Chen, H., Guo, X., Ma, Y. and Zhu, M., A class of non-weight modules of ${U}_q\left({\mathfrak{sl}}_2\right)$ and Clebsch–Gordan type formulas , Forum Math. 33 (2021), 743755.10.1515/forum-2020-0345CrossRefGoogle Scholar
Cai, Y., Tan, H. and Zhao, K., New representations of affine Kac-Moody algebras , J. Algebra 547 (2020), 95115.10.1016/j.jalgebra.2019.11.014CrossRefGoogle Scholar
Cai, Y. and Zhao, K., Module structure on $U(H)$ for basic Lie superalgebras , Toyama Math. J. 37 (2015), 5572.Google Scholar
Chen, H., Gao, Y., Liu, X. and Wang, L., ${U}^0$ -free quantum group representations , J. Algebra 642 (2024), 330366.10.1016/j.jalgebra.2023.11.037CrossRefGoogle Scholar
Chen, H. and Guo, X., Non-weight modules over the Heisenberg-Virasoro algebra and the $W$ algebra $W\left(2,2\right)$ , J. Algebra Appl. 16 (2017), 1750097. 16 pp.10.1142/S0219498817500979CrossRefGoogle Scholar
Chen, H. and Wang, L., A family of simple modules over the Rueda’s algebras , J. Algebra 591 (2022), 360378.10.1016/j.jalgebra.2021.10.024CrossRefGoogle Scholar
Chen, Q. and Han, J., Non-weight modules over the affine-Virasoro algebra of type ${A}_1$ , J. Math. Phys. 60 (2019), 71707. 9 pp.10.1063/1.5100918CrossRefGoogle Scholar
Chen, Q. and Yao, Y., Irreducible tensor product modules over the affine-Virasoro algebra of type ${A}_1$ , Linear Multilinear Algebra 70 (2022), 75587574.10.1080/03081087.2021.1998309CrossRefGoogle Scholar
Chen, Q. and Yao, Y., A new class of irreducible modules over the affine-Virasoro algebra of type ${A}_1$ , J. Algebra 608 (2022), 553572.10.1016/j.jalgebra.2022.05.023CrossRefGoogle Scholar
Cheng, S. and Lam, N., Finite conformal modules over $N=2,3,4$ superconformal algebras , J. Math. Phys. 42 (2001), 906933.10.1063/1.1333698CrossRefGoogle Scholar
Christodoulopoulou, K., Whittaker modules for Heisenberg algebras and imaginary Whittaker modules for affine Lie algebras , J. Algebra 320 (2008), 28712890.10.1016/j.jalgebra.2008.06.025CrossRefGoogle Scholar
Coutinho, S. C., A primer of algebraic  $D\!\kern-1pt\!\!$ -modules, Cambridge University Press, Cambridge, 1995, xii+207 pp.Google Scholar
Erdmann, K. and Holm, T., Algebras and representation theory, Springer Undergraduate Mathematics Series, Springer, Cham, 2018, ix+298 pp.10.1007/978-3-319-91998-0CrossRefGoogle Scholar
Futorny, V., Guo, X., Xue, Y. and Zhao, K., Smooth representations of affine Kac-Moody algebras, preprint, arXiv:2404.03855.Google Scholar
Gao, Y., Hu, N. and Liu, D., Representations of the affine-Virasoro algebra of type ${A}_1$ , J. Geom. Phys. 106 (2016), 102107.10.1016/j.geomphys.2016.03.009CrossRefGoogle Scholar
Guo, X., Huo, X. and Liu, X., New simple ${\hat{\mathfrak{sl}}}_2$ -modules from Weyl algebra modules , J. Algebra 634 (2023), 4473.10.1016/j.jalgebra.2023.06.041CrossRefGoogle Scholar
Guo, X., Liu, G., , R. and Zhao, K., Simple Witt modules that are finitely generated over the Cartan subalgebra , Mosc. Math. J. 20 (2020), 4365.10.17323/1609-4514-2020-20-1-43-65CrossRefGoogle Scholar
Guo, X., Liu, X. and Zhang, F., Simple ${\mathfrak{sl}}_{d+1}$ -modules from Witt algebra modules , Forum Math. 36 (2024), 447467.10.1515/forum-2023-0159CrossRefGoogle Scholar
Guo, X. and Zhao, K., Irreducible representations of untwisted affine Kac-Moody algebras, preprint, arXiv:1305.4059v2.Google Scholar
Han, J., Chen, Q. and Su, Y., Modules over the algebra $ir\left(a,b\right)$ , Linear Algebra Appl. 515 (2017), 1123.10.1016/j.laa.2016.11.002CrossRefGoogle Scholar
He, Y., Cai, Y. and , R., A class of new simple modules for ${\mathfrak{sl}}_{n+1}$ and the Witt algebra , J. Algebra 541 (2020), 415435.10.1016/j.jalgebra.2019.09.011CrossRefGoogle Scholar
Humphreys, J., Introduction to Lie algebras and representation theory, Second printing, revised, Graduate Texts in Mathematics, 9, Springer-Verlag, New York, NY, 1978, xii+171 pp.Google Scholar
Hungerford, W., Algebra, Graduate Texts in Mathematics, 73, Springer-Verlag, New York, NY, 1980, xxiii+502 pp.Google Scholar
Jiang, C. and You, H., Irreducible representations for the affine-Virasoro Lie algebra of type ${B}_l$ , Chinese Ann. Math. Ser. B 25 (2004), 359368.10.1142/S0252959904000330CrossRefGoogle Scholar
Kac, V., Highest weight representations of conformal current algebras, World Scientific Publishing Co., Inc., Teaneck, NJ, 1986, 315.Google Scholar
Kac, V., Infinite-dimensional Lie algebras, Cambridge University Press, Cambridge, 1990, xxii+400 pp.10.1017/CBO9780511626234CrossRefGoogle Scholar
Kac, V. and Radul, K., Quasifinite highest weight modules over the Lie algebra of differential operators on the circle , Comm. Math. Phys. 157 (1993), 429457.10.1007/BF02096878CrossRefGoogle Scholar
Kuroki, G., Fock space representations of affine Lie algebras and integral representations in the Wess-Zumino-Witten models , Comm. Math. Phys. 142 (1991), 511542.10.1007/BF02099099CrossRefGoogle Scholar
Lepowsky, J. and Li, H., Introduction to vertex operator algebras and their representations, Progress in Mathematics, 227, Birkhäuser Boston, Inc., Boston, MA, 2004, xiv+318 pp.10.1007/978-0-8176-8186-9CrossRefGoogle Scholar
Li, H., On certain categories of modules for affine Lie algebras , Math. Z. 248 (2004), 635664.10.1007/s00209-004-0674-8CrossRefGoogle Scholar
Li, S., Qin, M. and Guo, X., New simple Virasoro modules from Weyl algebra modules , J. Algebra 609 (2022), 619641.10.1016/j.jalgebra.2022.06.021CrossRefGoogle Scholar
Liu, D., Pei, Y. and Xia, L., Irreducible representations over the diamond Lie algebra , Comm. Algebra 46 (2018), 143148.10.1080/00927872.2017.1313421CrossRefGoogle Scholar
Liu, D., Pei, Y. and Xia, L., Classification of quasi-finite irreducible modules over affine-Virasoro algebras , J. Lie Theory 31 (2021), 575582.Google Scholar
Liu, X. and Qian, M., Bosonic Fock representations of the affine-Virasoro algebra , J. Phys. A 27 (1994), 131136.10.1088/0305-4470/27/5/005CrossRefGoogle Scholar
, R. and Zhao, K., Irreducible Virasoro modules from irreducible Weyl modules , J. Algebra 414 (2014), 271287.10.1016/j.jalgebra.2014.04.029CrossRefGoogle Scholar
Mazorchuk, V., Lectures on  ${\mathfrak{sl}}_2\left(\mathbb{C}\right)\!\!$ -modules, Lecture Series, Imperial College Press, London, 2010, x+263 pp.Google Scholar
Mazorchuk, V. and Zhao, K., Characterization of simple highest weight modules , Canad. Math. Bull. 56 (2013), 606614.10.4153/CMB-2011-199-5CrossRefGoogle Scholar
Nguyen, K., Xue, Y. and Zhao, K., A new class of simple smooth modules over the affine algebra ${A}_1^{(1)}$ , J. Algebra 658 (2024), 728747.10.1016/j.jalgebra.2024.06.023CrossRefGoogle Scholar
Nilsson, J., Simple ${\mathfrak{sl}}_{n+1}$ -module structures on $\left(\mathfrak{h}\right)$ , J. Algebra 424 (2015), 294329.10.1016/j.jalgebra.2014.09.036CrossRefGoogle Scholar
Nilsson, J., $\left(\mathfrak{h}\right)$ -free modules and coherent families , J. Pure Appl. Algebra 220 (2016), 14751488.10.1016/j.jpaa.2015.09.013CrossRefGoogle Scholar
Nilsson, J., Simple $\mathfrak{sl}(V)$ -modules which are free over an abelian subalgebra , Forum Math. 35 (2023), 12371255.10.1515/forum-2022-0245CrossRefGoogle Scholar
Rao, E. and Jiang, C., Classification of irreducible integrable representations for the full toroidal Lie algebras , J. Pure Appl. Algebra 200 (2005), 7185.Google Scholar
Tan, H., Classification of simple locally finite modules over the affine-Virasoro algebras , J. Algebra 631 (2023), 738755.10.1016/j.jalgebra.2023.05.011CrossRefGoogle Scholar
Tan, H. and Zhao, K., Irreducible Virasoro modules from tensor products (II) , J. Algebra 394 (2013), 357373.10.1016/j.jalgebra.2013.07.023CrossRefGoogle Scholar
Tan, H. and Zhao, K., ${\mathfrak{W}}_n^{+}$ -and ${\mathfrak{W}}_n$ -module structures on $U\left({\mathfrak{h}}_n\right)$ , J. Algebra 424 (2015), 357375.10.1016/j.jalgebra.2014.09.031CrossRefGoogle Scholar
Wu, Y. and Yue, X., Skew-symmetric biderivations on the affine-Virasoro algebra of type ${A}_1$ and their applications , Commun. Algebra 50 (2022), 770783.10.1080/00927872.2021.1968419CrossRefGoogle Scholar