1 Introduction
 We fix integers 
               
                   $n>0,d$
               
             and
                  $n>0,d$
               
             and 
               
                   $g\geqslant 0$
               
            . Let
                  $g\geqslant 0$
               
            . Let 
               
                   $\unicode[STIX]{x1D6F4}$
               
             be a smooth complex projective curve of genus
                  $\unicode[STIX]{x1D6F4}$
               
             be a smooth complex projective curve of genus 
               
                   $g$
               
            . The nonabelian Hodge theory of
                  $g$
               
            . The nonabelian Hodge theory of 
               
                   $\unicode[STIX]{x1D6F4}$
               
             gives the equivalence of categories related to the following three moduli spaces: the moduli space of semistable Higgs bundles of rank
                  $\unicode[STIX]{x1D6F4}$
               
             gives the equivalence of categories related to the following three moduli spaces: the moduli space of semistable Higgs bundles of rank 
               
                   $n$
               
             and of degree
                  $n$
               
             and of degree 
               
                   $0$
               
             on
                  $0$
               
             on 
               
                   $\unicode[STIX]{x1D6F4}$
               
             (denoted by
                  $\unicode[STIX]{x1D6F4}$
               
             (denoted by 
               
                   ${\mathcal{M}}_{\text{Dol}}(\unicode[STIX]{x1D6F4})$
               
            ); the moduli space of holomorphic connections of rank
                  ${\mathcal{M}}_{\text{Dol}}(\unicode[STIX]{x1D6F4})$
               
            ); the moduli space of holomorphic connections of rank 
               
                   $n$
               
             and of degree
                  $n$
               
             and of degree 
               
                   $0$
               
             on
                  $0$
               
             on 
               
                   $\unicode[STIX]{x1D6F4}$
               
             (denoted by
                  $\unicode[STIX]{x1D6F4}$
               
             (denoted by 
               
                   ${\mathcal{M}}_{\text{DR}}(\unicode[STIX]{x1D6F4})$
               
            ); and the character variety
                  ${\mathcal{M}}_{\text{DR}}(\unicode[STIX]{x1D6F4})$
               
            ); and the character variety 
               
                   $\text{Hom}(\unicode[STIX]{x1D70B}_{1}(\unicode[STIX]{x1D6F4}),\text{GL}(n,\mathbb{C}))/\!/\text{GL}(n,\mathbb{C})$
               
            , which is a universal categorical quotient (denoted by
                  $\text{Hom}(\unicode[STIX]{x1D70B}_{1}(\unicode[STIX]{x1D6F4}),\text{GL}(n,\mathbb{C}))/\!/\text{GL}(n,\mathbb{C})$
               
            , which is a universal categorical quotient (denoted by 
               
                   ${\mathcal{M}}_{\text{B}}(\unicode[STIX]{x1D6F4})$
               
            ). The closed points of the character variety parametrize certain equivalence classes of representations of the fundamental group
                  ${\mathcal{M}}_{\text{B}}(\unicode[STIX]{x1D6F4})$
               
            ). The closed points of the character variety parametrize certain equivalence classes of representations of the fundamental group 
               
                   $\unicode[STIX]{x1D70B}_{1}(\unicode[STIX]{x1D6F4})$
               
             into
                  $\unicode[STIX]{x1D70B}_{1}(\unicode[STIX]{x1D6F4})$
               
             into 
               
                   $\text{GL}(n,\mathbb{C})$
               
             (see [Reference Simpson14, Proposition 6.1]). These moduli spaces are related to each other in the following way. First, the moduli space
                  $\text{GL}(n,\mathbb{C})$
               
             (see [Reference Simpson14, Proposition 6.1]). These moduli spaces are related to each other in the following way. First, the moduli space 
               
                   ${\mathcal{M}}_{\text{Hod}}(\unicode[STIX]{x1D6F4})$
               
             of
                  ${\mathcal{M}}_{\text{Hod}}(\unicode[STIX]{x1D6F4})$
               
             of 
               
                   $\unicode[STIX]{x1D706}$
               
            -connections (which are semistable with degree 0 in the case
                  $\unicode[STIX]{x1D706}$
               
            -connections (which are semistable with degree 0 in the case 
               
                   $\unicode[STIX]{x1D706}=0$
               
            ) gives the relationship between
                  $\unicode[STIX]{x1D706}=0$
               
            ) gives the relationship between 
               
                   ${\mathcal{M}}_{\text{Dol}}(\unicode[STIX]{x1D6F4})$
               
             and
                  ${\mathcal{M}}_{\text{Dol}}(\unicode[STIX]{x1D6F4})$
               
             and 
               
                   ${\mathcal{M}}_{\text{DR}}(\unicode[STIX]{x1D6F4})$
               
            . Here, we call
                  ${\mathcal{M}}_{\text{DR}}(\unicode[STIX]{x1D6F4})$
               
            . Here, we call 
               
                   $(E,\unicode[STIX]{x1D6FB})$
               
             a
                  $(E,\unicode[STIX]{x1D6FB})$
               
             a 
               
                   $\unicode[STIX]{x1D706}$
               
            -connection if
                  $\unicode[STIX]{x1D706}$
               
            -connection if 
               
                   $E$
               
             is a vector bundle on
                  $E$
               
             is a vector bundle on 
               
                   $\unicode[STIX]{x1D6F4}$
               
             and
                  $\unicode[STIX]{x1D6F4}$
               
             and 
               
                   $\unicode[STIX]{x1D6FB}:E\rightarrow E\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}$
               
             is a homomorphism of sheaves satisfying
                  $\unicode[STIX]{x1D6FB}:E\rightarrow E\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}$
               
             is a homomorphism of sheaves satisfying 
               
                   $\unicode[STIX]{x1D6FB}(ae)=a\unicode[STIX]{x1D6FB}(e)+\unicode[STIX]{x1D706}d(a)\otimes e$
               
             where
                  $\unicode[STIX]{x1D6FB}(ae)=a\unicode[STIX]{x1D6FB}(e)+\unicode[STIX]{x1D706}d(a)\otimes e$
               
             where 
               
                   $\unicode[STIX]{x1D706}\in \mathbb{C}$
               
            ,
                  $\unicode[STIX]{x1D706}\in \mathbb{C}$
               
            , 
               
                   $a\in {\mathcal{O}}_{\unicode[STIX]{x1D6F4}}$
               
             and
                  $a\in {\mathcal{O}}_{\unicode[STIX]{x1D6F4}}$
               
             and 
               
                   $e\in E$
               
            . Then we have the natural map
                  $e\in E$
               
            . Then we have the natural map 
               
                   $\unicode[STIX]{x1D706}:{\mathcal{M}}_{\text{Hod}}(\unicode[STIX]{x1D6F4})\rightarrow \mathbb{C}^{1}$
               
             such that
                  $\unicode[STIX]{x1D706}:{\mathcal{M}}_{\text{Hod}}(\unicode[STIX]{x1D6F4})\rightarrow \mathbb{C}^{1}$
               
             such that 
               
                   $\unicode[STIX]{x1D706}^{-1}(0)={\mathcal{M}}_{\text{Dol}}(\unicode[STIX]{x1D6F4})$
               
             and
                  $\unicode[STIX]{x1D706}^{-1}(0)={\mathcal{M}}_{\text{Dol}}(\unicode[STIX]{x1D6F4})$
               
             and 
               
                   $\unicode[STIX]{x1D706}^{-1}(1)={\mathcal{M}}_{\text{DR}}(\unicode[STIX]{x1D6F4})$
               
             (e.g., see [Reference Simpson15, Theorem 14]). Finally, the Riemann–Hilbert correspondence gives an isomorphism between the associated complex analytic spaces
                  $\unicode[STIX]{x1D706}^{-1}(1)={\mathcal{M}}_{\text{DR}}(\unicode[STIX]{x1D6F4})$
               
             (e.g., see [Reference Simpson15, Theorem 14]). Finally, the Riemann–Hilbert correspondence gives an isomorphism between the associated complex analytic spaces 
               
                   ${\mathcal{M}}_{\text{DR}}^{\text{an}}(\unicode[STIX]{x1D6F4})$
               
             and
                  ${\mathcal{M}}_{\text{DR}}^{\text{an}}(\unicode[STIX]{x1D6F4})$
               
             and 
               
                   ${\mathcal{M}}_{B}^{\text{an}}(\unicode[STIX]{x1D6F4})$
               
             (e.g., see  [Reference Simpson15, Proposition 9]).
                  ${\mathcal{M}}_{B}^{\text{an}}(\unicode[STIX]{x1D6F4})$
               
             (e.g., see  [Reference Simpson15, Proposition 9]).
 In this paper, we consider variants of those moduli spaces in the case of punctured curves. We fix an integer 
               
                   $k>0$
               
             and a
                  $k>0$
               
             and a 
               
                   $k$
               
            -tuple
                  $k$
               
            -tuple 
               
                   $\boldsymbol{\unicode[STIX]{x1D707}}=(\unicode[STIX]{x1D707}^{1},\ldots ,\unicode[STIX]{x1D707}^{k})$
               
             of partitions of
                  $\boldsymbol{\unicode[STIX]{x1D707}}=(\unicode[STIX]{x1D707}^{1},\ldots ,\unicode[STIX]{x1D707}^{k})$
               
             of partitions of 
               
                   $n$
               
            , that is,
                  $n$
               
            , that is, 
               
                   $\unicode[STIX]{x1D707}^{i}=(\unicode[STIX]{x1D707}_{1}^{i},\ldots ,\unicode[STIX]{x1D707}_{r_{i}}^{i})$
               
             satisfies
                  $\unicode[STIX]{x1D707}^{i}=(\unicode[STIX]{x1D707}_{1}^{i},\ldots ,\unicode[STIX]{x1D707}_{r_{i}}^{i})$
               
             satisfies 
               
                   $\unicode[STIX]{x1D707}_{1}^{i}\geqslant \unicode[STIX]{x1D707}_{2}^{i}\geqslant \cdots \,$
               
             and
                  $\unicode[STIX]{x1D707}_{1}^{i}\geqslant \unicode[STIX]{x1D707}_{2}^{i}\geqslant \cdots \,$
               
             and 
               
                   $\unicode[STIX]{x1D707}_{1}^{i}+\cdots +\unicode[STIX]{x1D707}_{r_{i}}^{i}=n$
               
             for
                  $\unicode[STIX]{x1D707}_{1}^{i}+\cdots +\unicode[STIX]{x1D707}_{r_{i}}^{i}=n$
               
             for 
               
                   $i=1,\ldots ,k$
               
            . We take
                  $i=1,\ldots ,k$
               
            . We take 
               
                   $k$
               
            -distinct points
                  $k$
               
            -distinct points 
               
                   $p_{1},\ldots ,p_{k}$
               
             on
                  $p_{1},\ldots ,p_{k}$
               
             on 
               
                   $\unicode[STIX]{x1D6F4}$
               
            , and define a divisor by
                  $\unicode[STIX]{x1D6F4}$
               
            , and define a divisor by 
               
                   $D:=p_{1}+\cdots +p_{k}$
               
            .
                  $D:=p_{1}+\cdots +p_{k}$
               
            .
Definition 1.1. (Parabolic Higgs bundles)
 We call 
                     
                         $(E,\unicode[STIX]{x1D6F7},\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant k})$
                     
                   a parabolic Higgs bundle of rank
                        $(E,\unicode[STIX]{x1D6F7},\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant k})$
                     
                   a parabolic Higgs bundle of rank 
                  
                     
                         $n$
                     
                  , of degree
                        $n$
                     
                  , of degree 
                  
                     
                         $d$
                     
                  , and of type
                        $d$
                     
                  , and of type 
                  
                     
                         $\boldsymbol{\unicode[STIX]{x1D707}}$
                     
                   if:
                        $\boldsymbol{\unicode[STIX]{x1D707}}$
                     
                   if:
- 
                        
                        (1)  $E$
                              
                            is an algebraic vector bundle on $E$
                              
                            is an algebraic vector bundle on $\unicode[STIX]{x1D6F4}$
                              
                            of rank $\unicode[STIX]{x1D6F4}$
                              
                            of rank $n$
                              
                            and of degree $n$
                              
                            and of degree $d$
                              
                           ; $d$
                              
                           ;
- 
                        
                        (2)  $\unicode[STIX]{x1D6F7}:E\rightarrow E\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)$
                              
                            is an $\unicode[STIX]{x1D6F7}:E\rightarrow E\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)$
                              
                            is an ${\mathcal{O}}_{\unicode[STIX]{x1D6F4}}$
                              
                           -homomorphism; and ${\mathcal{O}}_{\unicode[STIX]{x1D6F4}}$
                              
                           -homomorphism; and
- 
                        
                        (3) for each  $p_{i}$
                              
                           , $p_{i}$
                              
                           , $l_{\ast }^{(i)}$
                              
                            is a filtration $l_{\ast }^{(i)}$
                              
                            is a filtration $E|_{p_{i}}=l_{1}^{(i)}\supset l_{2}^{(i)}\supset \cdots \supset l_{r_{i}}^{(i)}\supset l_{r_{i}+1}^{(i)}=0$
                              
                             such that $E|_{p_{i}}=l_{1}^{(i)}\supset l_{2}^{(i)}\supset \cdots \supset l_{r_{i}}^{(i)}\supset l_{r_{i}+1}^{(i)}=0$
                              
                             such that $\dim (l_{j}^{(i)}/l_{j+1}^{(i)})=\unicode[STIX]{x1D707}_{j}^{i}$
                              
                            and $\dim (l_{j}^{(i)}/l_{j+1}^{(i)})=\unicode[STIX]{x1D707}_{j}^{i}$
                              
                            and $\unicode[STIX]{x1D6F7}|_{p_{i}}(l_{j}^{(i)})\subset l_{j+1}^{(i)}\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)|_{p_{i}}$
                              
                            for $\unicode[STIX]{x1D6F7}|_{p_{i}}(l_{j}^{(i)})\subset l_{j+1}^{(i)}\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)|_{p_{i}}$
                              
                            for $j=1,\ldots ,r_{i}$
                              
                           . $j=1,\ldots ,r_{i}$
                              
                           .
 The 
               
                   ${\mathcal{O}}_{\unicode[STIX]{x1D6F4}}$
               
            -homomorphism
                  ${\mathcal{O}}_{\unicode[STIX]{x1D6F4}}$
               
            -homomorphism 
               
                   $\unicode[STIX]{x1D6F7}$
               
             is called a Higgs field.
                  $\unicode[STIX]{x1D6F7}$
               
             is called a Higgs field.
Definition 1.2. (Parabolic connections)
 We call 
                     
                         $(E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant k})$
                     
                   a (regular singular)
                        $(E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant k})$
                     
                   a (regular singular) 
                     
                         $\boldsymbol{\unicode[STIX]{x1D709}}$
                     
                  -parabolic connection of rank
                        $\boldsymbol{\unicode[STIX]{x1D709}}$
                     
                  -parabolic connection of rank 
                  
                     
                         $n$
                     
                  , of degree
                        $n$
                     
                  , of degree 
                  
                     
                         $d$
                     
                  , and of type
                        $d$
                     
                  , and of type 
                  
                     
                         $\boldsymbol{\unicode[STIX]{x1D707}}$
                     
                   if:
                        $\boldsymbol{\unicode[STIX]{x1D707}}$
                     
                   if:
- 
                        
                        (1)  $E$
                              
                            is an algebraic vector bundle on $E$
                              
                            is an algebraic vector bundle on $\unicode[STIX]{x1D6F4}$
                              
                            of rank $\unicode[STIX]{x1D6F4}$
                              
                            of rank $n$
                              
                            and of degree $n$
                              
                            and of degree $d$
                              
                           ; $d$
                              
                           ;
- 
                        
                        (2)  $\unicode[STIX]{x1D6FB}:E\rightarrow E\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)$
                              
                            is a connection; and $\unicode[STIX]{x1D6FB}:E\rightarrow E\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)$
                              
                            is a connection; and
- 
                        
                        (3) for each  $p_{i}$
                              
                           , $p_{i}$
                              
                           , $l_{\ast }^{(i)}$
                              
                            is a filtration $l_{\ast }^{(i)}$
                              
                            is a filtration $E|_{p_{i}}=l_{1}^{(i)}\supset l_{2}^{(i)}\supset \cdots \supset l_{r_{i}}^{(i)}\supset l_{r_{i}+1}^{(i)}=0$
                              
                            such that $E|_{p_{i}}=l_{1}^{(i)}\supset l_{2}^{(i)}\supset \cdots \supset l_{r_{i}}^{(i)}\supset l_{r_{i}+1}^{(i)}=0$
                              
                            such that $\dim (l_{j}^{(i)}/l_{j+1}^{(i)})=\unicode[STIX]{x1D707}_{j}^{i}$
                              
                            and $\dim (l_{j}^{(i)}/l_{j+1}^{(i)})=\unicode[STIX]{x1D707}_{j}^{i}$
                              
                            and $(\text{Res}_{p_{i}}(\unicode[STIX]{x1D6FB})-\unicode[STIX]{x1D709}_{j}^{i}\text{id}_{E|_{p_{i}}})(l_{j}^{(i)})\subset l_{j+1}^{(i)}$
                              
                            for $(\text{Res}_{p_{i}}(\unicode[STIX]{x1D6FB})-\unicode[STIX]{x1D709}_{j}^{i}\text{id}_{E|_{p_{i}}})(l_{j}^{(i)})\subset l_{j+1}^{(i)}$
                              
                            for $j=1,\ldots ,r_{i}$
                              
                           . $j=1,\ldots ,r_{i}$
                              
                           .
 Here, we put 
                     
                         $r:=\sum \!r_{i}$
                     
                   and
                        $r:=\sum \!r_{i}$
                     
                   and 
                     
                         $\boldsymbol{\unicode[STIX]{x1D709}}:=(\unicode[STIX]{x1D709}_{j}^{i})_{1\leqslant j\leqslant r_{i}}^{1\leqslant i\leqslant k}\in \mathbb{C}^{r}\!$
                     
                   satisfying
                        $\boldsymbol{\unicode[STIX]{x1D709}}:=(\unicode[STIX]{x1D709}_{j}^{i})_{1\leqslant j\leqslant r_{i}}^{1\leqslant i\leqslant k}\in \mathbb{C}^{r}\!$
                     
                   satisfying 
                     
                         $d+\sum _{i,j}\!\unicode[STIX]{x1D707}_{j}^{i}\unicode[STIX]{x1D709}_{j}^{i}=0$
                     
                    (see Remark 3.2).
                        $d+\sum _{i,j}\!\unicode[STIX]{x1D707}_{j}^{i}\unicode[STIX]{x1D709}_{j}^{i}=0$
                     
                    (see Remark 3.2).
 The filtrations 
               
                   $\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant k}$
               
             in Definitions 1.1 and 1.2 are said to be parabolic structures of the vector bundles
                  $\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant k}$
               
             in Definitions 1.1 and 1.2 are said to be parabolic structures of the vector bundles 
               
                   $E$
               
            .
                  $E$
               
            .
We take rational numbers
 $$\begin{eqnarray}0<\unicode[STIX]{x1D6FC}_{1}^{(i)}<\unicode[STIX]{x1D6FC}_{2}^{(i)}<\cdots <\unicode[STIX]{x1D6FC}_{r_{i}}^{(i)}<1\end{eqnarray}$$
                  $$\begin{eqnarray}0<\unicode[STIX]{x1D6FC}_{1}^{(i)}<\unicode[STIX]{x1D6FC}_{2}^{(i)}<\cdots <\unicode[STIX]{x1D6FC}_{r_{i}}^{(i)}<1\end{eqnarray}$$
               
             for 
               
                   $i=1,\ldots ,k$
               
             satisfying
                  $i=1,\ldots ,k$
               
             satisfying 
               
                   $\unicode[STIX]{x1D6FC}_{j}^{(i)}\neq \unicode[STIX]{x1D6FC}_{j^{\prime }}^{(i^{\prime })}$
               
             for
                  $\unicode[STIX]{x1D6FC}_{j}^{(i)}\neq \unicode[STIX]{x1D6FC}_{j^{\prime }}^{(i^{\prime })}$
               
             for 
               
                   $(i,j)\neq (i^{\prime },j^{\prime })$
               
            . For the tuple
                  $(i,j)\neq (i^{\prime },j^{\prime })$
               
            . For the tuple 
               
                   $\boldsymbol{\unicode[STIX]{x1D6FC}}=(\unicode[STIX]{x1D6FC}_{j}^{(i)})$
               
            , we define the parabolic degree and parabolic slope of a vector bundle with filtrations
                  $\boldsymbol{\unicode[STIX]{x1D6FC}}=(\unicode[STIX]{x1D6FC}_{j}^{(i)})$
               
            , we define the parabolic degree and parabolic slope of a vector bundle with filtrations 
               
                   $(E,\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant k})$
               
             by
                  $(E,\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant k})$
               
             by 
 $$\begin{eqnarray}\displaystyle \text{pardeg}(E) & := & \displaystyle \deg (E)+\mathop{\sum }_{i=1}^{k}\mathop{\sum }_{j=1}^{r_{i}}\unicode[STIX]{x1D6FC}_{j}^{(i)}\dim (l_{j}^{(i)}/l_{j+1}^{(i)}),\nonumber\\ \displaystyle \text{par}\unicode[STIX]{x1D707}(E) & := & \displaystyle \frac{\text{pardeg}(E)}{\text{rk}(E)}.\nonumber\end{eqnarray}$$
                  $$\begin{eqnarray}\displaystyle \text{pardeg}(E) & := & \displaystyle \deg (E)+\mathop{\sum }_{i=1}^{k}\mathop{\sum }_{j=1}^{r_{i}}\unicode[STIX]{x1D6FC}_{j}^{(i)}\dim (l_{j}^{(i)}/l_{j+1}^{(i)}),\nonumber\\ \displaystyle \text{par}\unicode[STIX]{x1D707}(E) & := & \displaystyle \frac{\text{pardeg}(E)}{\text{rk}(E)}.\nonumber\end{eqnarray}$$
               
            
Definition 1.3. A parabolic Higgs bundle 
                     
                         $(E,\unicode[STIX]{x1D6F7},\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant k})$
                     
                   is
                        $(E,\unicode[STIX]{x1D6F7},\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant k})$
                     
                   is 
                     
                         $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                     
                  -stable (resp.
                        $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                     
                  -stable (resp. 
                     
                         $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                     
                  -semistable) if for any proper nonzero subbundle
                        $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                     
                  -semistable) if for any proper nonzero subbundle 
                     
                         $F\subset E$
                     
                   satisfying
                        $F\subset E$
                     
                   satisfying 
                     
                         $\unicode[STIX]{x1D6F7}(F)\subset F\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)$
                     
                  , the inequality
                        $\unicode[STIX]{x1D6F7}(F)\subset F\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)$
                     
                  , the inequality 
                     
                         $\text{par}\unicode[STIX]{x1D707}(F)<\text{par}\unicode[STIX]{x1D707}(E)$
                     
                   (resp.
                        $\text{par}\unicode[STIX]{x1D707}(F)<\text{par}\unicode[STIX]{x1D707}(E)$
                     
                   (resp. 
                     
                         ${\leqslant}$
                     
                  ) holds.
                        ${\leqslant}$
                     
                  ) holds.
Definition 1.4. A 
                     
                         $\boldsymbol{\unicode[STIX]{x1D709}}$
                     
                  -parabolic connection
                        $\boldsymbol{\unicode[STIX]{x1D709}}$
                     
                  -parabolic connection 
                     
                         $(E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant k})$
                     
                   is
                        $(E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant k})$
                     
                   is 
                     
                         $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                     
                  -stable (resp.
                        $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                     
                  -stable (resp. 
                     
                         $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                     
                  -semistable) if for any proper nonzero subbundle
                        $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                     
                  -semistable) if for any proper nonzero subbundle 
                     
                         $F\subset E$
                     
                   satisfying
                        $F\subset E$
                     
                   satisfying 
                     
                         $\unicode[STIX]{x1D6FB}(F)\subset F\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)$
                     
                  , the inequality
                        $\unicode[STIX]{x1D6FB}(F)\subset F\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)$
                     
                  , the inequality 
                     
                         $\text{par}\unicode[STIX]{x1D707}(F)<\text{par}\unicode[STIX]{x1D707}(E)$
                     
                   (resp.
                        $\text{par}\unicode[STIX]{x1D707}(F)<\text{par}\unicode[STIX]{x1D707}(E)$
                     
                   (resp. 
                     
                         ${\leqslant}$
                     
                  ) holds.
                        ${\leqslant}$
                     
                  ) holds.
 We take 
               
                   $\boldsymbol{\unicode[STIX]{x1D6FC}}$
               
             sufficiently generic. Then we have the equivalence of the notions of
                  $\boldsymbol{\unicode[STIX]{x1D6FC}}$
               
             sufficiently generic. Then we have the equivalence of the notions of 
               
                   $\boldsymbol{\unicode[STIX]{x1D6FC}}$
               
            -semistable and
                  $\boldsymbol{\unicode[STIX]{x1D6FC}}$
               
            -semistable and 
               
                   $\boldsymbol{\unicode[STIX]{x1D6FC}}$
               
            -stable for parabolic Higgs bundles and
                  $\boldsymbol{\unicode[STIX]{x1D6FC}}$
               
            -stable for parabolic Higgs bundles and 
               
                   $\boldsymbol{\unicode[STIX]{x1D709}}$
               
            -parabolic connections. We consider the following three moduli spaces: the moduli space of
                  $\boldsymbol{\unicode[STIX]{x1D709}}$
               
            -parabolic connections. We consider the following three moduli spaces: the moduli space of 
               
                   $\boldsymbol{\unicode[STIX]{x1D6FC}}$
               
            -stable parabolic Higgs bundles on
                  $\boldsymbol{\unicode[STIX]{x1D6FC}}$
               
            -stable parabolic Higgs bundles on 
               
                   $\unicode[STIX]{x1D6F4}$
               
             of rank
                  $\unicode[STIX]{x1D6F4}$
               
             of rank 
               
                   $n$
               
            , of degree
                  $n$
               
            , of degree 
               
                   $d$
               
            , and of type
                  $d$
               
            , and of type 
               
                   $\boldsymbol{\unicode[STIX]{x1D707}}$
               
            ; the moduli space of
                  $\boldsymbol{\unicode[STIX]{x1D707}}$
               
            ; the moduli space of 
               
                   $\boldsymbol{\unicode[STIX]{x1D6FC}}$
               
            -stable
                  $\boldsymbol{\unicode[STIX]{x1D6FC}}$
               
            -stable 
               
                   $\boldsymbol{\unicode[STIX]{x1D709}}$
               
            -parabolic connections on
                  $\boldsymbol{\unicode[STIX]{x1D709}}$
               
            -parabolic connections on 
               
                   $\unicode[STIX]{x1D6F4}$
               
             of rank
                  $\unicode[STIX]{x1D6F4}$
               
             of rank 
               
                   $n$
               
            , of degree
                  $n$
               
            , of degree 
               
                   $d$
               
            , and of type
                  $d$
               
            , and of type 
               
                   $\boldsymbol{\unicode[STIX]{x1D707}}$
               
            ; and the (generic)
                  $\boldsymbol{\unicode[STIX]{x1D707}}$
               
            ; and the (generic) 
               
                   $\text{GL}(n,\mathbb{C})$
               
            -character variety, whose points parametrize representations of the fundamental group of
                  $\text{GL}(n,\mathbb{C})$
               
            -character variety, whose points parametrize representations of the fundamental group of 
               
                   $\unicode[STIX]{x1D6F4}\setminus D$
               
             into
                  $\unicode[STIX]{x1D6F4}\setminus D$
               
             into 
               
                   $\text{GL}(n,\mathbb{C})$
               
             where the images of simple loops at the punctures associated to
                  $\text{GL}(n,\mathbb{C})$
               
             where the images of simple loops at the punctures associated to 
               
                   $p_{1},\ldots ,p_{k}$
               
             are contained in
                  $p_{1},\ldots ,p_{k}$
               
             are contained in 
               
                   ${\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k}$
               
            , respectively. Here,
                  ${\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k}$
               
            , respectively. Here, 
               
                   $({\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k})$
               
             is a generic
                  $({\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k})$
               
             is a generic 
               
                   $k$
               
            -tuple of semisimple conjugacy classes of
                  $k$
               
            -tuple of semisimple conjugacy classes of 
               
                   $\text{GL}(n,\mathbb{C})$
               
             such that, for each
                  $\text{GL}(n,\mathbb{C})$
               
             such that, for each 
               
                   $i=1,\ldots ,k$
               
            ,
                  $i=1,\ldots ,k$
               
            , 
               
                   $\{\unicode[STIX]{x1D707}_{1}^{i},\unicode[STIX]{x1D707}_{2}^{i},\ldots \}$
               
             is the set of the multiplicities of the eigenvalues of any matrix in
                  $\{\unicode[STIX]{x1D707}_{1}^{i},\unicode[STIX]{x1D707}_{2}^{i},\ldots \}$
               
             is the set of the multiplicities of the eigenvalues of any matrix in 
               
                   ${\mathcal{C}}_{i}$
               
            . These moduli spaces are connected nonsingular algebraic varieties of dimension
                  ${\mathcal{C}}_{i}$
               
            . These moduli spaces are connected nonsingular algebraic varieties of dimension 
 $$\begin{eqnarray}n^{2}(2g-2+k)-\mathop{\sum }_{i,j}(\unicode[STIX]{x1D707}_{j}^{i})^{2}+2\end{eqnarray}$$
                  $$\begin{eqnarray}n^{2}(2g-2+k)-\mathop{\sum }_{i,j}(\unicode[STIX]{x1D707}_{j}^{i})^{2}+2\end{eqnarray}$$
               
             (see [Reference Hausel, Letellier and Rodriguez-Villegas5], [Reference Hausel, Letellier and Rodriguez-Villegas6], [Reference Inaba8], [Reference Inaba and Saito9] and [Reference Konno11]). Note that, for any 
            
               
                   $\boldsymbol{\unicode[STIX]{x1D709}}$
               
            , the moduli space of
                  $\boldsymbol{\unicode[STIX]{x1D709}}$
               
            , the moduli space of 
               
                   $\boldsymbol{\unicode[STIX]{x1D6FC}}$
               
            -stable
                  $\boldsymbol{\unicode[STIX]{x1D6FC}}$
               
            -stable 
               
                   $\boldsymbol{\unicode[STIX]{x1D709}}$
               
            -parabolic connections on
                  $\boldsymbol{\unicode[STIX]{x1D709}}$
               
            -parabolic connections on 
               
                   $\unicode[STIX]{x1D6F4}$
               
             is nonsingular by the parabolic structures and the stability. On the other hand, only for generic
                  $\unicode[STIX]{x1D6F4}$
               
             is nonsingular by the parabolic structures and the stability. On the other hand, only for generic 
               
                   $({\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k})$
               
            , the character variety is nonsingular. We denote the three moduli spaces by
                  $({\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k})$
               
            , the character variety is nonsingular. We denote the three moduli spaces by 
               
                   ${\mathcal{M}}_{Dol}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\mathbf{0})$
               
            ,
                  ${\mathcal{M}}_{Dol}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\mathbf{0})$
               
            , 
               
                   ${\mathcal{M}}_{DR}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}})$
               
            , and
                  ${\mathcal{M}}_{DR}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}})$
               
            , and 
               
                   ${\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})$
               
            , respectively. Here,
                  ${\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})$
               
            , respectively. Here, 
               
                   $\boldsymbol{\unicode[STIX]{x1D708}}$
               
             denotes the eigenvalues of any matrix of each conjugacy class in
                  $\boldsymbol{\unicode[STIX]{x1D708}}$
               
             denotes the eigenvalues of any matrix of each conjugacy class in 
               
                   $({\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k})$
               
             and
                  $({\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k})$
               
             and 
               
                   $\mathbf{0}$
               
             means that Higgs fields have nilpotent residues at each puncture.
                  $\mathbf{0}$
               
             means that Higgs fields have nilpotent residues at each puncture.
 For the case of the punctured curve 
               
                   $\unicode[STIX]{x1D6F4}\setminus D$
               
            , we study relationships between those moduli spaces. We put
                  $\unicode[STIX]{x1D6F4}\setminus D$
               
            , we study relationships between those moduli spaces. We put 
 $$\begin{eqnarray}\unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}:=\left\{\left(\unicode[STIX]{x1D706},(\unicode[STIX]{x1D709}_{j}^{i})_{1\leqslant j\leqslant r_{i}}^{1\leqslant i\leqslant k}\right)\in \mathbb{C}\times \mathbb{C}^{r}\,\left|\,\unicode[STIX]{x1D706}d+\mathop{\sum }_{i,j}\unicode[STIX]{x1D707}_{j}^{i}\unicode[STIX]{x1D709}_{j}^{i}=0\right.\right\}.\end{eqnarray}$$
                  $$\begin{eqnarray}\unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}:=\left\{\left(\unicode[STIX]{x1D706},(\unicode[STIX]{x1D709}_{j}^{i})_{1\leqslant j\leqslant r_{i}}^{1\leqslant i\leqslant k}\right)\in \mathbb{C}\times \mathbb{C}^{r}\,\left|\,\unicode[STIX]{x1D706}d+\mathop{\sum }_{i,j}\unicode[STIX]{x1D707}_{j}^{i}\unicode[STIX]{x1D709}_{j}^{i}=0\right.\right\}.\end{eqnarray}$$
               
            
Definition 1.5. (Parabolic 
                     
                         $\unicode[STIX]{x1D706}$
                     
                  -connections)
                        $\unicode[STIX]{x1D706}$
                     
                  -connections)
                For 
                     
                         $(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})\in \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                     
                  , we call
                        $(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})\in \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                     
                  , we call 
                     
                         $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant k})$
                     
                   a
                        $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant k})$
                     
                   a 
                     
                         $\boldsymbol{\unicode[STIX]{x1D709}}$
                     
                  -parabolic
                        $\boldsymbol{\unicode[STIX]{x1D709}}$
                     
                  -parabolic 
                  
                     
                         $\unicode[STIX]{x1D706}$
                     
                  -connection of rank
                        $\unicode[STIX]{x1D706}$
                     
                  -connection of rank 
                  
                     
                         $n$
                     
                  , of degree
                        $n$
                     
                  , of degree 
                  
                     
                         $d$
                     
                  , and of type
                        $d$
                     
                  , and of type 
                  
                     
                         $\boldsymbol{\unicode[STIX]{x1D707}}$
                     
                   if:
                        $\boldsymbol{\unicode[STIX]{x1D707}}$
                     
                   if:
- 
                        
                        (1)  $E$
                              
                            is an algebraic vector bundle on $E$
                              
                            is an algebraic vector bundle on $\unicode[STIX]{x1D6F4}$
                              
                            of rank $\unicode[STIX]{x1D6F4}$
                              
                            of rank $n$
                              
                            and of degree $n$
                              
                            and of degree $d$
                              
                           ; $d$
                              
                           ;
- 
                        
                        (2)  $\unicode[STIX]{x1D6FB}:E\rightarrow E\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)$
                              
                            is a $\unicode[STIX]{x1D6FB}:E\rightarrow E\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)$
                              
                            is a $\unicode[STIX]{x1D706}$
                              
                           -connection, that is, $\unicode[STIX]{x1D706}$
                              
                           -connection, that is, $\unicode[STIX]{x1D6FB}$
                              
                            is a homomorphism of sheaves of $\unicode[STIX]{x1D6FB}$
                              
                            is a homomorphism of sheaves of $\mathbb{C}$
                              
                            vector spaces satisfying $\mathbb{C}$
                              
                            vector spaces satisfying $\unicode[STIX]{x1D6FB}(fa)=\unicode[STIX]{x1D706}a\otimes df+f\unicode[STIX]{x1D6FB}(a)$
                              
                            for $\unicode[STIX]{x1D6FB}(fa)=\unicode[STIX]{x1D706}a\otimes df+f\unicode[STIX]{x1D6FB}(a)$
                              
                            for $f\in {\mathcal{O}}_{\unicode[STIX]{x1D6F4}}$
                              
                            and $f\in {\mathcal{O}}_{\unicode[STIX]{x1D6F4}}$
                              
                            and $a\in E$
                              
                           ; and $a\in E$
                              
                           ; and
- 
                        
                        (3) for each  $p_{i}$
                              
                           , $p_{i}$
                              
                           , $l_{\ast }^{(i)}$
                              
                            is a filtration $l_{\ast }^{(i)}$
                              
                            is a filtration $E|_{p_{i}}=l_{1}^{(i)}\supset l_{2}^{(i)}\supset \cdots \supset l_{r_{i}}^{(i)}\supset l_{r_{i}+1}^{(i)}=0$
                              
                            such that $E|_{p_{i}}=l_{1}^{(i)}\supset l_{2}^{(i)}\supset \cdots \supset l_{r_{i}}^{(i)}\supset l_{r_{i}+1}^{(i)}=0$
                              
                            such that $\dim (l_{j}^{(i)}/l_{j+1}^{(i)})=\unicode[STIX]{x1D707}_{j}^{i}$
                              
                            and $\dim (l_{j}^{(i)}/l_{j+1}^{(i)})=\unicode[STIX]{x1D707}_{j}^{i}$
                              
                            and $(\text{Res}_{p_{i}}(\unicode[STIX]{x1D6FB})-\unicode[STIX]{x1D709}_{j}^{i}\text{id}_{E|_{p_{i}}})(l_{j}^{(i)})\subset l_{j+1}^{(i)}$
                              
                            for $(\text{Res}_{p_{i}}(\unicode[STIX]{x1D6FB})-\unicode[STIX]{x1D709}_{j}^{i}\text{id}_{E|_{p_{i}}})(l_{j}^{(i)})\subset l_{j+1}^{(i)}$
                              
                            for $j=1,\ldots ,r_{i}$
                              
                           . $j=1,\ldots ,r_{i}$
                              
                           .
Definition 1.6. A parabolic 
                     
                         $\unicode[STIX]{x1D706}$
                     
                  -connection
                        $\unicode[STIX]{x1D706}$
                     
                  -connection 
                     
                         $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant k})$
                     
                   is
                        $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant k})$
                     
                   is 
                     
                         $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                     
                  -stable (resp.
                        $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                     
                  -stable (resp. 
                     
                         $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                     
                  -semistable) if for any proper nonzero subbundle
                        $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                     
                  -semistable) if for any proper nonzero subbundle 
                     
                         $F\subset E$
                     
                   satisfying
                        $F\subset E$
                     
                   satisfying 
                     
                         $\unicode[STIX]{x1D6FB}(F)\subset F\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)$
                     
                  , the inequality
                        $\unicode[STIX]{x1D6FB}(F)\subset F\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)$
                     
                  , the inequality 
                     
                         $\text{par}\unicode[STIX]{x1D707}(F)<\text{par}\unicode[STIX]{x1D707}(E)$
                     
                   (resp.
                        $\text{par}\unicode[STIX]{x1D707}(F)<\text{par}\unicode[STIX]{x1D707}(E)$
                     
                   (resp. 
                     
                         ${\leqslant}$
                     
                  ) holds.
                        ${\leqslant}$
                     
                  ) holds.
 If we chose 
               
                   $\boldsymbol{\unicode[STIX]{x1D6FC}}=(\unicode[STIX]{x1D6FC}_{j}^{(i)})$
               
             sufficiently generic, then a parabolic
                  $\boldsymbol{\unicode[STIX]{x1D6FC}}=(\unicode[STIX]{x1D6FC}_{j}^{(i)})$
               
             sufficiently generic, then a parabolic 
               
                   $\unicode[STIX]{x1D706}$
               
            -connection
                  $\unicode[STIX]{x1D706}$
               
            -connection 
               
                   $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})$
               
             is
                  $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})$
               
             is 
               
                   $\boldsymbol{\unicode[STIX]{x1D6FC}}$
               
            -stable if and only if
                  $\boldsymbol{\unicode[STIX]{x1D6FC}}$
               
            -stable if and only if 
               
                   $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})$
               
             is
                  $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})$
               
             is 
               
                   $\boldsymbol{\unicode[STIX]{x1D6FC}}$
               
            -semistable.
                  $\boldsymbol{\unicode[STIX]{x1D6FC}}$
               
            -semistable.
 We take 
               
                   $\boldsymbol{\unicode[STIX]{x1D6FC}}$
               
             sufficiently generic. We construct the moduli space of
                  $\boldsymbol{\unicode[STIX]{x1D6FC}}$
               
             sufficiently generic. We construct the moduli space of 
               
                   $\boldsymbol{\unicode[STIX]{x1D6FC}}$
               
            -stable parabolic
                  $\boldsymbol{\unicode[STIX]{x1D6FC}}$
               
            -stable parabolic 
               
                   $\unicode[STIX]{x1D706}$
               
            -connections over
                  $\unicode[STIX]{x1D706}$
               
            -connections over 
               
                   $\unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
               
             as a subscheme of the coarse moduli scheme of semistable parabolic
                  $\unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
               
             as a subscheme of the coarse moduli scheme of semistable parabolic 
               
                   $\unicode[STIX]{x1D6EC}_{D}^{1}$
               
            -tuples constructed in [Reference Inaba, Iwasaki and Saito10], denoted by
                  $\unicode[STIX]{x1D6EC}_{D}^{1}$
               
            -tuples constructed in [Reference Inaba, Iwasaki and Saito10], denoted by 
 $$\begin{eqnarray}\unicode[STIX]{x1D70B}:{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}\longrightarrow \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}.\end{eqnarray}$$
                  $$\begin{eqnarray}\unicode[STIX]{x1D70B}:{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}\longrightarrow \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}.\end{eqnarray}$$
               
             We have 
               
                   $\unicode[STIX]{x1D70B}^{-1}(1,\boldsymbol{\unicode[STIX]{x1D709}})={\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}})$
               
             and
                  $\unicode[STIX]{x1D70B}^{-1}(1,\boldsymbol{\unicode[STIX]{x1D709}})={\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}})$
               
             and 
               
                   $\unicode[STIX]{x1D70B}^{-1}(0,\mathbf{0})={\mathcal{M}}_{\text{Dol}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\mathbf{0})$
               
            . On the other hand, by the moduli theoretic description of the Riemann–Hilbert correspondence (see [Reference Inaba, Iwasaki and Saito10], [Reference Inaba8] and [Reference Inaba and Saito9]), we obtain the analytic isomorphism
                  $\unicode[STIX]{x1D70B}^{-1}(0,\mathbf{0})={\mathcal{M}}_{\text{Dol}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\mathbf{0})$
               
            . On the other hand, by the moduli theoretic description of the Riemann–Hilbert correspondence (see [Reference Inaba, Iwasaki and Saito10], [Reference Inaba8] and [Reference Inaba and Saito9]), we obtain the analytic isomorphism 
               
                   ${\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}})\cong {\mathcal{M}}_{\text{B}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})$
               
             where
                  ${\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}})\cong {\mathcal{M}}_{\text{B}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})$
               
             where 
               
                   $\boldsymbol{\unicode[STIX]{x1D708}}=rh_{d}(\boldsymbol{\unicode[STIX]{x1D709}})$
               
             and
                  $\boldsymbol{\unicode[STIX]{x1D708}}=rh_{d}(\boldsymbol{\unicode[STIX]{x1D709}})$
               
             and 
               
                   $\boldsymbol{\unicode[STIX]{x1D708}}$
               
             is generic. Here,
                  $\boldsymbol{\unicode[STIX]{x1D708}}$
               
             is generic. Here, 
               
                   $rh_{d}$
               
             is the map defined by
                  $rh_{d}$
               
             is the map defined by 
               
                   $\unicode[STIX]{x1D709}_{j}^{i}\mapsto \text{exp}(-2\unicode[STIX]{x1D70B}\sqrt{-1}\unicode[STIX]{x1D709}_{j}^{i})$
               
             for
                  $\unicode[STIX]{x1D709}_{j}^{i}\mapsto \text{exp}(-2\unicode[STIX]{x1D70B}\sqrt{-1}\unicode[STIX]{x1D709}_{j}^{i})$
               
             for 
               
                   $i=1,\ldots ,k$
               
             and
                  $i=1,\ldots ,k$
               
             and 
               
                   $j=1,\ldots ,r_{i}$
               
            .
                  $j=1,\ldots ,r_{i}$
               
            .
 For smooth projective varieties, one can define the Hodge structure on the cohomology groups of the smooth projective varieties. Deligne generalized the Hodge structure to any complex algebraic varieties, not necessarily smooth or projective, that is, one can define the mixed Hodge structure on the cohomology groups of the varieties ([Reference Deligne3], [Reference Deligne4]). The moduli spaces 
               
                   ${\mathcal{M}}_{Dol}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\mathbf{0})$
               
            ,
                  ${\mathcal{M}}_{Dol}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\mathbf{0})$
               
            , 
               
                   ${\mathcal{M}}_{DR}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}})$
               
            , and
                  ${\mathcal{M}}_{DR}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}})$
               
            , and 
               
                   ${\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})$
               
             are smooth. However, these moduli spaces are not projective. The purpose of this paper is to study the mixed Hodge structures of
                  ${\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})$
               
             are smooth. However, these moduli spaces are not projective. The purpose of this paper is to study the mixed Hodge structures of 
               
                   ${\mathcal{M}}_{Dol}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\mathbf{0})$
               
            ,
                  ${\mathcal{M}}_{Dol}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\mathbf{0})$
               
            , 
               
                   ${\mathcal{M}}_{DR}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}})$
               
            .
                  ${\mathcal{M}}_{DR}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}})$
               
            .
The main theorem is the following
Theorem 1.7. (Theorems 3.13 and 4.13)
- 
                        
                        (1) The ordinary rational cohomology groups of the fibers of  $\unicode[STIX]{x1D70B}:{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}\rightarrow \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                              
                            are isomorphic. Moreover, the isomorphism preserves the mixed Hodge structures on the cohomology groups of the fibers. $\unicode[STIX]{x1D70B}:{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}\rightarrow \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                              
                            are isomorphic. Moreover, the isomorphism preserves the mixed Hodge structures on the cohomology groups of the fibers.
- 
                        
                        (2) In particular, we have an isomorphism which preserves the mixed Hodge structures. $$\begin{eqnarray}H^{k}({\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}}),\mathbb{Q})\cong H^{k}({\mathcal{M}}_{\text{Dol}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\mathbf{0}),\mathbb{Q})\end{eqnarray}$$ $$\begin{eqnarray}H^{k}({\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}}),\mathbb{Q})\cong H^{k}({\mathcal{M}}_{\text{Dol}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\mathbf{0}),\mathbb{Q})\end{eqnarray}$$
- 
                        
                        (3) The mixed Hodge structure of  $H^{k}({\mathcal{M}}_{\text{Dol}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\mathbf{0}),\mathbb{Q})$
                              
                            is pure of weight $H^{k}({\mathcal{M}}_{\text{Dol}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\mathbf{0}),\mathbb{Q})$
                              
                            is pure of weight $k$
                              
                           , and the mixed Hodge structure on $k$
                              
                           , and the mixed Hodge structure on $H^{k}({\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}}),\mathbb{Q})$
                              
                            is pure of weight $H^{k}({\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}}),\mathbb{Q})$
                              
                            is pure of weight $k$
                              
                           . $k$
                              
                           .
- 
                        
                        (4) The Poincaré polynomials of character varieties  ${\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})$
                              
                            are independent of the choice of generic eigenvalues. ${\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})$
                              
                            are independent of the choice of generic eigenvalues.
These assertions hold for the rational cohomology groups with compact support.
 The main idea of the proof of this theorem is as follows. First, we show that the map 
               
                   $\unicode[STIX]{x1D70B}:{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}\rightarrow \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
               
             is smooth in the same way as in [Reference Arinkin1, Lemma 4], [Reference Inaba8, Theorem 2.1], [Reference Inaba and Saito9] and [Reference Simpson17, Lemma 6.1]. Second, there is a natural
                  $\unicode[STIX]{x1D70B}:{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}\rightarrow \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
               
             is smooth in the same way as in [Reference Arinkin1, Lemma 4], [Reference Inaba8, Theorem 2.1], [Reference Inaba and Saito9] and [Reference Simpson17, Lemma 6.1]. Second, there is a natural 
               
                   $\mathbb{C}^{\times }$
               
            -action on
                  $\mathbb{C}^{\times }$
               
            -action on 
               
                   ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
               
            . We check that some conditions are fulfilled for this
                  ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
               
            . We check that some conditions are fulfilled for this 
               
                   $\mathbb{C}^{\times }$
               
            -action (Lemma 3.12). The conditions are the assumptions of [Reference Hausel, Letellier and Rodriguez-Villegas5, Theorem B.1] in Appendix B. By the application of [Reference Hausel, Letellier and Rodriguez-Villegas5, Theorem B.1] for the map
                  $\mathbb{C}^{\times }$
               
            -action (Lemma 3.12). The conditions are the assumptions of [Reference Hausel, Letellier and Rodriguez-Villegas5, Theorem B.1] in Appendix B. By the application of [Reference Hausel, Letellier and Rodriguez-Villegas5, Theorem B.1] for the map 
               
                   $\unicode[STIX]{x1D70B}$
               
            , we obtain the assertions (1), (2) and (3). Third, we consider the moduli theoretic description of the Riemann–Hilbert correspondence, which induces an analytic isomorphism between
                  $\unicode[STIX]{x1D70B}$
               
            , we obtain the assertions (1), (2) and (3). Third, we consider the moduli theoretic description of the Riemann–Hilbert correspondence, which induces an analytic isomorphism between 
               
                   ${\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}})$
               
             and
                  ${\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}})$
               
             and 
               
                   ${\mathcal{M}}_{\text{B}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})$
               
             in general case. It is shown in [Reference Inaba and Saito9] that the Riemann–Hilbert correspondence induces this analytic isomorphism. In the general case, the proof in [Reference Inaba and Saito9] is same as in the proof of [Reference Inaba8, Theorem 2.2]. By this analytic isomorphism and the assertion (1), we obtain the assertion (4).
                  ${\mathcal{M}}_{\text{B}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})$
               
             in general case. It is shown in [Reference Inaba and Saito9] that the Riemann–Hilbert correspondence induces this analytic isomorphism. In the general case, the proof in [Reference Inaba and Saito9] is same as in the proof of [Reference Inaba8, Theorem 2.2]. By this analytic isomorphism and the assertion (1), we obtain the assertion (4).
 The organization of this paper is as follows. In Section 2, we recall Deligne’s mixed Hodge structure. In Section 3, we construct the moduli space of semistable parabolic 
               
                   $\unicode[STIX]{x1D706}$
               
            -connection
                  $\unicode[STIX]{x1D706}$
               
            -connection 
               
                   $\unicode[STIX]{x1D70B}:{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}\rightarrow \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
               
             and we show that the map
                  $\unicode[STIX]{x1D70B}:{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}\rightarrow \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
               
             and we show that the map 
               
                   $\unicode[STIX]{x1D70B}:{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}\rightarrow \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
               
             is smooth. In Section 3.3, we prove the assertions (1), (2) and (3) of Theorem 1.7. In Section 4, we recall the Riemann–Hilbert correspondence, and we show that the Poincaré polynomials of character varieties
                  $\unicode[STIX]{x1D70B}:{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}\rightarrow \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
               
             is smooth. In Section 3.3, we prove the assertions (1), (2) and (3) of Theorem 1.7. In Section 4, we recall the Riemann–Hilbert correspondence, and we show that the Poincaré polynomials of character varieties 
               
                   ${\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})$
               
             are independent of the choice of generic eigenvalues by the correspondence.
                  ${\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})$
               
             are independent of the choice of generic eigenvalues by the correspondence.
2 Preliminaries
In this section, we recall the definition of the mixed Hodge structures and a basic property of the mixed Hodge structures.
2.1 Mixed Hodge structure
Definition 2.1. A mixed Hodge structure consists of:
- 
                           
                           (1) a finitely generated free  $\mathbb{Z}$
                                 
                              -module $\mathbb{Z}$
                                 
                              -module $H^{\mathbb{Z}}$
                                 
                              ; $H^{\mathbb{Z}}$
                                 
                              ;
- 
                           
                           (2) an increasing filtration  $W_{k}\subset W_{k+1}$
                                 
                               of $W_{k}\subset W_{k+1}$
                                 
                               of $H^{\mathbb{Q}}=H^{\mathbb{Z}}\otimes \mathbb{Q}$
                                 
                              ; $H^{\mathbb{Q}}=H^{\mathbb{Z}}\otimes \mathbb{Q}$
                                 
                              ;
- 
                           
                           (3) a decreasing filtration  $F^{p}\supset F^{p+1}$
                                 
                               of $F^{p}\supset F^{p+1}$
                                 
                               of $H^{\mathbb{C}}$
                                 
                               such that the filtration induced by $H^{\mathbb{C}}$
                                 
                               such that the filtration induced by $F^{\bullet }$
                                 
                               on the complexified graded pieces of the filtration $F^{\bullet }$
                                 
                               on the complexified graded pieces of the filtration $W_{\bullet }$
                                 
                               endows every graded piece $W_{\bullet }$
                                 
                               endows every graded piece $\text{Gr}^{k}W_{\bullet }:=W_{k}/W_{k-1}$
                                 
                               with a pure Hodge structure of weight $\text{Gr}^{k}W_{\bullet }:=W_{k}/W_{k-1}$
                                 
                               with a pure Hodge structure of weight $k$
                                 
                              , that is, for any $k$
                                 
                              , that is, for any $0\leqslant p\leqslant k$
                                 
                               we have $0\leqslant p\leqslant k$
                                 
                               we have $$\begin{eqnarray}\text{Gr}^{k}W_{\bullet }^{\mathbb{C}}=F^{p}\text{Gr}^{k}W_{\bullet }^{\mathbb{C}}\oplus \overline{F^{k-p+1}\text{Gr}^{k}W_{\bullet }^{\mathbb{C}}}.\end{eqnarray}$$ $$\begin{eqnarray}\text{Gr}^{k}W_{\bullet }^{\mathbb{C}}=F^{p}\text{Gr}^{k}W_{\bullet }^{\mathbb{C}}\oplus \overline{F^{k-p+1}\text{Gr}^{k}W_{\bullet }^{\mathbb{C}}}.\end{eqnarray}$$
 The increasing filtration 
                        
                            $W_{\bullet }$
                        
                      is called the weight filtration, and the decreasing filtration
                           $W_{\bullet }$
                        
                      is called the weight filtration, and the decreasing filtration 
                        
                            $F^{\bullet }$
                        
                      is called the Hodge filtration.
                           $F^{\bullet }$
                        
                      is called the Hodge filtration.
Deligne in [Reference Deligne3] and [Reference Deligne4] proved the existence of mixed Hodge structures on the cohomology of a complex algebraic variety.
Theorem 2.2. ([Reference Deligne3], [Reference Deligne4])
 Let 
                        
                            $X$
                        
                      be a complex algebraic variety. Then there exists a mixed Hodge structure on
                           $X$
                        
                      be a complex algebraic variety. Then there exists a mixed Hodge structure on 
                        
                            $H^{j}(X,\mathbb{C})$
                        
                     . Moreover, the weight filtration satisfies
                           $H^{j}(X,\mathbb{C})$
                        
                     . Moreover, the weight filtration satisfies 
 $$\begin{eqnarray}0=W_{-1}\subseteq W_{0}\subseteq \cdots \subseteq W_{2j}=H^{j}(X,\mathbb{Q})\end{eqnarray}$$
                           $$\begin{eqnarray}0=W_{-1}\subseteq W_{0}\subseteq \cdots \subseteq W_{2j}=H^{j}(X,\mathbb{Q})\end{eqnarray}$$
                        
                     and the Hodge filtration satisfies
 $$\begin{eqnarray}H^{j}(X,\mathbb{C})=F^{0}\supseteq F^{1}\supseteq \cdots \supseteq F^{j}\supseteq F^{j+1}=0.\end{eqnarray}$$
                           $$\begin{eqnarray}H^{j}(X,\mathbb{C})=F^{0}\supseteq F^{1}\supseteq \cdots \supseteq F^{j}\supseteq F^{j+1}=0.\end{eqnarray}$$
                        
                      One can define a mixed Hodge structure on the compactly supported cohomology 
                  
                      $H_{c}^{\ast }(X,\mathbb{Q})$
                  
               . The following theorem is basic property of mixed Hodge structures (for a proof, e.g., see [Reference Peters and Steenbrink13]).
                     $H_{c}^{\ast }(X,\mathbb{Q})$
                  
               . The following theorem is basic property of mixed Hodge structures (for a proof, e.g., see [Reference Peters and Steenbrink13]).
Theorem 2.3. (Poincaré duality)
 For a smooth connected 
                        
                            $X$
                        
                     , we have that Poincaré duality
                           $X$
                        
                     , we have that Poincaré duality 
 $$\begin{eqnarray}H^{k}(X,\mathbb{Q})\times H_{c}^{2d-k}(X,\mathbb{Q})\longrightarrow H_{c}^{2d}(X)\cong \mathbb{Q}(-d)\end{eqnarray}$$
                           $$\begin{eqnarray}H^{k}(X,\mathbb{Q})\times H_{c}^{2d-k}(X,\mathbb{Q})\longrightarrow H_{c}^{2d}(X)\cong \mathbb{Q}(-d)\end{eqnarray}$$
                        
                      is compatible with mixed Hodge structures, where 
                        
                            $\mathbb{Q}(-d)$
                        
                      is the pure mixed Hodge structure on
                           $\mathbb{Q}(-d)$
                        
                      is the pure mixed Hodge structure on 
                        
                            $\mathbb{Q}$
                        
                      with weight
                           $\mathbb{Q}$
                        
                      with weight 
                        
                            $2d$
                        
                      and Hodge filtration
                           $2d$
                        
                      and Hodge filtration 
                        
                            $F^{d}=\mathbb{Q}$
                        
                      and
                           $F^{d}=\mathbb{Q}$
                        
                      and 
                        
                            $F^{d+1}=0$
                        
                     .
                           $F^{d+1}=0$
                        
                     .
3 Nonabelian Hodge theory
3.1 
               
                  
                      $\unicode[STIX]{x1D706}$
                  
               -connection
                     $\unicode[STIX]{x1D706}$
                  
               -connection
             We fix integers 
                  
                      $g\geqslant 0,k>0$
                  
                and
                     $g\geqslant 0,k>0$
                  
                and 
                  
                      $n>0$
                  
               . We also fix a
                     $n>0$
                  
               . We also fix a 
                  
                      $k$
                  
               -tuple of partition of
                     $k$
                  
               -tuple of partition of 
                  
                      $n$
                  
               , denoted by
                     $n$
                  
               , denoted by 
                  
                      $\boldsymbol{\unicode[STIX]{x1D707}}=(\unicode[STIX]{x1D707}^{1},\ldots ,\unicode[STIX]{x1D707}^{k})$
                  
               , that is,
                     $\boldsymbol{\unicode[STIX]{x1D707}}=(\unicode[STIX]{x1D707}^{1},\ldots ,\unicode[STIX]{x1D707}^{k})$
                  
               , that is, 
                  
                      $\unicode[STIX]{x1D707}^{i}=(\unicode[STIX]{x1D707}_{1}^{i},\ldots ,\unicode[STIX]{x1D707}_{r_{i}}^{i})$
                  
                such that
                     $\unicode[STIX]{x1D707}^{i}=(\unicode[STIX]{x1D707}_{1}^{i},\ldots ,\unicode[STIX]{x1D707}_{r_{i}}^{i})$
                  
                such that 
                  
                      $\unicode[STIX]{x1D707}_{1}^{i}\geqslant \unicode[STIX]{x1D707}_{2}^{i}\geqslant \cdots \,$
                  
                are nonnegative integers and
                     $\unicode[STIX]{x1D707}_{1}^{i}\geqslant \unicode[STIX]{x1D707}_{2}^{i}\geqslant \cdots \,$
                  
                are nonnegative integers and 
                  
                      $\sum _{j}\unicode[STIX]{x1D707}_{j}^{i}=n$
                  
               . Let
                     $\sum _{j}\unicode[STIX]{x1D707}_{j}^{i}=n$
                  
               . Let 
                  
                      $\unicode[STIX]{x1D6F4}$
                  
                be a smooth complex projective curve of genus
                     $\unicode[STIX]{x1D6F4}$
                  
                be a smooth complex projective curve of genus 
                  
                      $g$
                  
               . We fix
                     $g$
                  
               . We fix 
                  
                      $k$
                  
               -distinct points
                     $k$
                  
               -distinct points 
                  
                      $p_{1},\ldots ,p_{k}$
                  
                in
                     $p_{1},\ldots ,p_{k}$
                  
                in 
                  
                      $\unicode[STIX]{x1D6F4}$
                  
                and we define a divisor by
                     $\unicode[STIX]{x1D6F4}$
                  
                and we define a divisor by 
                  
                      $D:=p_{1}+\cdots +p_{k}$
                  
               . We put
                     $D:=p_{1}+\cdots +p_{k}$
                  
               . We put 
                  
                      $\unicode[STIX]{x1D6F4}_{0}=\unicode[STIX]{x1D6F4}\setminus D$
                  
               . For integer
                     $\unicode[STIX]{x1D6F4}_{0}=\unicode[STIX]{x1D6F4}\setminus D$
                  
               . For integer 
                  
                      $d$
                  
               , we put
                     $d$
                  
               , we put 
 $$\begin{eqnarray}\unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}:=\left\{\left(\unicode[STIX]{x1D706},(\unicode[STIX]{x1D709}_{j}^{i})_{1\leqslant j\leqslant r_{i}}^{1\leqslant i\leqslant k}\right)\in \mathbb{C}\times \mathbb{C}^{r}\,\left|\,\unicode[STIX]{x1D706}d+\mathop{\sum }_{i,j}\unicode[STIX]{x1D707}_{j}^{i}\unicode[STIX]{x1D709}_{j}^{i}=0\right.\right\}\end{eqnarray}$$
                     $$\begin{eqnarray}\unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}:=\left\{\left(\unicode[STIX]{x1D706},(\unicode[STIX]{x1D709}_{j}^{i})_{1\leqslant j\leqslant r_{i}}^{1\leqslant i\leqslant k}\right)\in \mathbb{C}\times \mathbb{C}^{r}\,\left|\,\unicode[STIX]{x1D706}d+\mathop{\sum }_{i,j}\unicode[STIX]{x1D707}_{j}^{i}\unicode[STIX]{x1D709}_{j}^{i}=0\right.\right\}\end{eqnarray}$$
                  
                where 
                  
                      $r:=\sum r_{i}$
                  
               . We take
                     $r:=\sum r_{i}$
                  
               . We take 
                  
                      $(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})\in \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                  
                where
                     $(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})\in \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                  
                where 
                  
                      $\boldsymbol{\unicode[STIX]{x1D709}}=(\unicode[STIX]{x1D709}_{j}^{i})_{1\leqslant j\leqslant r_{i}}^{1\leqslant i\leqslant k}$
                  
               .
                     $\boldsymbol{\unicode[STIX]{x1D709}}=(\unicode[STIX]{x1D709}_{j}^{i})_{1\leqslant j\leqslant r_{i}}^{1\leqslant i\leqslant k}$
                  
               .
Definition 3.1. For 
                        
                            $(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})\in \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                        
                     , we call
                           $(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})\in \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                        
                     , we call 
                        
                            $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant k})$
                        
                      a
                           $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant k})$
                        
                      a 
                        
                            $\boldsymbol{\unicode[STIX]{x1D709}}$
                        
                     -parabolic
                           $\boldsymbol{\unicode[STIX]{x1D709}}$
                        
                     -parabolic 
                     
                        
                            $\unicode[STIX]{x1D706}$
                        
                     -connection of rank
                           $\unicode[STIX]{x1D706}$
                        
                     -connection of rank 
                     
                        
                            $n$
                        
                     , of degree
                           $n$
                        
                     , of degree 
                     
                        
                            $d$
                        
                     , and of type
                           $d$
                        
                     , and of type 
                     
                        
                            $\boldsymbol{\unicode[STIX]{x1D707}}$
                        
                      if:
                           $\boldsymbol{\unicode[STIX]{x1D707}}$
                        
                      if:
- 
                           
                           (1)  $E$
                                 
                               is an algebraic vector bundle on $E$
                                 
                               is an algebraic vector bundle on $\unicode[STIX]{x1D6F4}$
                                 
                               of rank $\unicode[STIX]{x1D6F4}$
                                 
                               of rank $n$
                                 
                               and of degree $n$
                                 
                               and of degree $d$
                                 
                              ; $d$
                                 
                              ;
- 
                           
                           (2)  $\unicode[STIX]{x1D6FB}:E\rightarrow E\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)$
                                 
                               is a $\unicode[STIX]{x1D6FB}:E\rightarrow E\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)$
                                 
                               is a $\unicode[STIX]{x1D706}$
                                 
                              -connection, that is, $\unicode[STIX]{x1D706}$
                                 
                              -connection, that is, $\unicode[STIX]{x1D6FB}$
                                 
                               is a homomorphism of sheaves of $\unicode[STIX]{x1D6FB}$
                                 
                               is a homomorphism of sheaves of $\mathbb{C}$
                                 
                               vector spaces satisfying $\mathbb{C}$
                                 
                               vector spaces satisfying $\unicode[STIX]{x1D6FB}(fa)=\unicode[STIX]{x1D706}a\otimes df+f\unicode[STIX]{x1D6FB}(a)$
                                 
                               for $\unicode[STIX]{x1D6FB}(fa)=\unicode[STIX]{x1D706}a\otimes df+f\unicode[STIX]{x1D6FB}(a)$
                                 
                               for $f\in {\mathcal{O}}_{\unicode[STIX]{x1D6F4}}$
                                 
                               and $f\in {\mathcal{O}}_{\unicode[STIX]{x1D6F4}}$
                                 
                               and $a\in E$
                                 
                              ; and $a\in E$
                                 
                              ; and
- 
                           
                           (3) for each  $p_{i}$
                                 
                              , $p_{i}$
                                 
                              , $l_{\ast }^{(i)}$
                                 
                               is a filtration $l_{\ast }^{(i)}$
                                 
                               is a filtration $E|_{p_{i}}=l_{1}^{(i)}\supset l_{2}^{(i)}\supset \cdots \supset l_{r_{i}}^{(i)}\supset l_{r_{i}+1}^{(i)}=0$
                                 
                               such that $E|_{p_{i}}=l_{1}^{(i)}\supset l_{2}^{(i)}\supset \cdots \supset l_{r_{i}}^{(i)}\supset l_{r_{i}+1}^{(i)}=0$
                                 
                               such that $\dim (l_{j}^{(i)}/l_{j+1}^{(i)})=\unicode[STIX]{x1D707}_{j}^{i}$
                                 
                               and $\dim (l_{j}^{(i)}/l_{j+1}^{(i)})=\unicode[STIX]{x1D707}_{j}^{i}$
                                 
                               and $(\text{Res}_{p_{i}}(\unicode[STIX]{x1D6FB})-\unicode[STIX]{x1D709}_{j}^{i}\text{id}_{E|_{p_{i}}})(l_{j}^{(i)})\subset l_{j+1}^{(i)}$
                                 
                               for $(\text{Res}_{p_{i}}(\unicode[STIX]{x1D6FB})-\unicode[STIX]{x1D709}_{j}^{i}\text{id}_{E|_{p_{i}}})(l_{j}^{(i)})\subset l_{j+1}^{(i)}$
                                 
                               for $j=1,\ldots ,r_{i}$
                                 
                              . $j=1,\ldots ,r_{i}$
                                 
                              .
 For 
                  
                      $\unicode[STIX]{x1D706}=1$
                  
               , this is a regular singular
                     $\unicode[STIX]{x1D706}=1$
                  
               , this is a regular singular 
                  
                      $\boldsymbol{\unicode[STIX]{x1D709}}$
                  
               -parabolic connection of spectral type
                     $\boldsymbol{\unicode[STIX]{x1D709}}$
                  
               -parabolic connection of spectral type 
                  
                      $\boldsymbol{\unicode[STIX]{x1D707}}$
                  
                (Definition 1.2). For
                     $\boldsymbol{\unicode[STIX]{x1D707}}$
                  
                (Definition 1.2). For 
                  
                      $\unicode[STIX]{x1D706}=0$
                  
                and
                     $\unicode[STIX]{x1D706}=0$
                  
                and 
                  
                      $\boldsymbol{\unicode[STIX]{x1D709}}=0$
                  
               , this is a parabolic Higgs bundle (Definition 1.1).
                     $\boldsymbol{\unicode[STIX]{x1D709}}=0$
                  
               , this is a parabolic Higgs bundle (Definition 1.1).
Remark 3.2. For 
                        
                            $\unicode[STIX]{x1D706}\neq 0$
                        
                     , we have
                           $\unicode[STIX]{x1D706}\neq 0$
                        
                     , we have 
 $$\begin{eqnarray}\deg E=\deg (\det (E))=-\mathop{\sum }_{i=1}^{k}\text{tr}\left(\text{Res}_{p_{i}}((\unicode[STIX]{x1D706}^{-1}\unicode[STIX]{x1D6FB}))\right)=-\mathop{\sum }_{i=1}^{k}\mathop{\sum }_{j=1}^{r_{i}}\frac{\unicode[STIX]{x1D707}_{j}^{i}\unicode[STIX]{x1D709}_{j}^{i}}{\unicode[STIX]{x1D706}}=d.\end{eqnarray}$$
                           $$\begin{eqnarray}\deg E=\deg (\det (E))=-\mathop{\sum }_{i=1}^{k}\text{tr}\left(\text{Res}_{p_{i}}((\unicode[STIX]{x1D706}^{-1}\unicode[STIX]{x1D6FB}))\right)=-\mathop{\sum }_{i=1}^{k}\mathop{\sum }_{j=1}^{r_{i}}\frac{\unicode[STIX]{x1D707}_{j}^{i}\unicode[STIX]{x1D709}_{j}^{i}}{\unicode[STIX]{x1D706}}=d.\end{eqnarray}$$
                        
                     We take rational numbers
 $$\begin{eqnarray}0<\unicode[STIX]{x1D6FC}_{1}^{(i)}<\unicode[STIX]{x1D6FC}_{2}^{(i)}<\cdots <\unicode[STIX]{x1D6FC}_{r_{i}}^{(i)}<1\end{eqnarray}$$
                     $$\begin{eqnarray}0<\unicode[STIX]{x1D6FC}_{1}^{(i)}<\unicode[STIX]{x1D6FC}_{2}^{(i)}<\cdots <\unicode[STIX]{x1D6FC}_{r_{i}}^{(i)}<1\end{eqnarray}$$
                  
                for 
                  
                      $i=1,\ldots ,k$
                  
                satisfying
                     $i=1,\ldots ,k$
                  
                satisfying 
                  
                      $\unicode[STIX]{x1D6FC}_{j}^{(i)}\neq \unicode[STIX]{x1D6FC}_{j^{\prime }}^{(i^{\prime })}$
                  
                for
                     $\unicode[STIX]{x1D6FC}_{j}^{(i)}\neq \unicode[STIX]{x1D6FC}_{j^{\prime }}^{(i^{\prime })}$
                  
                for 
                  
                      $(i,j)\neq (i^{\prime },j^{\prime })$
                  
               . We choose
                     $(i,j)\neq (i^{\prime },j^{\prime })$
                  
               . We choose 
                  
                      $\boldsymbol{\unicode[STIX]{x1D6FC}}=(\unicode[STIX]{x1D6FC}_{j}^{(i)})$
                  
                sufficiently generic.
                     $\boldsymbol{\unicode[STIX]{x1D6FC}}=(\unicode[STIX]{x1D6FC}_{j}^{(i)})$
                  
                sufficiently generic.
Definition 3.3. A parabolic 
                        
                            $\unicode[STIX]{x1D706}$
                        
                     -connection
                           $\unicode[STIX]{x1D706}$
                        
                     -connection 
                        
                            $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant k})$
                        
                      is
                           $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant k})$
                        
                      is 
                        
                            $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                        
                     -stable (resp.
                           $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                        
                     -stable (resp. 
                        
                            $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                        
                     -semistable) if for any proper nonzero subbundle
                           $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                        
                     -semistable) if for any proper nonzero subbundle 
                        
                            $F\subset E$
                        
                      satisfying
                           $F\subset E$
                        
                      satisfying 
                        
                            $\unicode[STIX]{x1D6FB}(F)\subset F\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)$
                        
                     , the inequality
                           $\unicode[STIX]{x1D6FB}(F)\subset F\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)$
                        
                     , the inequality 
 $$\begin{eqnarray}\text{par}\,\unicode[STIX]{x1D707}(F)<\text{par}\,\unicode[STIX]{x1D707}(E)\quad (\text{resp. }\leqslant )\end{eqnarray}$$
                           $$\begin{eqnarray}\text{par}\,\unicode[STIX]{x1D707}(F)<\text{par}\,\unicode[STIX]{x1D707}(E)\quad (\text{resp. }\leqslant )\end{eqnarray}$$
                        
                      holds. Here, the induced parabolic structure on a subbundle 
                        
                            $F\subset E$
                        
                      is the filtrations
                           $F\subset E$
                        
                      is the filtrations 
                        
                            $F|_{p_{i}}=F|_{p_{i}}\cap l_{1}^{(i)}\supset F|_{p_{i}}\cap l_{2}^{(i)}\supset \cdots \supset F|_{p_{i}}\cap l_{r_{i}}^{(i)}\supset F|_{p_{i}}\cap l_{r_{i}+1}^{(i)}=0$
                        
                      for each
                           $F|_{p_{i}}=F|_{p_{i}}\cap l_{1}^{(i)}\supset F|_{p_{i}}\cap l_{2}^{(i)}\supset \cdots \supset F|_{p_{i}}\cap l_{r_{i}}^{(i)}\supset F|_{p_{i}}\cap l_{r_{i}+1}^{(i)}=0$
                        
                      for each 
                        
                            $p_{i}$
                        
                     .
                           $p_{i}$
                        
                     .
Remark 3.4. [Reference Inaba8, Remark 2.2]
 We chose 
                        
                            $\boldsymbol{\unicode[STIX]{x1D6FC}}=(\unicode[STIX]{x1D6FC}_{j}^{(i)})$
                        
                      sufficiently generic. Then a parabolic
                           $\boldsymbol{\unicode[STIX]{x1D6FC}}=(\unicode[STIX]{x1D6FC}_{j}^{(i)})$
                        
                      sufficiently generic. Then a parabolic 
                        
                            $\unicode[STIX]{x1D706}$
                        
                     -connection
                           $\unicode[STIX]{x1D706}$
                        
                     -connection 
                        
                            $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})$
                        
                      is
                           $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})$
                        
                      is 
                        
                            $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                        
                     -stable if and only if
                           $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                        
                     -stable if and only if 
                        
                            $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})$
                        
                      is
                           $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})$
                        
                      is 
                        
                            $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                        
                     -semistable.
                           $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                        
                     -semistable.
3.2 Construction of the moduli space
 The argument in this subsection is almost same as in [Reference Inaba8]. The difference from [Reference Inaba8] is that we fix the 
                  
                      $k$
                  
               -distinct points
                     $k$
                  
               -distinct points 
                  
                      $\{p_{1},\ldots ,p_{k}\}$
                  
               , the flag
                     $\{p_{1},\ldots ,p_{k}\}$
                  
               , the flag 
                  
                      $\{l_{\ast }^{(i)}\}$
                  
                is not necessarily full flag, and we construct the moduli space of
                     $\{l_{\ast }^{(i)}\}$
                  
                is not necessarily full flag, and we construct the moduli space of 
                  
                      $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                  
               -semistable parabolic
                     $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                  
               -semistable parabolic 
                  
                      $\unicode[STIX]{x1D706}$
                  
               -connections instead of
                     $\unicode[STIX]{x1D706}$
                  
               -connections instead of 
                  
                      $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                  
               -semistable parabolic connections.
                     $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                  
               -semistable parabolic connections.
 We recall the definition of a parabolic 
               
                  
                      $\unicode[STIX]{x1D6EC}_{D}^{1}$
                  
               -triple defined in [Reference Inaba, Iwasaki and Saito10]. Let
                     $\unicode[STIX]{x1D6EC}_{D}^{1}$
                  
               -triple defined in [Reference Inaba, Iwasaki and Saito10]. Let 
                  
                      $D$
                  
                be an effective divisor on a nonsingular curve
                     $D$
                  
                be an effective divisor on a nonsingular curve 
                  
                      $\unicode[STIX]{x1D6F4}$
                  
               . We define
                     $\unicode[STIX]{x1D6F4}$
                  
               . We define 
                  
                      $\unicode[STIX]{x1D6EC}_{D}^{1}$
                  
                as
                     $\unicode[STIX]{x1D6EC}_{D}^{1}$
                  
                as 
                  
                      ${\mathcal{O}}_{\unicode[STIX]{x1D6F4}}\oplus \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)^{\vee }$
                  
                with the bimodule structure given by
                     ${\mathcal{O}}_{\unicode[STIX]{x1D6F4}}\oplus \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)^{\vee }$
                  
                with the bimodule structure given by 
 $$\begin{eqnarray}\displaystyle & \displaystyle f(a,v)=(fa,fv)\quad (f,a\in {\mathcal{O}}_{\unicode[STIX]{x1D6F4}},~v\in \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)^{\vee }), & \displaystyle \nonumber\\ \displaystyle & \displaystyle (a,v)f=(fa+v(f),fv)\quad (f,a\in {\mathcal{O}}_{\unicode[STIX]{x1D6F4}},~v\in \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)^{\vee }). & \displaystyle \nonumber\end{eqnarray}$$
                     $$\begin{eqnarray}\displaystyle & \displaystyle f(a,v)=(fa,fv)\quad (f,a\in {\mathcal{O}}_{\unicode[STIX]{x1D6F4}},~v\in \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)^{\vee }), & \displaystyle \nonumber\\ \displaystyle & \displaystyle (a,v)f=(fa+v(f),fv)\quad (f,a\in {\mathcal{O}}_{\unicode[STIX]{x1D6F4}},~v\in \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)^{\vee }). & \displaystyle \nonumber\end{eqnarray}$$
                  
               
Definition 3.5. We say 
                        
                            $(E_{1},E_{2},\unicode[STIX]{x1D6F7},F_{\ast }(E_{1}))$
                        
                      a parabolic
                           $(E_{1},E_{2},\unicode[STIX]{x1D6F7},F_{\ast }(E_{1}))$
                        
                      a parabolic 
                     
                        
                            $\unicode[STIX]{x1D6EC}_{D}^{1}$
                        
                     -triple on
                           $\unicode[STIX]{x1D6EC}_{D}^{1}$
                        
                     -triple on 
                     
                        
                            $\unicode[STIX]{x1D6F4}$
                        
                      
                     of rank
                           $\unicode[STIX]{x1D6F4}$
                        
                      
                     of rank 
                     
                        
                            $n$
                        
                      
                     and of degree
                           $n$
                        
                      
                     and of degree 
                     
                        
                            $d$
                        
                      if:
                           $d$
                        
                      if:
- 
                           
                           (1)  $E_{1}$
                                 
                               and $E_{1}$
                                 
                               and $E_{2}$
                                 
                               are vector bundles on $E_{2}$
                                 
                               are vector bundles on $\unicode[STIX]{x1D6F4}$
                                 
                               of rank $\unicode[STIX]{x1D6F4}$
                                 
                               of rank $n$
                                 
                               and of degree $n$
                                 
                               and of degree $d$
                                 
                              ; $d$
                                 
                              ;
- 
                           
                           (2)  $\unicode[STIX]{x1D6F7}:\unicode[STIX]{x1D6EC}_{D}^{1}\otimes E_{1}\rightarrow E_{2}$
                                 
                               is a left $\unicode[STIX]{x1D6F7}:\unicode[STIX]{x1D6EC}_{D}^{1}\otimes E_{1}\rightarrow E_{2}$
                                 
                               is a left ${\mathcal{O}}_{\unicode[STIX]{x1D6F4}}$
                                 
                              -homomorphism; and ${\mathcal{O}}_{\unicode[STIX]{x1D6F4}}$
                                 
                              -homomorphism; and
- 
                           
                           (3)  $E_{1}=F_{1}(E_{1})\supset F_{2}(E_{1})\supset \cdots \supset F_{l}(E_{1})\supset F_{l+1}(E_{1})=E_{1}(-D)$
                                 
                               is a filtration by coherent subsheaves. $E_{1}=F_{1}(E_{1})\supset F_{2}(E_{1})\supset \cdots \supset F_{l}(E_{1})\supset F_{l+1}(E_{1})=E_{1}(-D)$
                                 
                               is a filtration by coherent subsheaves.
 Note that to give a left 
                  
                      ${\mathcal{O}}_{\unicode[STIX]{x1D6F4}}$
                  
               -homomorphism
                     ${\mathcal{O}}_{\unicode[STIX]{x1D6F4}}$
                  
               -homomorphism 
                  
                      $\unicode[STIX]{x1D6F7}:\unicode[STIX]{x1D6EC}_{D}^{1}\otimes E_{1}\rightarrow E_{2}$
                  
                is equivalent to give an
                     $\unicode[STIX]{x1D6F7}:\unicode[STIX]{x1D6EC}_{D}^{1}\otimes E_{1}\rightarrow E_{2}$
                  
                is equivalent to give an 
                  
                      ${\mathcal{O}}_{\unicode[STIX]{x1D6F4}}$
                  
               -homomorphism
                     ${\mathcal{O}}_{\unicode[STIX]{x1D6F4}}$
                  
               -homomorphism 
                  
                      $\unicode[STIX]{x1D719}:E_{1}\rightarrow E_{2}$
                  
                and a morphism
                     $\unicode[STIX]{x1D719}:E_{1}\rightarrow E_{2}$
                  
                and a morphism 
                  
                      $\unicode[STIX]{x1D6FB}:E_{1}\rightarrow E_{2}\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)$
                  
                such that
                     $\unicode[STIX]{x1D6FB}:E_{1}\rightarrow E_{2}\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)$
                  
                such that 
                  
                      $\unicode[STIX]{x1D6FB}(fa)=\unicode[STIX]{x1D719}(a)\otimes df+f\unicode[STIX]{x1D6FB}(a)$
                  
                for
                     $\unicode[STIX]{x1D6FB}(fa)=\unicode[STIX]{x1D719}(a)\otimes df+f\unicode[STIX]{x1D6FB}(a)$
                  
                for 
                  
                      $f\in {\mathcal{O}}_{\unicode[STIX]{x1D6F4}}$
                  
                and
                     $f\in {\mathcal{O}}_{\unicode[STIX]{x1D6F4}}$
                  
                and 
                  
                      $a\in E_{1}$
                  
               . We also denote the parabolic
                     $a\in E_{1}$
                  
               . We also denote the parabolic 
                  
                      $\unicode[STIX]{x1D6EC}_{D}^{1}$
                  
               -triple
                     $\unicode[STIX]{x1D6EC}_{D}^{1}$
                  
               -triple 
                  
                      $(E_{1},E_{2},\unicode[STIX]{x1D6F7},F_{\ast }(E_{1}))$
                  
                by
                     $(E_{1},E_{2},\unicode[STIX]{x1D6F7},F_{\ast }(E_{1}))$
                  
                by 
                  
                      $(E_{1},E_{2},\unicode[STIX]{x1D719},\unicode[STIX]{x1D6FB},F_{\ast }(E_{1}))$
                  
               .
                     $(E_{1},E_{2},\unicode[STIX]{x1D719},\unicode[STIX]{x1D6FB},F_{\ast }(E_{1}))$
                  
               .
 We take positive integers 
                  
                      $\unicode[STIX]{x1D6FD}_{1},\unicode[STIX]{x1D6FD}_{2},\unicode[STIX]{x1D6FE}$
                  
                and rational numbers
                     $\unicode[STIX]{x1D6FD}_{1},\unicode[STIX]{x1D6FD}_{2},\unicode[STIX]{x1D6FE}$
                  
                and rational numbers 
                  
                      $0<\unicode[STIX]{x1D6FC}_{1}^{\prime }<\cdots <\unicode[STIX]{x1D6FC}_{l}^{\prime }<1$
                  
               . We assume
                     $0<\unicode[STIX]{x1D6FC}_{1}^{\prime }<\cdots <\unicode[STIX]{x1D6FC}_{l}^{\prime }<1$
                  
               . We assume 
                  
                      $\unicode[STIX]{x1D6FE}\gg 0$
                  
               .
                     $\unicode[STIX]{x1D6FE}\gg 0$
                  
               .
Definition 3.6. A parabolic 
                        
                            $\unicode[STIX]{x1D6EC}_{D}^{1}$
                        
                     -triple
                           $\unicode[STIX]{x1D6EC}_{D}^{1}$
                        
                     -triple 
                        
                            $(E_{1},E_{2},\unicode[STIX]{x1D719},\unicode[STIX]{x1D6FB},F_{\ast }(E_{1}))$
                        
                      is
                           $(E_{1},E_{2},\unicode[STIX]{x1D719},\unicode[STIX]{x1D6FB},F_{\ast }(E_{1}))$
                        
                      is 
                        
                            $(\boldsymbol{\unicode[STIX]{x1D6FC}}^{\prime },\boldsymbol{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6FE})$
                        
                     -stable (resp.
                           $(\boldsymbol{\unicode[STIX]{x1D6FC}}^{\prime },\boldsymbol{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6FE})$
                        
                     -stable (resp. 
                        
                            $(\boldsymbol{\unicode[STIX]{x1D6FC}}^{\prime },\boldsymbol{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6FE})$
                        
                     -semistable) if for any subbundle
                           $(\boldsymbol{\unicode[STIX]{x1D6FC}}^{\prime },\boldsymbol{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6FE})$
                        
                     -semistable) if for any subbundle 
                        
                            $(F_{1},F_{2})\subset (E_{1},E_{2})$
                        
                      satisfying
                           $(F_{1},F_{2})\subset (E_{1},E_{2})$
                        
                      satisfying 
                        
                            $(0,0)\neq (F_{1},F_{2})\neq (E_{1},E_{2})$
                        
                      and
                           $(0,0)\neq (F_{1},F_{2})\neq (E_{1},E_{2})$
                        
                      and 
                        
                            $\unicode[STIX]{x1D6F7}(\unicode[STIX]{x1D6EC}_{D}^{1}\otimes F_{1})\subset F_{2}$
                        
                     , the inequality
                           $\unicode[STIX]{x1D6F7}(\unicode[STIX]{x1D6EC}_{D}^{1}\otimes F_{1})\subset F_{2}$
                        
                     , the inequality 
 $$\begin{eqnarray}\displaystyle \frac{\unicode[STIX]{x1D6FD}_{1}\deg F_{1}(-D)+\unicode[STIX]{x1D6FD}_{2}(\deg F_{2}-\unicode[STIX]{x1D6FE}\,\text{rank}\,F_{2})+\unicode[STIX]{x1D6FD}_{1}\mathop{\sum }_{j=1}^{l}\unicode[STIX]{x1D6FC}_{j}^{\prime }\text{length}(F_{j}(E_{1})\cap F_{1}/(F_{j+1}(E_{1})\cap F_{1}))}{\unicode[STIX]{x1D6FD}_{1}\,\text{rank}\,F_{1}+\unicode[STIX]{x1D6FD}_{2}\,\text{rank}\,F_{2}} & & \displaystyle \nonumber\\ \displaystyle \underset{(\text{resp.}~\leqslant )}{{<}}\frac{\unicode[STIX]{x1D6FD}_{1}\deg E_{1}(-D)+\unicode[STIX]{x1D6FD}_{2}(\deg E_{2}-\unicode[STIX]{x1D6FE}\,\text{rank}\,E_{2})+\unicode[STIX]{x1D6FD}_{1}\mathop{\sum }_{j=1}^{l}\unicode[STIX]{x1D6FC}_{j}^{\prime }\text{length}((F_{j}(E_{1}))/(F_{j+1}(E_{1})))}{\unicode[STIX]{x1D6FD}_{1}\,\text{rank}\,E_{1}+\unicode[STIX]{x1D6FD}_{2}\,\text{rank}\,E_{2}} & & \displaystyle \nonumber\end{eqnarray}$$
                           $$\begin{eqnarray}\displaystyle \frac{\unicode[STIX]{x1D6FD}_{1}\deg F_{1}(-D)+\unicode[STIX]{x1D6FD}_{2}(\deg F_{2}-\unicode[STIX]{x1D6FE}\,\text{rank}\,F_{2})+\unicode[STIX]{x1D6FD}_{1}\mathop{\sum }_{j=1}^{l}\unicode[STIX]{x1D6FC}_{j}^{\prime }\text{length}(F_{j}(E_{1})\cap F_{1}/(F_{j+1}(E_{1})\cap F_{1}))}{\unicode[STIX]{x1D6FD}_{1}\,\text{rank}\,F_{1}+\unicode[STIX]{x1D6FD}_{2}\,\text{rank}\,F_{2}} & & \displaystyle \nonumber\\ \displaystyle \underset{(\text{resp.}~\leqslant )}{{<}}\frac{\unicode[STIX]{x1D6FD}_{1}\deg E_{1}(-D)+\unicode[STIX]{x1D6FD}_{2}(\deg E_{2}-\unicode[STIX]{x1D6FE}\,\text{rank}\,E_{2})+\unicode[STIX]{x1D6FD}_{1}\mathop{\sum }_{j=1}^{l}\unicode[STIX]{x1D6FC}_{j}^{\prime }\text{length}((F_{j}(E_{1}))/(F_{j+1}(E_{1})))}{\unicode[STIX]{x1D6FD}_{1}\,\text{rank}\,E_{1}+\unicode[STIX]{x1D6FD}_{2}\,\text{rank}\,E_{2}} & & \displaystyle \nonumber\end{eqnarray}$$
                        
                     holds.
Theorem 3.7. [Reference Inaba, Iwasaki and Saito10, Theorem 5.1]
 Fix integers 
                        
                            $g\geqslant 0$
                        
                     ,
                           $g\geqslant 0$
                        
                     , 
                        
                            $k>0$
                        
                     ,
                           $k>0$
                        
                     , 
                        
                            $n>0$
                        
                     ,
                           $n>0$
                        
                     , 
                        
                            $l>0$
                        
                     ,
                           $l>0$
                        
                     , 
                        
                            $d$
                        
                      and a tuple of positive integers
                           $d$
                        
                      and a tuple of positive integers 
                        
                            $\{d_{i}\}_{1\leqslant i\leqslant l}$
                        
                      where
                           $\{d_{i}\}_{1\leqslant i\leqslant l}$
                        
                      where 
                        
                            $0<d_{1}\leqslant d_{2}\leqslant \cdots \leqslant d_{l}=kn$
                        
                     . Let
                           $0<d_{1}\leqslant d_{2}\leqslant \cdots \leqslant d_{l}=kn$
                        
                     . Let 
                        
                            $S$
                        
                      be an algebraic scheme over
                           $S$
                        
                      be an algebraic scheme over 
                        
                            $\mathbb{C}$
                        
                     ,
                           $\mathbb{C}$
                        
                     , 
                        
                            ${\mathcal{C}}$
                        
                      be a flat family of smooth projective curves of genus
                           ${\mathcal{C}}$
                        
                      be a flat family of smooth projective curves of genus 
                        
                            $g$
                        
                      and
                           $g$
                        
                      and 
                        
                            ${\mathcal{D}}$
                        
                      be an effective Cartier divisor on
                           ${\mathcal{D}}$
                        
                      be an effective Cartier divisor on 
                        
                            ${\mathcal{C}}$
                        
                      flat over
                           ${\mathcal{C}}$
                        
                      flat over 
                        
                            $S$
                        
                     . Then, there exists the coarse moduli scheme
                           $S$
                        
                     . Then, there exists the coarse moduli scheme 
                        
                            $\overline{{\mathcal{M}}_{n,d,\{d_{i}\}}^{\boldsymbol{\unicode[STIX]{x1D6FC}}^{\prime },\boldsymbol{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6FE}}}({\mathcal{C}}/S,{\mathcal{D}})$
                        
                      of
                           $\overline{{\mathcal{M}}_{n,d,\{d_{i}\}}^{\boldsymbol{\unicode[STIX]{x1D6FC}}^{\prime },\boldsymbol{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6FE}}}({\mathcal{C}}/S,{\mathcal{D}})$
                        
                      of 
                        
                            $(\boldsymbol{\unicode[STIX]{x1D6FC}}^{\prime },\boldsymbol{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6FE})$
                        
                     -stable parabolic
                           $(\boldsymbol{\unicode[STIX]{x1D6FC}}^{\prime },\boldsymbol{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6FE})$
                        
                     -stable parabolic 
                        
                            $\unicode[STIX]{x1D6EC}_{D}^{1}$
                        
                     -triples
                           $\unicode[STIX]{x1D6EC}_{D}^{1}$
                        
                     -triples 
                        
                            $(E_{1},E_{2},\unicode[STIX]{x1D719},\unicode[STIX]{x1D6FB},F_{\ast }(E_{1}))$
                        
                      on
                           $(E_{1},E_{2},\unicode[STIX]{x1D719},\unicode[STIX]{x1D6FB},F_{\ast }(E_{1}))$
                        
                      on 
                        
                            ${\mathcal{C}}$
                        
                      over
                           ${\mathcal{C}}$
                        
                      over 
                        
                            $S$
                        
                      such that
                           $S$
                        
                      such that 
                        
                            $n=\text{rank}\,E_{1}=\text{rank}\,E_{2}$
                        
                     ,
                           $n=\text{rank}\,E_{1}=\text{rank}\,E_{2}$
                        
                     , 
                        
                            $d=\deg E_{1}=\deg E_{2}$
                        
                      and
                           $d=\deg E_{1}=\deg E_{2}$
                        
                      and 
                        
                            $d_{i}=\text{length}(E_{1}/F_{i+1}(E_{1}))$
                        
                     . If
                           $d_{i}=\text{length}(E_{1}/F_{i+1}(E_{1}))$
                        
                     . If 
                        
                            $\boldsymbol{\unicode[STIX]{x1D6FC}}^{\prime }$
                        
                      is generic, then it is projective over
                           $\boldsymbol{\unicode[STIX]{x1D6FC}}^{\prime }$
                        
                      is generic, then it is projective over 
                        
                            $S$
                        
                     .
                           $S$
                        
                     .
Definition 3.8. We put 
                        
                            ${\mathcal{C}}=\unicode[STIX]{x1D6F4}\times \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                        
                     ,
                           ${\mathcal{C}}=\unicode[STIX]{x1D6F4}\times \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                        
                     , 
                        
                            $S=\unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                        
                     ,
                           $S=\unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                        
                     , 
                        
                            $\tilde{p}_{i}=p_{i}\times \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                        
                      (for
                           $\tilde{p}_{i}=p_{i}\times \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                        
                      (for 
                        
                            $i=1,\ldots ,k$
                        
                     ) and
                           $i=1,\ldots ,k$
                        
                     ) and 
                        
                            ${\mathcal{D}}=\tilde{p}_{1}+\cdots +\tilde{p}_{k}$
                        
                     . We define a functor
                           ${\mathcal{D}}=\tilde{p}_{1}+\cdots +\tilde{p}_{k}$
                        
                     . We define a functor 
                        
                            ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D6FC}},\boldsymbol{\unicode[STIX]{x1D707}},d}({\mathcal{C}}/S,{\mathcal{D}})$
                        
                      of the category of locally Noetherian schemes over
                           ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D6FC}},\boldsymbol{\unicode[STIX]{x1D707}},d}({\mathcal{C}}/S,{\mathcal{D}})$
                        
                      of the category of locally Noetherian schemes over 
                        
                            $S$
                        
                      to the category of sets by
                           $S$
                        
                      to the category of sets by 
 $$\begin{eqnarray}{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D6FC}},\boldsymbol{\unicode[STIX]{x1D707}},d}({\mathcal{C}}/S,{\mathcal{D}})(T):=\left\{(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant k})\right\}/\sim ,\end{eqnarray}$$
                           $$\begin{eqnarray}{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D6FC}},\boldsymbol{\unicode[STIX]{x1D707}},d}({\mathcal{C}}/S,{\mathcal{D}})(T):=\left\{(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant k})\right\}/\sim ,\end{eqnarray}$$
                        
                      for a locally Noetherian scheme 
                        
                            $T$
                        
                      over
                           $T$
                        
                      over 
                        
                            $S$
                        
                      where:
                           $S$
                        
                      where:
- 
                           
                           (1)  $E$
                                 
                               is a vector bundle on $E$
                                 
                               is a vector bundle on ${\mathcal{C}}_{T}$
                                 
                               of rank ${\mathcal{C}}_{T}$
                                 
                               of rank $n$
                                 
                              ; $n$
                                 
                              ;
- 
                           
                           (2)  $\unicode[STIX]{x1D706}:E\rightarrow E$
                                 
                               is the $\unicode[STIX]{x1D706}:E\rightarrow E$
                                 
                               is the ${\mathcal{O}}_{{\mathcal{C}}_{T}}$
                                 
                              -homomorphism defined by ${\mathcal{O}}_{{\mathcal{C}}_{T}}$
                                 
                              -homomorphism defined by $a(x)\mapsto \unicode[STIX]{x1D706}(x)\cdot a(x)$
                                 
                               where $a(x)\mapsto \unicode[STIX]{x1D706}(x)\cdot a(x)$
                                 
                               where $\unicode[STIX]{x1D706}(x)$
                                 
                               is the image of $\unicode[STIX]{x1D706}(x)$
                                 
                               is the image of $x\in {\mathcal{C}}_{T}$
                                 
                               by the composition $x\in {\mathcal{C}}_{T}$
                                 
                               by the composition ${\mathcal{C}}_{T}\rightarrow S\rightarrow \mathbb{C}$
                                 
                               of the natural morphism and the projection; ${\mathcal{C}}_{T}\rightarrow S\rightarrow \mathbb{C}$
                                 
                               of the natural morphism and the projection;
- 
                           
                           (3)  $\unicode[STIX]{x1D6FB}:E\rightarrow E\otimes \unicode[STIX]{x1D6FA}_{{\mathcal{C}}_{T}}^{1}(({\mathcal{D}}_{T}))$
                                 
                               is a relative $\unicode[STIX]{x1D6FB}:E\rightarrow E\otimes \unicode[STIX]{x1D6FA}_{{\mathcal{C}}_{T}}^{1}(({\mathcal{D}}_{T}))$
                                 
                               is a relative $\unicode[STIX]{x1D706}_{T/S}$
                                 
                              -connection; $\unicode[STIX]{x1D706}_{T/S}$
                                 
                              -connection;
- 
                           
                           (4)  $E|_{(\tilde{p}_{i})_{T}}=l_{1}^{(i)}\supset l_{2}^{(i)}\supset \cdots \supset l_{r_{i}}^{(i)}\supset l_{r_{i}+1}^{(i)}=0$
                                 
                               is a filtration by subbundles such that $E|_{(\tilde{p}_{i})_{T}}=l_{1}^{(i)}\supset l_{2}^{(i)}\supset \cdots \supset l_{r_{i}}^{(i)}\supset l_{r_{i}+1}^{(i)}=0$
                                 
                               is a filtration by subbundles such that $(\text{Res}_{(\tilde{p}_{i})_{T}}(\unicode[STIX]{x1D6FB})-(\unicode[STIX]{x1D709}_{j}^{i})_{T})\subset l_{j+1}^{(i)}$
                                 
                               for $(\text{Res}_{(\tilde{p}_{i})_{T}}(\unicode[STIX]{x1D6FB})-(\unicode[STIX]{x1D709}_{j}^{i})_{T})\subset l_{j+1}^{(i)}$
                                 
                               for $j=1,\ldots ,r_{i}$
                                 
                              , $j=1,\ldots ,r_{i}$
                                 
                              , $i=1,\ldots ,k$
                                 
                              ; $i=1,\ldots ,k$
                                 
                              ;
- 
                           
                           (5) for any geometric point  $t\in T$
                                 
                              , $t\in T$
                                 
                              , $\dim (l_{j}^{i}/l_{j+1}^{i})\otimes k(t)=\unicode[STIX]{x1D707}_{j}^{i}$
                                 
                               for any $\dim (l_{j}^{i}/l_{j+1}^{i})\otimes k(t)=\unicode[STIX]{x1D707}_{j}^{i}$
                                 
                               for any $i,j$
                                 
                               and $i,j$
                                 
                               and $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})\otimes k(t)$
                                 
                               is $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})\otimes k(t)$
                                 
                               is $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                                 
                              -stable. $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                                 
                              -stable.
The following proposition is shown by the same way as in the proof [Reference Inaba8, Theorem 2.1].
Proposition 3.9. There exists a relative coarse moduli scheme
 $$\begin{eqnarray}\displaystyle \unicode[STIX]{x1D70B}:{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}} & \longrightarrow & \displaystyle \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}\nonumber\\ \displaystyle (\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant r_{i}}) & \longmapsto & \displaystyle (\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})\nonumber\end{eqnarray}$$
                           $$\begin{eqnarray}\displaystyle \unicode[STIX]{x1D70B}:{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}} & \longrightarrow & \displaystyle \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}\nonumber\\ \displaystyle (\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant r_{i}}) & \longmapsto & \displaystyle (\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})\nonumber\end{eqnarray}$$
                        
                      of 
                        
                            $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                        
                     -stable parabolic
                           $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                        
                     -stable parabolic 
                        
                            $\unicode[STIX]{x1D706}$
                        
                     -connections of rank
                           $\unicode[STIX]{x1D706}$
                        
                     -connections of rank 
                        
                            $n$
                        
                     , of degree
                           $n$
                        
                     , of degree 
                        
                            $d$
                        
                     , and of type
                           $d$
                        
                     , and of type 
                        
                            $\boldsymbol{\unicode[STIX]{x1D707}}$
                        
                     . For simplicity, we drop
                           $\boldsymbol{\unicode[STIX]{x1D707}}$
                        
                     . For simplicity, we drop 
                        
                            $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                        
                      and
                           $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                        
                      and 
                        
                            $d$
                        
                      from the notation of the moduli space.
                           $d$
                        
                      from the notation of the moduli space.
 If 
                        
                            $n$
                        
                      and
                           $n$
                        
                      and 
                        
                            $d$
                        
                      are coprime, then
                           $d$
                        
                      are coprime, then 
                        
                            ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                        
                      is a relative fine moduli scheme, that is, there is a universal family over
                           ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                        
                      is a relative fine moduli scheme, that is, there is a universal family over 
                        
                            ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                        
                     .
                           ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                        
                     .
Proof. Fix a weight 
                        
                            $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                        
                      which determines the stability of parabolic
                           $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                        
                      which determines the stability of parabolic 
                        
                            $\unicode[STIX]{x1D706}$
                        
                     -connections. We take positive integers
                           $\unicode[STIX]{x1D706}$
                        
                     -connections. We take positive integers 
                        
                            $\unicode[STIX]{x1D6FD}_{1},\unicode[STIX]{x1D6FD}_{2},\unicode[STIX]{x1D6FE}$
                        
                      and rational numbers
                           $\unicode[STIX]{x1D6FD}_{1},\unicode[STIX]{x1D6FD}_{2},\unicode[STIX]{x1D6FE}$
                        
                      and rational numbers 
                        
                            $0<\tilde{\unicode[STIX]{x1D6FC}}_{1}^{(i)}<\cdots <\tilde{\unicode[STIX]{x1D6FC}}_{r_{i}}^{(i)}<1$
                        
                      satisfying
                           $0<\tilde{\unicode[STIX]{x1D6FC}}_{1}^{(i)}<\cdots <\tilde{\unicode[STIX]{x1D6FC}}_{r_{i}}^{(i)}<1$
                        
                      satisfying 
                        
                            $(\unicode[STIX]{x1D6FD}_{1}+\unicode[STIX]{x1D6FD}_{2})\unicode[STIX]{x1D6FC}_{j}^{(i)}=\unicode[STIX]{x1D6FD}_{1}\tilde{\unicode[STIX]{x1D6FC}}_{j}^{(i)}$
                        
                      for any
                           $(\unicode[STIX]{x1D6FD}_{1}+\unicode[STIX]{x1D6FD}_{2})\unicode[STIX]{x1D6FC}_{j}^{(i)}=\unicode[STIX]{x1D6FD}_{1}\tilde{\unicode[STIX]{x1D6FC}}_{j}^{(i)}$
                        
                      for any 
                        
                            $i,j$
                        
                     . We assume
                           $i,j$
                        
                     . We assume 
                        
                            $\unicode[STIX]{x1D6FE}\gg 0$
                        
                     . We take an increasing sequence
                           $\unicode[STIX]{x1D6FE}\gg 0$
                        
                     . We take an increasing sequence 
                        
                            $0<\unicode[STIX]{x1D6FC}_{1}^{\prime }<\cdots <\unicode[STIX]{x1D6FC}_{l}^{\prime }<1$
                        
                      such that
                           $0<\unicode[STIX]{x1D6FC}_{1}^{\prime }<\cdots <\unicode[STIX]{x1D6FC}_{l}^{\prime }<1$
                        
                      such that 
 $$\begin{eqnarray}\{\unicode[STIX]{x1D6FC}_{i}^{\prime }\mid 1\leqslant i\leqslant l\}=\{\tilde{\unicode[STIX]{x1D6FC}}_{j}^{(i)}\mid 1\leqslant i\leqslant k,1\leqslant j\leqslant r_{i}\}\end{eqnarray}$$
                           $$\begin{eqnarray}\{\unicode[STIX]{x1D6FC}_{i}^{\prime }\mid 1\leqslant i\leqslant l\}=\{\tilde{\unicode[STIX]{x1D6FC}}_{j}^{(i)}\mid 1\leqslant i\leqslant k,1\leqslant j\leqslant r_{i}\}\end{eqnarray}$$
                        
                      where we put 
                        
                            $l=\sum _{i=1}^{k}r_{i}$
                        
                     . We take any member
                           $l=\sum _{i=1}^{k}r_{i}$
                        
                     . We take any member 
                        
                            $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant k})\in {\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D6FC}},\boldsymbol{\unicode[STIX]{x1D707}},d}({\mathcal{C}}/S,{\mathcal{D}})(T)$
                        
                     . For each
                           $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant k})\in {\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D6FC}},\boldsymbol{\unicode[STIX]{x1D707}},d}({\mathcal{C}}/S,{\mathcal{D}})(T)$
                        
                     . For each 
                        
                            $1\leqslant p\leqslant l$
                        
                     , there exist
                           $1\leqslant p\leqslant l$
                        
                     , there exist 
                        
                            $i,j$
                        
                      satisfying
                           $i,j$
                        
                      satisfying 
                        
                            $\tilde{\unicode[STIX]{x1D6FC}}_{j}^{(i)}=\unicode[STIX]{x1D6FC}_{p}^{\prime }$
                        
                     . We put
                           $\tilde{\unicode[STIX]{x1D6FC}}_{j}^{(i)}=\unicode[STIX]{x1D6FC}_{p}^{\prime }$
                        
                     . We put 
                        
                            $F_{1}(E):=E$
                        
                      and define inductively
                           $F_{1}(E):=E$
                        
                      and define inductively 
 $$\begin{eqnarray}F_{p}(E):=\text{Ker}(F_{p-1}(E)\longrightarrow E|_{(\tilde{p}_{i})_{T}}/l_{p})\end{eqnarray}$$
                           $$\begin{eqnarray}F_{p}(E):=\text{Ker}(F_{p-1}(E)\longrightarrow E|_{(\tilde{p}_{i})_{T}}/l_{p})\end{eqnarray}$$
                        
                      for 
                        
                            $p=1,\ldots ,l$
                        
                     . Here, we put
                           $p=1,\ldots ,l$
                        
                     . Here, we put 
                        
                            $l_{p}:=l_{j}^{(i)}$
                        
                      for the unique
                           $l_{p}:=l_{j}^{(i)}$
                        
                      for the unique 
                        
                            $(i,j)$
                        
                      for which
                           $(i,j)$
                        
                      for which
                        
                            $\tilde{\unicode[STIX]{x1D6FC}}_{j}^{(i)}=\unicode[STIX]{x1D6FC}_{p}^{\prime }$
                        
                     . We also put
                           $\tilde{\unicode[STIX]{x1D6FC}}_{j}^{(i)}=\unicode[STIX]{x1D6FC}_{p}^{\prime }$
                        
                     . We also put 
                        
                            $d_{p}:=\text{length}((E/F_{p+1}(E))\otimes k(t))$
                        
                      for
                           $d_{p}:=\text{length}((E/F_{p+1}(E))\otimes k(t))$
                        
                      for 
                        
                            $p=1,\ldots ,l$
                        
                      and
                           $p=1,\ldots ,l$
                        
                      and 
                        
                            $t\in T$
                        
                     . Then
                           $t\in T$
                        
                     . Then 
                        
                            $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})\mapsto (E,E,\unicode[STIX]{x1D706}\text{id},\unicode[STIX]{x1D6FB},F_{\ast }(E))$
                        
                      determines the morphism
                           $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})\mapsto (E,E,\unicode[STIX]{x1D706}\text{id},\unicode[STIX]{x1D6FB},F_{\ast }(E))$
                        
                      determines the morphism 
 $$\begin{eqnarray}\unicode[STIX]{x1D704}:{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D6FC}},\boldsymbol{\unicode[STIX]{x1D707}},d}({\mathcal{C}}/S,{\mathcal{D}})\longrightarrow \overline{{\mathcal{M}}_{n,d,\{d_{i}\}}^{\boldsymbol{\unicode[STIX]{x1D6FC}}^{\prime },\boldsymbol{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6FE}}}({\mathcal{C}}/S,{\mathcal{D}})\end{eqnarray}$$
                           $$\begin{eqnarray}\unicode[STIX]{x1D704}:{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D6FC}},\boldsymbol{\unicode[STIX]{x1D707}},d}({\mathcal{C}}/S,{\mathcal{D}})\longrightarrow \overline{{\mathcal{M}}_{n,d,\{d_{i}\}}^{\boldsymbol{\unicode[STIX]{x1D6FC}}^{\prime },\boldsymbol{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6FE}}}({\mathcal{C}}/S,{\mathcal{D}})\end{eqnarray}$$
                        
                      where 
                        
                            $\overline{{\mathcal{M}}_{n,d,\{d_{i}\}}^{\boldsymbol{\unicode[STIX]{x1D6FC}}^{\prime },\boldsymbol{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6FE}}}({\mathcal{C}}/S,{\mathcal{D}})$
                        
                      is the moduli functor of
                           $\overline{{\mathcal{M}}_{n,d,\{d_{i}\}}^{\boldsymbol{\unicode[STIX]{x1D6FC}}^{\prime },\boldsymbol{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6FE}}}({\mathcal{C}}/S,{\mathcal{D}})$
                        
                      is the moduli functor of 
                        
                            $(\boldsymbol{\unicode[STIX]{x1D6FC}},\boldsymbol{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6FE})$
                        
                     -stable
                           $(\boldsymbol{\unicode[STIX]{x1D6FC}},\boldsymbol{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6FE})$
                        
                     -stable 
                        
                            $\unicode[STIX]{x1D6EC}_{D}^{1}$
                        
                     -triples whose coarse moduli scheme exists by Theorem 3.7. Then we have that a certain subscheme
                           $\unicode[STIX]{x1D6EC}_{D}^{1}$
                        
                     -triples whose coarse moduli scheme exists by Theorem 3.7. Then we have that a certain subscheme 
                        
                            ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                        
                      of
                           ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                        
                      of 
                        
                            $\overline{{\mathcal{M}}_{n,d,\{d_{i}\}}^{\boldsymbol{\unicode[STIX]{x1D6FC}}^{\prime },\boldsymbol{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6FE}}}({\mathcal{C}}/S,{\mathcal{D}})$
                        
                      is just the coarse moduli scheme of
                           $\overline{{\mathcal{M}}_{n,d,\{d_{i}\}}^{\boldsymbol{\unicode[STIX]{x1D6FC}}^{\prime },\boldsymbol{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6FE}}}({\mathcal{C}}/S,{\mathcal{D}})$
                        
                      is just the coarse moduli scheme of 
                        
                            ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D6FC}},\boldsymbol{\unicode[STIX]{x1D707}},d}({\mathcal{C}}/S,{\mathcal{D}})$
                        
                      in the same way as in [Reference Inaba, Iwasaki and Saito10, Theorem 2.1] and [Reference Inaba8, Theorem 2.1].
                           ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D6FC}},\boldsymbol{\unicode[STIX]{x1D707}},d}({\mathcal{C}}/S,{\mathcal{D}})$
                        
                      in the same way as in [Reference Inaba, Iwasaki and Saito10, Theorem 2.1] and [Reference Inaba8, Theorem 2.1].
 If 
                        
                            $n$
                        
                      and
                           $n$
                        
                      and 
                        
                            $d$
                        
                      are coprime, then there is a universal family on
                           $d$
                        
                      are coprime, then there is a universal family on 
                        
                            ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}\times \unicode[STIX]{x1D6F4}$
                        
                      (see [Reference Huybrechts and Lehn7, Theorem 4.6.5] and the proof of [Reference Inaba8, Theorem 2.1]).◻
                           ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}\times \unicode[STIX]{x1D6F4}$
                        
                      (see [Reference Huybrechts and Lehn7, Theorem 4.6.5] and the proof of [Reference Inaba8, Theorem 2.1]).◻
 We denote the fibers of 
                  
                      ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                  
                over
                     ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                  
                over 
                  
                      $\unicode[STIX]{x1D706}=0$
                  
                and
                     $\unicode[STIX]{x1D706}=0$
                  
                and 
                  
                      $\unicode[STIX]{x1D706}=1$
                  
                by
                     $\unicode[STIX]{x1D706}=1$
                  
                by 
                  
                      ${\mathcal{M}}_{\text{Dol}}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                  
                and
                     ${\mathcal{M}}_{\text{Dol}}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                  
                and 
                  
                      ${\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                  
               , respectively. Let
                     ${\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                  
               , respectively. Let 
                  
                      ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})$
                  
                be the fiber of
                     ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})$
                  
                be the fiber of 
                  
                      $(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})$
                  
               . Let
                     $(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})$
                  
               . Let 
                  
                      ${\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}})$
                  
                and
                     ${\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}})$
                  
                and 
                  
                      ${\mathcal{M}}_{\text{Dol}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\mathbf{0})$
                  
                be the fibers of
                     ${\mathcal{M}}_{\text{Dol}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\mathbf{0})$
                  
                be the fibers of 
                  
                      $(1,\boldsymbol{\unicode[STIX]{x1D709}})$
                  
                and
                     $(1,\boldsymbol{\unicode[STIX]{x1D709}})$
                  
                and 
                  
                      $(0,\mathbf{0})$
                  
               , respectively. The fiber
                     $(0,\mathbf{0})$
                  
               , respectively. The fiber 
                  
                      ${\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}})$
                  
                is the moduli space of
                     ${\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}})$
                  
                is the moduli space of 
                  
                      $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                  
               -stable regular singular
                     $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                  
               -stable regular singular 
                  
                      $\boldsymbol{\unicode[STIX]{x1D709}}$
                  
               -parabolic connections of spectral type
                     $\boldsymbol{\unicode[STIX]{x1D709}}$
                  
               -parabolic connections of spectral type 
                  
                      $\boldsymbol{\unicode[STIX]{x1D707}}$
                  
                (constructed in [Reference Inaba and Saito9]), and the fiber
                     $\boldsymbol{\unicode[STIX]{x1D707}}$
                  
                (constructed in [Reference Inaba and Saito9]), and the fiber 
                  
                      ${\mathcal{M}}_{\text{Dol}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\mathbf{0})$
                  
                is the moduli space of
                     ${\mathcal{M}}_{\text{Dol}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\mathbf{0})$
                  
                is the moduli space of 
                  
                      $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                  
               -stable parabolic Higgs bundles of rank
                     $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                  
               -stable parabolic Higgs bundles of rank 
                  
                      $n$
                  
                and of degree
                     $n$
                  
                and of degree 
                  
                      $d$
                  
                (constructed as a hyperkähler quotient using gauge theory in [Reference Konno11] or as a closed subvariety of the moduli space of parabolic Higgs sheaves constructed in [Reference Yokogawa19]).
                     $d$
                  
                (constructed as a hyperkähler quotient using gauge theory in [Reference Konno11] or as a closed subvariety of the moduli space of parabolic Higgs sheaves constructed in [Reference Yokogawa19]).
The following proposition is shown by the same way as in the proofs [Reference Arinkin1, Lemma 4], [Reference Inaba8, Theorem 2.1], [Reference Inaba and Saito9] and [Reference Simpson17, Lemma 6.1].
Proposition 3.10. The morphism
 $$\begin{eqnarray}\displaystyle \unicode[STIX]{x1D70B}:{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}} & \longrightarrow & \displaystyle \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}\nonumber\\ \displaystyle (\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant r_{i}}) & \longmapsto & \displaystyle (\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})\nonumber\end{eqnarray}$$
                           $$\begin{eqnarray}\displaystyle \unicode[STIX]{x1D70B}:{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}} & \longrightarrow & \displaystyle \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}\nonumber\\ \displaystyle (\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant r_{i}}) & \longmapsto & \displaystyle (\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})\nonumber\end{eqnarray}$$
                        
                      is smooth. Moreover, 
                        
                            ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                        
                      is nonsingular.
                           ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                        
                      is nonsingular.
Proof. At first, we prove that 
                        
                            $\unicode[STIX]{x1D70B}:{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}\rightarrow \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                        
                      is smooth. Let
                           $\unicode[STIX]{x1D70B}:{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}\rightarrow \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                        
                      is smooth. Let 
                        
                            ${\mathcal{M}}_{\text{Hod}}^{1}$
                        
                      be the moduli space of tuples
                           ${\mathcal{M}}_{\text{Hod}}^{1}$
                        
                      be the moduli space of tuples 
                        
                            $(\unicode[STIX]{x1D706},L,\unicode[STIX]{x1D6FB}_{L})$
                        
                      where
                           $(\unicode[STIX]{x1D706},L,\unicode[STIX]{x1D6FB}_{L})$
                        
                      where 
                        
                            $L$
                        
                      is a line bundle of degree
                           $L$
                        
                      is a line bundle of degree 
                        
                            $d$
                        
                      on
                           $d$
                        
                      on 
                        
                            $\unicode[STIX]{x1D6F4}$
                        
                      and
                           $\unicode[STIX]{x1D6F4}$
                        
                      and 
                        
                            $\unicode[STIX]{x1D6FB}_{L}:L\rightarrow L\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)$
                        
                      is a
                           $\unicode[STIX]{x1D6FB}_{L}:L\rightarrow L\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)$
                        
                      is a 
                        
                            $\unicode[STIX]{x1D706}$
                        
                     -connection. We put
                           $\unicode[STIX]{x1D706}$
                        
                     -connection. We put 
 $$\begin{eqnarray}\unicode[STIX]{x1D6EF}^{k,d}:=\left\{(\unicode[STIX]{x1D706},(\unicode[STIX]{x1D709}^{i}))\in \mathbb{C}\times \mathbb{C}^{k}\,\left|\,\unicode[STIX]{x1D706}d+\mathop{\sum }_{i=1}^{k}\unicode[STIX]{x1D709}^{i}=0\right.\right\}.\end{eqnarray}$$
                           $$\begin{eqnarray}\unicode[STIX]{x1D6EF}^{k,d}:=\left\{(\unicode[STIX]{x1D706},(\unicode[STIX]{x1D709}^{i}))\in \mathbb{C}\times \mathbb{C}^{k}\,\left|\,\unicode[STIX]{x1D706}d+\mathop{\sum }_{i=1}^{k}\unicode[STIX]{x1D709}^{i}=0\right.\right\}.\end{eqnarray}$$
                        
                      Let 
                        
                            $\unicode[STIX]{x1D6EF}_{\unicode[STIX]{x1D706}=1}^{k,d}$
                        
                      be the subset of
                           $\unicode[STIX]{x1D6EF}_{\unicode[STIX]{x1D706}=1}^{k,d}$
                        
                      be the subset of 
                        
                            $\unicode[STIX]{x1D6EF}^{k,d}$
                        
                      where
                           $\unicode[STIX]{x1D6EF}^{k,d}$
                        
                      where 
                        
                            $\unicode[STIX]{x1D706}=1$
                        
                      and let
                           $\unicode[STIX]{x1D706}=1$
                        
                      and let 
                        
                            ${\mathcal{M}}_{\text{DR}}^{1}$
                        
                      be the inverse image of the subset
                           ${\mathcal{M}}_{\text{DR}}^{1}$
                        
                      be the inverse image of the subset 
                        
                            $\unicode[STIX]{x1D6EF}_{\unicode[STIX]{x1D706}=1}^{k,d}$
                        
                     . Since
                           $\unicode[STIX]{x1D6EF}_{\unicode[STIX]{x1D706}=1}^{k,d}$
                        
                     . Since 
                        
                            ${\mathcal{M}}_{\text{DR}}^{1}\rightarrow \unicode[STIX]{x1D6EF}_{\unicode[STIX]{x1D706}=1}^{k,d}$
                        
                      is smooth (see [Reference Inaba8] and [Reference Inaba and Saito9]),
                           ${\mathcal{M}}_{\text{DR}}^{1}\rightarrow \unicode[STIX]{x1D6EF}_{\unicode[STIX]{x1D706}=1}^{k,d}$
                        
                      is smooth (see [Reference Inaba8] and [Reference Inaba and Saito9]), 
                        
                            ${\mathcal{M}}_{\text{Hod}}^{1}\rightarrow \unicode[STIX]{x1D6EF}^{k,d}$
                        
                      is smooth (see [Reference Simpson17, Lemma 6.1]). We consider the morphism
                           ${\mathcal{M}}_{\text{Hod}}^{1}\rightarrow \unicode[STIX]{x1D6EF}^{k,d}$
                        
                      is smooth (see [Reference Simpson17, Lemma 6.1]). We consider the morphism 
 $$\begin{eqnarray}\displaystyle & & \displaystyle \text{det}:{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}\longrightarrow {\mathcal{M}}_{\text{Hod}}^{1}\times _{\unicode[STIX]{x1D6EF}^{k,d}}\unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}\nonumber\\ \displaystyle & & \displaystyle (\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{j}^{(i)}\})\longmapsto ((\unicode[STIX]{x1D706},\text{det}(E),\text{det}(\unicode[STIX]{x1D6FB})),\unicode[STIX]{x1D70B}(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{j}^{(i)}\})).\nonumber\end{eqnarray}$$
                           $$\begin{eqnarray}\displaystyle & & \displaystyle \text{det}:{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}\longrightarrow {\mathcal{M}}_{\text{Hod}}^{1}\times _{\unicode[STIX]{x1D6EF}^{k,d}}\unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}\nonumber\\ \displaystyle & & \displaystyle (\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{j}^{(i)}\})\longmapsto ((\unicode[STIX]{x1D706},\text{det}(E),\text{det}(\unicode[STIX]{x1D6FB})),\unicode[STIX]{x1D70B}(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{j}^{(i)}\})).\nonumber\end{eqnarray}$$
                        
                      It is sufficient to show that the morphism 
                        
                            $\text{det}$
                        
                      is smooth. Let
                           $\text{det}$
                        
                      is smooth. Let 
                        
                            $A$
                        
                      be an Artinian local ring over
                           $A$
                        
                      be an Artinian local ring over 
                        
                            ${\mathcal{M}}_{\text{Hod}}^{1}\times _{\unicode[STIX]{x1D6EF}^{k,d}}\unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                        
                      with the maximal ideal
                           ${\mathcal{M}}_{\text{Hod}}^{1}\times _{\unicode[STIX]{x1D6EF}^{k,d}}\unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                        
                      with the maximal ideal 
                        
                            $m$
                        
                      and
                           $m$
                        
                      and 
                        
                            $I$
                        
                      be an ideal of
                           $I$
                        
                      be an ideal of 
                        
                            $A$
                        
                      such that
                           $A$
                        
                      such that 
                        
                            $mI=0$
                        
                     . Let
                           $mI=0$
                        
                     . Let 
                        
                            $(\unicode[STIX]{x1D706},L,\unicode[STIX]{x1D6FB})\in {\mathcal{M}}_{\text{Hod}}^{1}(A)$
                        
                      and
                           $(\unicode[STIX]{x1D706},L,\unicode[STIX]{x1D6FB})\in {\mathcal{M}}_{\text{Hod}}^{1}(A)$
                        
                      and 
                        
                            $(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})\in \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}(A)$
                        
                      be the elements corresponding to the morphism
                           $(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})\in \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}(A)$
                        
                      be the elements corresponding to the morphism 
 $$\begin{eqnarray}\text{Spec}\,A\longrightarrow {\mathcal{M}}_{\text{Hod}}^{1}\times _{\unicode[STIX]{x1D6EF}^{k,d}}\unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}.\end{eqnarray}$$
                           $$\begin{eqnarray}\text{Spec}\,A\longrightarrow {\mathcal{M}}_{\text{Hod}}^{1}\times _{\unicode[STIX]{x1D6EF}^{k,d}}\unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}.\end{eqnarray}$$
                        
                      We take any member 
                        
                            $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{j}^{(i)}\})\in {\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(A/I)$
                        
                      such that
                           $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{j}^{(i)}\})\in {\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(A/I)$
                        
                      such that 
 $$\begin{eqnarray}\det (\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{j}^{(i)}\})\cong ((\unicode[STIX]{x1D706},L,\unicode[STIX]{x1D6FB}),(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}}))\otimes A/I.\end{eqnarray}$$
                           $$\begin{eqnarray}\det (\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{j}^{(i)}\})\cong ((\unicode[STIX]{x1D706},L,\unicode[STIX]{x1D6FB}),(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}}))\otimes A/I.\end{eqnarray}$$
                        
                      It is sufficient to show that 
                        
                            $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{j}^{(i)}\})$
                        
                      may be lifted to a flat family
                           $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{j}^{(i)}\})$
                        
                      may be lifted to a flat family 
                        
                            $(\tilde{\unicode[STIX]{x1D706}},\tilde{E},\tilde{\unicode[STIX]{x1D6FB}},\{\tilde{l}_{j}^{(i)}\})$
                        
                      over
                           $(\tilde{\unicode[STIX]{x1D706}},\tilde{E},\tilde{\unicode[STIX]{x1D6FB}},\{\tilde{l}_{j}^{(i)}\})$
                        
                      over 
                        
                            $A$
                        
                      such that
                           $A$
                        
                      such that 
                        
                            $\det (\tilde{\unicode[STIX]{x1D706}},\tilde{E},\tilde{\unicode[STIX]{x1D6FB}},\{\tilde{l}_{j}^{(i)}\})\cong ((\unicode[STIX]{x1D706},L,\unicode[STIX]{x1D6FB}),(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}}))$
                        
                     . The obstructions lie in the hypercohomology
                           $\det (\tilde{\unicode[STIX]{x1D706}},\tilde{E},\tilde{\unicode[STIX]{x1D6FB}},\{\tilde{l}_{j}^{(i)}\})\cong ((\unicode[STIX]{x1D706},L,\unicode[STIX]{x1D6FB}),(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}}))$
                        
                     . The obstructions lie in the hypercohomology 
                        
                            $\mathbb{H}^{2}(\unicode[STIX]{x1D6F4},{\mathcal{F}}_{0}^{\bullet }\otimes I)$
                        
                     . Here,
                           $\mathbb{H}^{2}(\unicode[STIX]{x1D6F4},{\mathcal{F}}_{0}^{\bullet }\otimes I)$
                        
                     . Here, 
                        
                            ${\mathcal{F}}_{0}^{\bullet }$
                        
                      is the complex of sheaves defined by
                           ${\mathcal{F}}_{0}^{\bullet }$
                        
                      is the complex of sheaves defined by 
                        
                            ${\mathcal{F}}_{0}^{i}=0$
                        
                      for
                           ${\mathcal{F}}_{0}^{i}=0$
                        
                      for 
                        
                            $i\neq 0,1$
                        
                     ,
                           $i\neq 0,1$
                        
                     , 
 $$\begin{eqnarray}\displaystyle & \displaystyle {\mathcal{F}}_{0}^{0}:=\left\{s\in {\mathcal{E}}nd(E\otimes A/m)\,\left|\,\begin{array}{@{}l@{}}\text{Tr}(s)=0\text{ and }\\ s_{|_{p_{i}\otimes A/m}}(l_{j}^{i})_{A/m}\subset (l_{j}^{i})_{A/m}~\text{for any}~i,j\end{array}\right.\right\}, & \displaystyle \nonumber\\ \displaystyle & \displaystyle {\mathcal{F}}_{0}^{1}:=\left\{s\in {\mathcal{E}}nd(E\otimes A/m)\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)\,\left|\,\begin{array}{@{}l@{}}\text{Tr}(s)=0\text{ and }\\ \text{Res}_{p_{i}\otimes A/m}(s)(l_{j}^{i})_{A/m}\\ \quad \subset (l_{j+1}^{i})_{A/m}~\text{for any}~i,j\end{array}\right.\right\}, & \displaystyle \nonumber\end{eqnarray}$$
                           $$\begin{eqnarray}\displaystyle & \displaystyle {\mathcal{F}}_{0}^{0}:=\left\{s\in {\mathcal{E}}nd(E\otimes A/m)\,\left|\,\begin{array}{@{}l@{}}\text{Tr}(s)=0\text{ and }\\ s_{|_{p_{i}\otimes A/m}}(l_{j}^{i})_{A/m}\subset (l_{j}^{i})_{A/m}~\text{for any}~i,j\end{array}\right.\right\}, & \displaystyle \nonumber\\ \displaystyle & \displaystyle {\mathcal{F}}_{0}^{1}:=\left\{s\in {\mathcal{E}}nd(E\otimes A/m)\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)\,\left|\,\begin{array}{@{}l@{}}\text{Tr}(s)=0\text{ and }\\ \text{Res}_{p_{i}\otimes A/m}(s)(l_{j}^{i})_{A/m}\\ \quad \subset (l_{j+1}^{i})_{A/m}~\text{for any}~i,j\end{array}\right.\right\}, & \displaystyle \nonumber\end{eqnarray}$$
                        
                      and 
                        
                            $d:{\mathcal{F}}_{0}^{0}\rightarrow {\mathcal{F}}_{0}^{1}$
                        
                      maps
                           $d:{\mathcal{F}}_{0}^{0}\rightarrow {\mathcal{F}}_{0}^{1}$
                        
                      maps 
                        
                            $s$
                        
                      to
                           $s$
                        
                      to 
                        
                            $\unicode[STIX]{x1D6FB}\circ s-s\circ \unicode[STIX]{x1D6FB}$
                        
                     . From the spectral sequence
                           $\unicode[STIX]{x1D6FB}\circ s-s\circ \unicode[STIX]{x1D6FB}$
                        
                     . From the spectral sequence 
                        
                            $H^{q}({\mathcal{F}}_{0}^{p})\Rightarrow \mathbb{H}^{p+q}({\mathcal{F}}_{0}^{\bullet })$
                        
                     , there is an isomorphism
                           $H^{q}({\mathcal{F}}_{0}^{p})\Rightarrow \mathbb{H}^{p+q}({\mathcal{F}}_{0}^{\bullet })$
                        
                     , there is an isomorphism 
 $$\begin{eqnarray}\mathbb{H}^{2}({\mathcal{F}}_{0}^{\bullet })\cong \text{Coker}\left(H^{1}({\mathcal{F}}_{0}^{0})\xrightarrow[]{\{}H^{1}({\mathcal{F}}_{0}^{1})\right).\end{eqnarray}$$
                           $$\begin{eqnarray}\mathbb{H}^{2}({\mathcal{F}}_{0}^{\bullet })\cong \text{Coker}\left(H^{1}({\mathcal{F}}_{0}^{0})\xrightarrow[]{\{}H^{1}({\mathcal{F}}_{0}^{1})\right).\end{eqnarray}$$
                        
                      Since 
                        
                            $({\mathcal{F}}_{0}^{0})^{\vee }\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}\cong {\mathcal{F}}_{0}^{1}$
                        
                      and
                           $({\mathcal{F}}_{0}^{0})^{\vee }\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}\cong {\mathcal{F}}_{0}^{1}$
                        
                      and 
                        
                            $({\mathcal{F}}_{0}^{1})^{\vee }\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}\cong {\mathcal{F}}_{0}^{0}$
                        
                     , we have
                           $({\mathcal{F}}_{0}^{1})^{\vee }\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}\cong {\mathcal{F}}_{0}^{0}$
                        
                     , we have 
 $$\begin{eqnarray}\displaystyle \mathbb{H}^{2}({\mathcal{F}}_{0}^{\bullet }) & \cong & \displaystyle \text{Coker}\left(H^{1}({\mathcal{F}}_{0}^{0})\xrightarrow[]{\{}H^{1}({\mathcal{F}}_{0}^{1})\right)\nonumber\\ \displaystyle & \cong & \displaystyle \text{Ker}\left(H^{1}({\mathcal{F}}_{0}^{1})^{\vee }\xrightarrow[]{\{}H^{1}({\mathcal{F}}_{0}^{0})^{\vee }\right)^{\vee }\nonumber\\ \displaystyle & \cong & \displaystyle \text{Ker}\left(H^{0}(({\mathcal{F}}_{0}^{1})^{\vee }\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1})\xrightarrow[]{\{}H^{0}(({\mathcal{F}}_{0}^{0})^{\vee }\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1})\right)^{\vee }\nonumber\\ \displaystyle & \cong & \displaystyle \text{Ker}\left(H^{0}({\mathcal{F}}_{0}^{0})\xrightarrow[]{\{}H^{0}({\mathcal{F}}_{0}^{1})\right)^{\vee }.\nonumber\end{eqnarray}$$
                           $$\begin{eqnarray}\displaystyle \mathbb{H}^{2}({\mathcal{F}}_{0}^{\bullet }) & \cong & \displaystyle \text{Coker}\left(H^{1}({\mathcal{F}}_{0}^{0})\xrightarrow[]{\{}H^{1}({\mathcal{F}}_{0}^{1})\right)\nonumber\\ \displaystyle & \cong & \displaystyle \text{Ker}\left(H^{1}({\mathcal{F}}_{0}^{1})^{\vee }\xrightarrow[]{\{}H^{1}({\mathcal{F}}_{0}^{0})^{\vee }\right)^{\vee }\nonumber\\ \displaystyle & \cong & \displaystyle \text{Ker}\left(H^{0}(({\mathcal{F}}_{0}^{1})^{\vee }\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1})\xrightarrow[]{\{}H^{0}(({\mathcal{F}}_{0}^{0})^{\vee }\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1})\right)^{\vee }\nonumber\\ \displaystyle & \cong & \displaystyle \text{Ker}\left(H^{0}({\mathcal{F}}_{0}^{0})\xrightarrow[]{\{}H^{0}({\mathcal{F}}_{0}^{1})\right)^{\vee }.\nonumber\end{eqnarray}$$
                        
                      We take any element 
                        
                            $s\in \text{Ker}(H^{0}({\mathcal{F}}_{0}^{0})\xrightarrow[]{\{}H^{0}({\mathcal{F}}_{0}^{1}))$
                        
                     , which may be regarded as an element of
                           $s\in \text{Ker}(H^{0}({\mathcal{F}}_{0}^{0})\xrightarrow[]{\{}H^{0}({\mathcal{F}}_{0}^{1}))$
                        
                     , which may be regarded as an element of 
                        
                            $\text{End}((\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{j}^{(i)}\}))$
                        
                     . Since
                           $\text{End}((\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{j}^{(i)}\}))$
                        
                     . Since 
                        
                            $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{j}^{(i)}\})$
                        
                      is
                           $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{j}^{(i)}\})$
                        
                      is 
                        
                            $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                        
                     -stable, the endomorphism
                           $\boldsymbol{\unicode[STIX]{x1D6FC}}$
                        
                     -stable, the endomorphism 
                        
                            $s$
                        
                      is a scalar multiplication. By
                           $s$
                        
                      is a scalar multiplication. By 
                        
                            $\text{Tr}(s)=0$
                        
                     , we have
                           $\text{Tr}(s)=0$
                        
                     , we have 
                        
                            $s=0$
                        
                     . Hence,
                           $s=0$
                        
                     . Hence, 
                        
                            $\mathbb{H}^{2}({\mathcal{F}}_{0}^{\bullet })=0$
                        
                     .
                           $\mathbb{H}^{2}({\mathcal{F}}_{0}^{\bullet })=0$
                        
                     .
 Secondly, we prove that 
                        
                            ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                        
                      is nonsingular (see [Reference Inaba, Iwasaki and Saito10, Remark 6.1]). It is enough to show
                           ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                        
                      is nonsingular (see [Reference Inaba, Iwasaki and Saito10, Remark 6.1]). It is enough to show 
                        
                            $\unicode[STIX]{x1D706}:{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}\rightarrow \mathbb{C}$
                        
                      given by
                           $\unicode[STIX]{x1D706}:{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}\rightarrow \mathbb{C}$
                        
                      given by 
                        
                            $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})\mapsto \unicode[STIX]{x1D706}$
                        
                      is smooth. In this case, the obstructions of the extensions lie in the hypercohomology
                           $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})\mapsto \unicode[STIX]{x1D706}$
                        
                      is smooth. In this case, the obstructions of the extensions lie in the hypercohomology 
                        
                            $\mathbb{H}^{2}(\unicode[STIX]{x1D6F4},{\mathcal{F}}_{0}^{\bullet ,+}\otimes I)$
                        
                     . Here,
                           $\mathbb{H}^{2}(\unicode[STIX]{x1D6F4},{\mathcal{F}}_{0}^{\bullet ,+}\otimes I)$
                        
                     . Here, 
                        
                            ${\mathcal{F}}_{0}^{\bullet ,+}$
                        
                      is the complexes of sheaves defined by
                           ${\mathcal{F}}_{0}^{\bullet ,+}$
                        
                      is the complexes of sheaves defined by 
                        
                            ${\mathcal{F}}_{0}^{i,+}=0$
                        
                      for
                           ${\mathcal{F}}_{0}^{i,+}=0$
                        
                      for 
                        
                            $i\neq 0,1$
                        
                     ,
                           $i\neq 0,1$
                        
                     , 
                        
                            ${\mathcal{F}}_{0}^{0,+}:={\mathcal{F}}_{0}^{0}$
                        
                     ,
                           ${\mathcal{F}}_{0}^{0,+}:={\mathcal{F}}_{0}^{0}$
                        
                     , 
 $$\begin{eqnarray}{\mathcal{F}}_{0}^{1,+}:=\left\{s\in {\mathcal{E}}nd(E\otimes A/m)\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)\,\left|\,\begin{array}{@{}l@{}}\text{Tr}(s)=0,\\ \text{Res}_{p_{i}(s)\otimes A/m}(l_{j}^{(i)})_{A/m}\\ \subset (l_{j}^{(i)})_{A/m}\text{ for any}\\ i,j\text{ and the element of }\\ \text{End}((l_{j}^{(i)})_{A/m}/(l_{j+1}^{(i)})_{A/m})~\\ \text{induced by }\text{Res}_{p_{i}(s)\otimes A/m}~\\ \text{is a scalar}.\end{array}\right.\right\},\end{eqnarray}$$
                           $$\begin{eqnarray}{\mathcal{F}}_{0}^{1,+}:=\left\{s\in {\mathcal{E}}nd(E\otimes A/m)\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)\,\left|\,\begin{array}{@{}l@{}}\text{Tr}(s)=0,\\ \text{Res}_{p_{i}(s)\otimes A/m}(l_{j}^{(i)})_{A/m}\\ \subset (l_{j}^{(i)})_{A/m}\text{ for any}\\ i,j\text{ and the element of }\\ \text{End}((l_{j}^{(i)})_{A/m}/(l_{j+1}^{(i)})_{A/m})~\\ \text{induced by }\text{Res}_{p_{i}(s)\otimes A/m}~\\ \text{is a scalar}.\end{array}\right.\right\},\end{eqnarray}$$
                        
                      and 
                        
                            $d^{+}:{\mathcal{F}}_{0}^{0,+}\rightarrow {\mathcal{F}}_{0}^{1,+}$
                        
                      maps
                           $d^{+}:{\mathcal{F}}_{0}^{0,+}\rightarrow {\mathcal{F}}_{0}^{1,+}$
                        
                      maps 
                        
                            $s$
                        
                      to
                           $s$
                        
                      to 
                        
                            $\unicode[STIX]{x1D6FB}\circ s-s\circ \unicode[STIX]{x1D6FB}$
                        
                     . We put
                           $\unicode[STIX]{x1D6FB}\circ s-s\circ \unicode[STIX]{x1D6FB}$
                        
                     . We put 
                        
                            ${\mathcal{T}}_{0}^{1}={\mathcal{F}}_{0}^{1.+}/{\mathcal{F}}_{0}^{1}$
                        
                      and
                           ${\mathcal{T}}_{0}^{1}={\mathcal{F}}_{0}^{1.+}/{\mathcal{F}}_{0}^{1}$
                        
                      and 
                        
                            ${\mathcal{T}}_{0}^{\bullet }=[0\rightarrow {\mathcal{T}}_{0}^{1}]$
                        
                     . Then, we have the following exact sequence of the complex on
                           ${\mathcal{T}}_{0}^{\bullet }=[0\rightarrow {\mathcal{T}}_{0}^{1}]$
                        
                     . Then, we have the following exact sequence of the complex on 
                        
                            $\unicode[STIX]{x1D6F4}$
                        
                     :
                           $\unicode[STIX]{x1D6F4}$
                        
                     :
 
                      
                  
 Note that 
                        
                            ${\mathcal{T}}_{0}^{1}$
                        
                      is a skyscraper sheaf. We consider the long exact sequence. Since
                           ${\mathcal{T}}_{0}^{1}$
                        
                      is a skyscraper sheaf. We consider the long exact sequence. Since 
                        
                            $\mathbb{H}^{2}({\mathcal{F}}_{0}^{\bullet })=\mathbb{H}^{2}({\mathcal{T}}_{0}^{\bullet })=0$
                        
                     , we obtain
                           $\mathbb{H}^{2}({\mathcal{F}}_{0}^{\bullet })=\mathbb{H}^{2}({\mathcal{T}}_{0}^{\bullet })=0$
                        
                     , we obtain 
                        
                            $\mathbb{H}^{2}({\mathcal{F}}_{0}^{\bullet ,+})=0$
                        
                     .◻
                           $\mathbb{H}^{2}({\mathcal{F}}_{0}^{\bullet ,+})=0$
                        
                     .◻
The following proposition is shown by the same way as in the proofs [Reference Inaba8, Theorem 2.1] and [Reference Inaba and Saito9].
Proposition 3.11. For any 
                        
                            $(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})\in \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                        
                     , the fiber
                           $(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})\in \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                        
                     , the fiber 
                        
                            ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})$
                        
                      is of equidimensional of
                           ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})$
                        
                      is of equidimensional of 
                        
                            $d_{\boldsymbol{\unicode[STIX]{x1D707}}}:=n^{2}(2g-2+k)-\sum _{i,j}(\unicode[STIX]{x1D707}_{j}^{i})^{2}+2$
                        
                     , that is, it is the disjoint union of its irreducible components which are smooth of same dimension
                           $d_{\boldsymbol{\unicode[STIX]{x1D707}}}:=n^{2}(2g-2+k)-\sum _{i,j}(\unicode[STIX]{x1D707}_{j}^{i})^{2}+2$
                        
                     , that is, it is the disjoint union of its irreducible components which are smooth of same dimension 
                        
                            $d_{\boldsymbol{\unicode[STIX]{x1D707}}}$
                        
                     .
                           $d_{\boldsymbol{\unicode[STIX]{x1D707}}}$
                        
                     .
Proof. Since the fiber 
                        
                            ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})$
                        
                      is smooth, we show that the tangent space
                           ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})$
                        
                      is smooth, we show that the tangent space 
                        
                            $\unicode[STIX]{x1D6E9}_{{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})}(y)$
                        
                      at
                           $\unicode[STIX]{x1D6E9}_{{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})}(y)$
                        
                      at 
                        
                            $y=(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant k})\in {\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})$
                        
                      is of dimension
                           $y=(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\}_{1\leqslant i\leqslant k})\in {\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})$
                        
                      is of dimension 
                        
                            $n^{2}(2g-2+k)-\sum _{i,j}(\unicode[STIX]{x1D707}_{j}^{i})^{2}+2$
                        
                     . Put
                           $n^{2}(2g-2+k)-\sum _{i,j}(\unicode[STIX]{x1D707}_{j}^{i})^{2}+2$
                        
                     . Put 
 $$\begin{eqnarray}\displaystyle & \displaystyle {\mathcal{F}}^{0}:=\left\{s\in {\mathcal{E}}nd(E)\,\left|\,s_{|_{p_{i}}}(l_{j}^{i})\subset (l_{j}^{i})~\text{for any}~i,j\right.\right\} & \displaystyle \nonumber\\ \displaystyle & \displaystyle {\mathcal{F}}^{1}:=\left\{s\in {\mathcal{E}}nd(E)\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)\,\left|\,\text{Res}_{p_{i}}(s)(l_{j}^{i})\subset (l_{j+1}^{i})~\text{for any}~i,j\right.\right\} & \displaystyle \nonumber\\ \displaystyle & \displaystyle \unicode[STIX]{x1D6FB}^{\dagger }:{\mathcal{F}}^{0}\ni s\mapsto \unicode[STIX]{x1D6FB}\circ s-s\circ \unicode[STIX]{x1D6FB}\in {\mathcal{F}}^{1}. & \displaystyle \nonumber\end{eqnarray}$$
                           $$\begin{eqnarray}\displaystyle & \displaystyle {\mathcal{F}}^{0}:=\left\{s\in {\mathcal{E}}nd(E)\,\left|\,s_{|_{p_{i}}}(l_{j}^{i})\subset (l_{j}^{i})~\text{for any}~i,j\right.\right\} & \displaystyle \nonumber\\ \displaystyle & \displaystyle {\mathcal{F}}^{1}:=\left\{s\in {\mathcal{E}}nd(E)\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)\,\left|\,\text{Res}_{p_{i}}(s)(l_{j}^{i})\subset (l_{j+1}^{i})~\text{for any}~i,j\right.\right\} & \displaystyle \nonumber\\ \displaystyle & \displaystyle \unicode[STIX]{x1D6FB}^{\dagger }:{\mathcal{F}}^{0}\ni s\mapsto \unicode[STIX]{x1D6FB}\circ s-s\circ \unicode[STIX]{x1D6FB}\in {\mathcal{F}}^{1}. & \displaystyle \nonumber\end{eqnarray}$$
                        
                     Then we have an isomorphism
 $$\begin{eqnarray}\unicode[STIX]{x1D6E9}_{{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})}(y)\cong \mathbb{H}^{1}({\mathcal{F}}^{\bullet }).\end{eqnarray}$$
                           $$\begin{eqnarray}\unicode[STIX]{x1D6E9}_{{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})}(y)\cong \mathbb{H}^{1}({\mathcal{F}}^{\bullet }).\end{eqnarray}$$
                        
                     By the same computation as in the proof of [Reference Inaba8, Theorem 2.1], we have
 $$\begin{eqnarray}\dim \mathbb{H}^{1}({\mathcal{F}}^{\bullet })=n^{2}(2g-2+k)-\mathop{\sum }_{i,j}(\unicode[STIX]{x1D707}_{j}^{i})^{2}+2.\square\end{eqnarray}$$
                           $$\begin{eqnarray}\dim \mathbb{H}^{1}({\mathcal{F}}^{\bullet })=n^{2}(2g-2+k)-\mathop{\sum }_{i,j}(\unicode[STIX]{x1D707}_{j}^{i})^{2}+2.\square\end{eqnarray}$$
                        
                     3.3 Mixed Hodge structures of the moduli space 
                  
                      ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})$
                     ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})$
                  
               
            
             We consider the natural 
                  
                      $\mathbb{C}^{\times }$
                  
               -action on
                     $\mathbb{C}^{\times }$
                  
               -action on 
                  
                      ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                     ${\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                  
               
               
 $$\begin{eqnarray}\displaystyle \mathbb{C}^{\times }\times {\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}} & \longrightarrow & \displaystyle {\mathcal{M}}_{Hod}^{\boldsymbol{\unicode[STIX]{x1D707}}}\nonumber\\ \displaystyle (t,(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})) & \longmapsto & \displaystyle (t\unicode[STIX]{x1D706},E,t\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\}).\nonumber\end{eqnarray}$$
                     $$\begin{eqnarray}\displaystyle \mathbb{C}^{\times }\times {\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}} & \longrightarrow & \displaystyle {\mathcal{M}}_{Hod}^{\boldsymbol{\unicode[STIX]{x1D707}}}\nonumber\\ \displaystyle (t,(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})) & \longmapsto & \displaystyle (t\unicode[STIX]{x1D706},E,t\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\}).\nonumber\end{eqnarray}$$
                  
                Since the relation between 
                  
                      $\unicode[STIX]{x1D706}$
                  
                and
                     $\unicode[STIX]{x1D706}$
                  
                and 
                  
                      $\boldsymbol{\unicode[STIX]{x1D709}}$
                  
                is
                     $\boldsymbol{\unicode[STIX]{x1D709}}$
                  
                is 
                  
                      $\unicode[STIX]{x1D706}d+\sum \unicode[STIX]{x1D707}_{j}^{i}\unicode[STIX]{x1D709}_{j}^{i}=0$
                  
               , the following
                     $\unicode[STIX]{x1D706}d+\sum \unicode[STIX]{x1D707}_{j}^{i}\unicode[STIX]{x1D709}_{j}^{i}=0$
                  
               , the following 
                  
                      $\mathbb{C}^{\times }$
                  
                action on
                     $\mathbb{C}^{\times }$
                  
                action on 
                  
                      $\unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                  
                is well defined,
                     $\unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                  
                is well defined, 
 $$\begin{eqnarray}\displaystyle \mathbb{C}^{\times }\times \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d} & \longrightarrow & \displaystyle \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}\nonumber\\ \displaystyle (t,(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})) & \longmapsto & \displaystyle (t\unicode[STIX]{x1D706},t\boldsymbol{\unicode[STIX]{x1D709}}).\nonumber\end{eqnarray}$$
                     $$\begin{eqnarray}\displaystyle \mathbb{C}^{\times }\times \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d} & \longrightarrow & \displaystyle \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}\nonumber\\ \displaystyle (t,(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})) & \longmapsto & \displaystyle (t\unicode[STIX]{x1D706},t\boldsymbol{\unicode[STIX]{x1D709}}).\nonumber\end{eqnarray}$$
                  
                Clearly, 
                  
                      $\unicode[STIX]{x1D70B}:{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}\rightarrow \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                  
                is a
                     $\unicode[STIX]{x1D70B}:{\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}\rightarrow \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                  
                is a 
                  
                      $\mathbb{C}^{\times }$
                  
               -equivariant morphism.
                     $\mathbb{C}^{\times }$
                  
               -equivariant morphism.
Lemma 3.12. The fixed point set 
                        
                            $({\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}})^{\mathbb{C}^{\times }}$
                        
                      is proper over
                           $({\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}})^{\mathbb{C}^{\times }}$
                        
                      is proper over 
                        
                            $\unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                        
                     , and for any
                           $\unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                        
                     , and for any 
                        
                            $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})$
                        
                      the limit
                           $(\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})$
                        
                      the limit 
                        
                            $\lim _{t\rightarrow 0}t\cdot (\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})$
                        
                      exists in
                           $\lim _{t\rightarrow 0}t\cdot (\unicode[STIX]{x1D706},E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})$
                        
                      exists in 
                        
                            $({\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}})^{\mathbb{C}^{\times }}$
                        
                     .
                           $({\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}})^{\mathbb{C}^{\times }}$
                        
                     .
Proof. The fixed point set lies over the origin 
                        
                            $(0,\mathbf{0})\in \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                        
                     . Therefore, this fixed point set is just the fixed point set of the moduli space of semistable parabolic Higgs bundles, which is a closed subvariety of the moduli space of parabolic Higgs sheaves (see [Reference Yokogawa19]). Then, the fixed point set is proper by [Reference Yokogawa19, Theorem 5.12].
                           $(0,\mathbf{0})\in \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                        
                     . Therefore, this fixed point set is just the fixed point set of the moduli space of semistable parabolic Higgs bundles, which is a closed subvariety of the moduli space of parabolic Higgs sheaves (see [Reference Yokogawa19]). Then, the fixed point set is proper by [Reference Yokogawa19, Theorem 5.12].
The second part follows from Langton type theorem [Reference Inaba, Iwasaki and Saito10, Proposition 5.5] in the same way as in [Reference Simpson16, Corollary 10.2]. (Also see [Reference Simpson18, Lemma 4.1] and [Reference Loray, Saito and Simpson12, Proposition 4.1].) ◻
 For any pairs 
                  
                      $(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})\in \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                  
                where the fiber
                     $(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})\in \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                  
                where the fiber 
                  
                      ${\mathcal{M}}_{Hod}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})$
                  
                is nonempty, we consider the following subset of
                     ${\mathcal{M}}_{Hod}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})$
                  
                is nonempty, we consider the following subset of 
                  
                      $\unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                     $\unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                  
               
               
 $$\begin{eqnarray}\unicode[STIX]{x1D6EF}_{(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})}:=\{(t\unicode[STIX]{x1D706},t\boldsymbol{\unicode[STIX]{x1D709}})\mid t\in \mathbb{C}\}\cong \mathbb{C}.\end{eqnarray}$$
                     $$\begin{eqnarray}\unicode[STIX]{x1D6EF}_{(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})}:=\{(t\unicode[STIX]{x1D706},t\boldsymbol{\unicode[STIX]{x1D709}})\mid t\in \mathbb{C}\}\cong \mathbb{C}.\end{eqnarray}$$
                  
               Let
 $$\begin{eqnarray}\unicode[STIX]{x1D70B}_{(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})}:{\mathcal{M}}_{\unicode[STIX]{x1D6EF}_{(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})}}\longrightarrow \unicode[STIX]{x1D6EF}_{(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})}\end{eqnarray}$$
                     $$\begin{eqnarray}\unicode[STIX]{x1D70B}_{(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})}:{\mathcal{M}}_{\unicode[STIX]{x1D6EF}_{(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})}}\longrightarrow \unicode[STIX]{x1D6EF}_{(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})}\end{eqnarray}$$
                  
                be the base change of 
                  
                      ${\mathcal{M}}_{Hod}^{\boldsymbol{\unicode[STIX]{x1D707}}}\rightarrow \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                  
                via
                     ${\mathcal{M}}_{Hod}^{\boldsymbol{\unicode[STIX]{x1D707}}}\rightarrow \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                  
                via 
                  
                      $\unicode[STIX]{x1D6EF}_{(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})}{\hookrightarrow}\unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                  
               . By the smoothness of the map
                     $\unicode[STIX]{x1D6EF}_{(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})}{\hookrightarrow}\unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                  
               . By the smoothness of the map 
                  
                      $\unicode[STIX]{x1D70B}_{(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})}$
                  
               , Lemma 3.12, and [Reference Hausel, Letellier and Rodriguez-Villegas5, Theorem B.1], there are isomorphisms
                     $\unicode[STIX]{x1D70B}_{(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}})}$
                  
               , Lemma 3.12, and [Reference Hausel, Letellier and Rodriguez-Villegas5, Theorem B.1], there are isomorphisms 
 $$\begin{eqnarray}H^{\bullet }({\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}}),\mathbb{Q})\cong H^{\bullet }({\mathcal{M}}_{\text{Dol}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\mathbf{0}),\mathbb{Q})\end{eqnarray}$$
                     $$\begin{eqnarray}H^{\bullet }({\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}}),\mathbb{Q})\cong H^{\bullet }({\mathcal{M}}_{\text{Dol}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\mathbf{0}),\mathbb{Q})\end{eqnarray}$$
                  
                which preserve the mixed Hodge structures and the mixed Hodge structures of 
                  
                      $H^{\bullet }({\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}}),\mathbb{Q})$
                  
                are pure. Therefore, we obtain the following theorem:
                     $H^{\bullet }({\mathcal{M}}_{\text{Hod}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\unicode[STIX]{x1D706},\boldsymbol{\unicode[STIX]{x1D709}}),\mathbb{Q})$
                  
                are pure. Therefore, we obtain the following theorem:
Theorem 3.13. There are isomorphisms between ordinary rational cohomology groups of fibers of 
                        
                            $\unicode[STIX]{x1D70B}:{\mathcal{M}}_{Hod}^{\boldsymbol{\unicode[STIX]{x1D707}}}\rightarrow \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                        
                      which preserve the mixed Hodge structures. The mixed Hodge structures on these cohomology groups of the fibers are pure. These assertions hold for the rational cohomology groups with compact support by the Poincaré duality (Theorem 2.3).
                           $\unicode[STIX]{x1D70B}:{\mathcal{M}}_{Hod}^{\boldsymbol{\unicode[STIX]{x1D707}}}\rightarrow \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                        
                      which preserve the mixed Hodge structures. The mixed Hodge structures on these cohomology groups of the fibers are pure. These assertions hold for the rational cohomology groups with compact support by the Poincaré duality (Theorem 2.3).
 Here, note that the Poincaré duality is applied for each connected components of fibers of 
                  
                      $\unicode[STIX]{x1D70B}:{\mathcal{M}}_{Hod}^{\boldsymbol{\unicode[STIX]{x1D707}}}\rightarrow \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                  
               , which have same dimension (Proposition 3.11).
                     $\unicode[STIX]{x1D70B}:{\mathcal{M}}_{Hod}^{\boldsymbol{\unicode[STIX]{x1D707}}}\rightarrow \unicode[STIX]{x1D6EF}_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                  
               , which have same dimension (Proposition 3.11).
4 Riemann–Hilbert correspondence
4.1 Character varieties
 We fix integers 
                  
                      $g\geqslant 0,k>0$
                  
                and
                     $g\geqslant 0,k>0$
                  
                and 
                  
                      $n>0$
                  
               . We also fix a
                     $n>0$
                  
               . We also fix a 
                  
                      $k$
                  
               -tuple of partition of
                     $k$
                  
               -tuple of partition of 
                  
                      $n$
                  
               , denoted by
                     $n$
                  
               , denoted by 
                  
                      $\boldsymbol{\unicode[STIX]{x1D707}}=(\unicode[STIX]{x1D707}^{1},\ldots ,\unicode[STIX]{x1D707}^{k})$
                  
               , that is,
                     $\boldsymbol{\unicode[STIX]{x1D707}}=(\unicode[STIX]{x1D707}^{1},\ldots ,\unicode[STIX]{x1D707}^{k})$
                  
               , that is, 
                  
                      $\unicode[STIX]{x1D707}^{i}=(\unicode[STIX]{x1D707}_{1}^{i},\ldots ,\unicode[STIX]{x1D707}_{r_{i}}^{i})$
                  
                such that
                     $\unicode[STIX]{x1D707}^{i}=(\unicode[STIX]{x1D707}_{1}^{i},\ldots ,\unicode[STIX]{x1D707}_{r_{i}}^{i})$
                  
                such that 
                  
                      $\unicode[STIX]{x1D707}_{1}^{i}\geqslant \unicode[STIX]{x1D707}_{2}^{i}\geqslant \cdots \,$
                  
                are nonnegative integers and
                     $\unicode[STIX]{x1D707}_{1}^{i}\geqslant \unicode[STIX]{x1D707}_{2}^{i}\geqslant \cdots \,$
                  
                are nonnegative integers and 
                  
                      $\sum _{j}\unicode[STIX]{x1D707}_{j}^{i}=n$
                  
               . Let
                     $\sum _{j}\unicode[STIX]{x1D707}_{j}^{i}=n$
                  
               . Let 
                  
                      $\unicode[STIX]{x1D6F4}$
                  
                be a smooth complex projective curve of genus
                     $\unicode[STIX]{x1D6F4}$
                  
                be a smooth complex projective curve of genus 
                  
                      $g$
                  
               . We fix
                     $g$
                  
               . We fix 
                  
                      $k$
                  
               -distinct points
                     $k$
                  
               -distinct points 
                  
                      $p_{1},\ldots ,p_{k}$
                  
                in
                     $p_{1},\ldots ,p_{k}$
                  
                in 
                  
                      $\unicode[STIX]{x1D6F4}$
                  
                and we define a divisor by
                     $\unicode[STIX]{x1D6F4}$
                  
                and we define a divisor by 
                  
                      $D:=p_{1}+\cdots +p_{k}$
                  
               . We put
                     $D:=p_{1}+\cdots +p_{k}$
                  
               . We put 
                  
                      $\unicode[STIX]{x1D6F4}_{0}=\unicode[STIX]{x1D6F4}\setminus D$
                  
               .
                     $\unicode[STIX]{x1D6F4}_{0}=\unicode[STIX]{x1D6F4}\setminus D$
                  
               .
 We now construct a variety, called a character variety, whose points parametrize representation of the fundamental group of 
                  
                      $\unicode[STIX]{x1D6F4}_{0}$
                  
                into
                     $\unicode[STIX]{x1D6F4}_{0}$
                  
                into 
                  
                      $\text{GL}(n,\mathbb{C})$
                  
                where the images of simple loops at the punctures associated to
                     $\text{GL}(n,\mathbb{C})$
                  
                where the images of simple loops at the punctures associated to 
                  
                      $p_{1},\ldots ,p_{k}$
                  
                are contained in semisimple conjugacy classes
                     $p_{1},\ldots ,p_{k}$
                  
                are contained in semisimple conjugacy classes 
                  
                      ${\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k}$
                  
               , respectively. Assume that
                     ${\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k}$
                  
               , respectively. Assume that 
 $$\begin{eqnarray}\mathop{\prod }_{i=1}^{k}\det {\mathcal{C}}_{i}=1\end{eqnarray}$$
                     $$\begin{eqnarray}\mathop{\prod }_{i=1}^{k}\det {\mathcal{C}}_{i}=1\end{eqnarray}$$
                  
                and that 
                  
                      $({\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k})$
                  
                has type
                     $({\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k})$
                  
                has type 
                  
                      $\boldsymbol{\unicode[STIX]{x1D707}}=(\unicode[STIX]{x1D707}^{1},\ldots ,\unicode[STIX]{x1D707}^{k})$
                  
               ; that is,
                     $\boldsymbol{\unicode[STIX]{x1D707}}=(\unicode[STIX]{x1D707}^{1},\ldots ,\unicode[STIX]{x1D707}^{k})$
                  
               ; that is, 
                  
                      ${\mathcal{C}}_{i}$
                  
                has type
                     ${\mathcal{C}}_{i}$
                  
                has type 
                  
                      $\unicode[STIX]{x1D707}^{i}$
                  
                for each
                     $\unicode[STIX]{x1D707}^{i}$
                  
                for each 
                  
                      $i=1,\ldots ,k$
                  
               , where the type of the semisimple conjugacy class
                     $i=1,\ldots ,k$
                  
               , where the type of the semisimple conjugacy class 
                  
                      ${\mathcal{C}}_{i}\subset \text{GL}(n,\mathbb{C})$
                  
                is defined as the partition
                     ${\mathcal{C}}_{i}\subset \text{GL}(n,\mathbb{C})$
                  
                is defined as the partition 
                  
                      $\unicode[STIX]{x1D707}^{i}=(\unicode[STIX]{x1D707}_{1}^{i},\ldots ,\unicode[STIX]{x1D707}_{r_{i}}^{i})$
                  
                describing the multiplicities of the eigenvalues of any matrix in
                     $\unicode[STIX]{x1D707}^{i}=(\unicode[STIX]{x1D707}_{1}^{i},\ldots ,\unicode[STIX]{x1D707}_{r_{i}}^{i})$
                  
                describing the multiplicities of the eigenvalues of any matrix in 
                  
                      ${\mathcal{C}}_{i}$
                  
               . Let
                     ${\mathcal{C}}_{i}$
                  
               . Let 
                  
                      $\unicode[STIX]{x1D708}^{i}=(\unicode[STIX]{x1D708}_{1}^{i},\ldots ,\unicode[STIX]{x1D708}_{r_{i}}^{i})\in (\mathbb{C}^{\times })^{r_{i}}$
                  
                be the eigenvalues of
                     $\unicode[STIX]{x1D708}^{i}=(\unicode[STIX]{x1D708}_{1}^{i},\ldots ,\unicode[STIX]{x1D708}_{r_{i}}^{i})\in (\mathbb{C}^{\times })^{r_{i}}$
                  
                be the eigenvalues of 
                  
                      ${\mathcal{C}}_{i}$
                  
               . We denote the
                     ${\mathcal{C}}_{i}$
                  
               . We denote the 
                  
                      $k$
                  
               -tuple
                     $k$
                  
               -tuple 
                  
                      $(\unicode[STIX]{x1D708}^{1},\ldots ,\unicode[STIX]{x1D708}^{k})$
                  
                by
                     $(\unicode[STIX]{x1D708}^{1},\ldots ,\unicode[STIX]{x1D708}^{k})$
                  
                by 
                  
                      $\boldsymbol{\unicode[STIX]{x1D708}}$
                  
               .
                     $\boldsymbol{\unicode[STIX]{x1D708}}$
                  
               .
Definition 4.1. The 
                        
                            $k$
                        
                     -tuple
                           $k$
                        
                     -tuple 
                        
                            $({\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k})$
                        
                      is generic if the following holds. If
                           $({\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k})$
                        
                      is generic if the following holds. If 
                        
                            $V\subset \mathbb{C}^{n}$
                        
                      is a subset which is stable by some
                           $V\subset \mathbb{C}^{n}$
                        
                      is a subset which is stable by some 
                        
                            $X_{i}\in {\mathcal{C}}_{i}$
                        
                      for each
                           $X_{i}\in {\mathcal{C}}_{i}$
                        
                      for each 
                        
                            $i$
                        
                      such that
                           $i$
                        
                      such that 
 $$\begin{eqnarray}\mathop{\prod }_{i=1}^{k}\det (X_{i}|_{V})=1,\end{eqnarray}$$
                           $$\begin{eqnarray}\mathop{\prod }_{i=1}^{k}\det (X_{i}|_{V})=1,\end{eqnarray}$$
                        
                      then either 
                        
                            $V=0$
                        
                      or
                           $V=0$
                        
                      or 
                        
                            $V=\mathbb{C}^{n}$
                        
                     .
                           $V=\mathbb{C}^{n}$
                        
                     .
Lemma 4.2. [Reference Hausel, Letellier and Rodriguez-Villegas5, Lemma 2.1.2]
 For any 
                        
                            $\boldsymbol{\unicode[STIX]{x1D707}}$
                        
                     , there exists a generic
                           $\boldsymbol{\unicode[STIX]{x1D707}}$
                        
                     , there exists a generic 
                        
                            $k$
                        
                     -tuple of semisimple conjugacy classes
                           $k$
                        
                     -tuple of semisimple conjugacy classes 
                        
                            $({\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k})$
                        
                      of type
                           $({\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k})$
                        
                      of type 
                        
                            $\boldsymbol{\unicode[STIX]{x1D707}}$
                        
                      over
                           $\boldsymbol{\unicode[STIX]{x1D707}}$
                        
                      over 
                        
                            $\mathbb{C}$
                        
                     .
                           $\mathbb{C}$
                        
                     .
Definition 4.3. For a 
                        
                            $k$
                        
                     -tuple of generic semisimple conjugacy classes
                           $k$
                        
                     -tuple of generic semisimple conjugacy classes 
                        
                            $({\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k})$
                        
                      of type
                           $({\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k})$
                        
                      of type 
                        
                            $\boldsymbol{\unicode[STIX]{x1D707}}$
                        
                     , we define a subvariety of
                           $\boldsymbol{\unicode[STIX]{x1D707}}$
                        
                     , we define a subvariety of 
                        
                            $\text{GL}(n,\mathbb{C})^{2g+n}$
                        
                      by
                           $\text{GL}(n,\mathbb{C})^{2g+n}$
                        
                      by 
 $$\begin{eqnarray}\displaystyle {\mathcal{U}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}}) & := & \displaystyle \big\{(A_{1},B_{1},\ldots ,A_{g},B_{g};X_{1},\ldots ,X_{k})\in \text{GL}(n,\mathbb{C})^{2g}\times {\mathcal{C}}_{1}\times \cdots \times {\mathcal{C}}_{k}\nonumber\\ \displaystyle & & \displaystyle \quad \mid (A_{1},B_{1})\cdots (A_{g},B_{g})X_{1}\cdots X_{k}=I_{n}\big\},\nonumber\end{eqnarray}$$
                           $$\begin{eqnarray}\displaystyle {\mathcal{U}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}}) & := & \displaystyle \big\{(A_{1},B_{1},\ldots ,A_{g},B_{g};X_{1},\ldots ,X_{k})\in \text{GL}(n,\mathbb{C})^{2g}\times {\mathcal{C}}_{1}\times \cdots \times {\mathcal{C}}_{k}\nonumber\\ \displaystyle & & \displaystyle \quad \mid (A_{1},B_{1})\cdots (A_{g},B_{g})X_{1}\cdots X_{k}=I_{n}\big\},\nonumber\end{eqnarray}$$
                        
                      where 
                        
                            $(A,B):=ABA^{-1}B^{-1}$
                        
                     . The group
                           $(A,B):=ABA^{-1}B^{-1}$
                        
                     . The group 
                        
                            $\text{GL}(n,\mathbb{C})$
                        
                      acts by conjugation on
                           $\text{GL}(n,\mathbb{C})$
                        
                      acts by conjugation on 
                        
                            $\text{GL}(n,\mathbb{C})^{2g+n}$
                        
                     . As the center acts trivially, the action induces that of
                           $\text{GL}(n,\mathbb{C})^{2g+n}$
                        
                     . As the center acts trivially, the action induces that of 
                        
                            $\text{PGL}(n,\mathbb{C})$
                        
                     . The action induces that of
                           $\text{PGL}(n,\mathbb{C})$
                        
                     . The action induces that of 
                        
                            $\text{PGL}(n,\mathbb{C})$
                        
                      on
                           $\text{PGL}(n,\mathbb{C})$
                        
                      on 
                        
                            ${\mathcal{U}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})$
                        
                     . We call the affine GIT quotient
                           ${\mathcal{U}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})$
                        
                     . We call the affine GIT quotient 
 $$\begin{eqnarray}{\mathcal{M}}_{\text{B}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}}):={\mathcal{U}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})/\!/\text{PGL}(n,\mathbb{C})\end{eqnarray}$$
                           $$\begin{eqnarray}{\mathcal{M}}_{\text{B}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}}):={\mathcal{U}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})/\!/\text{PGL}(n,\mathbb{C})\end{eqnarray}$$
                        
                      a generic character variety of type 
                     
                        
                            $\boldsymbol{\unicode[STIX]{x1D707}}$
                        
                     . We denote by
                           $\boldsymbol{\unicode[STIX]{x1D707}}$
                        
                     . We denote by 
                        
                            $\unicode[STIX]{x1D70B}_{\boldsymbol{\unicode[STIX]{x1D707}}}$
                        
                      the quotient morphism
                           $\unicode[STIX]{x1D70B}_{\boldsymbol{\unicode[STIX]{x1D707}}}$
                        
                      the quotient morphism 
 $$\begin{eqnarray}\unicode[STIX]{x1D70B}_{\boldsymbol{\unicode[STIX]{x1D707}}}:{\mathcal{U}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})\longrightarrow {\mathcal{M}}_{\text{B}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}}).\end{eqnarray}$$
                           $$\begin{eqnarray}\unicode[STIX]{x1D70B}_{\boldsymbol{\unicode[STIX]{x1D707}}}:{\mathcal{U}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})\longrightarrow {\mathcal{M}}_{\text{B}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}}).\end{eqnarray}$$
                        
                     
Proposition 4.4. [Reference Hausel, Letellier and Rodriguez-Villegas5, Proposition 2.1.4]
 If 
                        
                            $({\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k})$
                        
                      is generic of type
                           $({\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k})$
                        
                      is generic of type 
                        
                            $\boldsymbol{\unicode[STIX]{x1D707}}$
                        
                     , then the group
                           $\boldsymbol{\unicode[STIX]{x1D707}}$
                        
                     , then the group 
                        
                            $\text{PGL}(n,\mathbb{C})$
                        
                      acts set-theoretically freely on
                           $\text{PGL}(n,\mathbb{C})$
                        
                      acts set-theoretically freely on 
                        
                            ${\mathcal{U}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})$
                        
                      and every point of
                           ${\mathcal{U}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})$
                        
                      and every point of 
                        
                            ${\mathcal{U}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})$
                        
                      corresponds to an irreducible representation of
                           ${\mathcal{U}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})$
                        
                      corresponds to an irreducible representation of 
                        
                            $\unicode[STIX]{x1D70B}_{1}(\unicode[STIX]{x1D6F4}_{0})$
                        
                     .
                           $\unicode[STIX]{x1D70B}_{1}(\unicode[STIX]{x1D6F4}_{0})$
                        
                     .
Theorem 4.5. [Reference Hausel, Letellier and Rodriguez-Villegas5, Theorem 2.1.5]
 If 
                        
                            $({\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k})$
                        
                      is a generic type
                           $({\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k})$
                        
                      is a generic type 
                        
                            $\boldsymbol{\unicode[STIX]{x1D707}}$
                        
                     , then the quotient
                           $\boldsymbol{\unicode[STIX]{x1D707}}$
                        
                     , then the quotient 
 $$\begin{eqnarray}\unicode[STIX]{x1D70B}_{\boldsymbol{\unicode[STIX]{x1D707}}}:{\mathcal{U}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})\longrightarrow {\mathcal{M}}_{\text{B}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})\end{eqnarray}$$
                           $$\begin{eqnarray}\unicode[STIX]{x1D70B}_{\boldsymbol{\unicode[STIX]{x1D707}}}:{\mathcal{U}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})\longrightarrow {\mathcal{M}}_{\text{B}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})\end{eqnarray}$$
                        
                      is a geometric quotient and a principal 
                        
                            $\text{PGL}(n,\mathbb{C})$
                        
                     -bundle.
                           $\text{PGL}(n,\mathbb{C})$
                        
                     -bundle.
Theorem 4.6. [Reference Hausel, Letellier and Rodriguez-Villegas6, Theorem 1.1.1]
 If nonempty, the generic character variety 
                        
                            ${\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})$
                        
                      is a connected nonsingular variety of dimension
                           ${\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})$
                        
                      is a connected nonsingular variety of dimension 
 $$\begin{eqnarray}n^{2}(2g-2+k)-\mathop{\sum }_{i,j}(\unicode[STIX]{x1D707}_{j}^{i})^{2}+2.\end{eqnarray}$$
                           $$\begin{eqnarray}n^{2}(2g-2+k)-\mathop{\sum }_{i,j}(\unicode[STIX]{x1D707}_{j}^{i})^{2}+2.\end{eqnarray}$$
                        
                     4.2 Riemann–Hilbert correspondence
First, we define a generic tuple of the eigenvalues of the residue matrixes of a parabolic connection corresponding to Definition 4.1 for character varieties cases. We put
 $$\begin{eqnarray}\text{g.c.d.}(\boldsymbol{\unicode[STIX]{x1D707}}):=\text{g.c.d.}(\unicode[STIX]{x1D707}_{1}^{1},\ldots ,\unicode[STIX]{x1D707}_{j}^{i},\ldots ,\unicode[STIX]{x1D707}_{r_{k}}^{k}),\end{eqnarray}$$
                     $$\begin{eqnarray}\text{g.c.d.}(\boldsymbol{\unicode[STIX]{x1D707}}):=\text{g.c.d.}(\unicode[STIX]{x1D707}_{1}^{1},\ldots ,\unicode[STIX]{x1D707}_{j}^{i},\ldots ,\unicode[STIX]{x1D707}_{r_{k}}^{k}),\end{eqnarray}$$
                  
                where 
                  
                      $r_{i}$
                  
                implies the number of the distinct eigenvalues of the residue matrix at
                     $r_{i}$
                  
                implies the number of the distinct eigenvalues of the residue matrix at 
                  
                      $p_{i}$
                  
                of a parabolic connection. For an integer
                     $p_{i}$
                  
                of a parabolic connection. For an integer 
                  
                      $d$
                  
               , we put
                     $d$
                  
               , we put 
 $$\begin{eqnarray}\unicode[STIX]{x1D6EF}_{n,\unicode[STIX]{x1D706}=1}^{\boldsymbol{\unicode[STIX]{x1D707}},d}:=\left\{\boldsymbol{\unicode[STIX]{x1D709}}=(\unicode[STIX]{x1D709}_{j}^{i})_{1\leqslant j\leqslant r_{i}}^{1\leqslant i\leqslant k}\in \mathbb{C}^{r}\,\left|\,d+\mathop{\sum }_{i,j}\unicode[STIX]{x1D707}_{j}^{i}\unicode[STIX]{x1D709}_{j}^{i}=0\right.\right\}\end{eqnarray}$$
                     $$\begin{eqnarray}\unicode[STIX]{x1D6EF}_{n,\unicode[STIX]{x1D706}=1}^{\boldsymbol{\unicode[STIX]{x1D707}},d}:=\left\{\boldsymbol{\unicode[STIX]{x1D709}}=(\unicode[STIX]{x1D709}_{j}^{i})_{1\leqslant j\leqslant r_{i}}^{1\leqslant i\leqslant k}\in \mathbb{C}^{r}\,\left|\,d+\mathop{\sum }_{i,j}\unicode[STIX]{x1D707}_{j}^{i}\unicode[STIX]{x1D709}_{j}^{i}=0\right.\right\}\end{eqnarray}$$
                  
                where 
                  
                      $r:=\sum r_{i}$
                  
               .
                     $r:=\sum r_{i}$
                  
               .
Definition 4.7. Take an element 
                        
                            $\boldsymbol{\unicode[STIX]{x1D709}}\in \unicode[STIX]{x1D6EF}_{n,\unicode[STIX]{x1D706}=1}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                        
                     . We call
                           $\boldsymbol{\unicode[STIX]{x1D709}}\in \unicode[STIX]{x1D6EF}_{n,\unicode[STIX]{x1D706}=1}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                        
                     . We call 
                        
                            $\boldsymbol{\unicode[STIX]{x1D709}}$
                        
                      
                     generic if:
                           $\boldsymbol{\unicode[STIX]{x1D709}}$
                        
                      
                     generic if:
- 
                           
                           (1)  $\unicode[STIX]{x1D709}_{j}^{i}-\unicode[STIX]{x1D709}_{k}^{i}\not \in \mathbb{Z}$
                                 
                               for any $\unicode[STIX]{x1D709}_{j}^{i}-\unicode[STIX]{x1D709}_{k}^{i}\not \in \mathbb{Z}$
                                 
                               for any $i$
                                 
                               and $i$
                                 
                               and $j\neq k$
                                 
                              ; and $j\neq k$
                                 
                              ; and
- 
                           
                           (2) there exist no integer  $s$
                                 
                               with $s$
                                 
                               with $0<s<n$
                                 
                              , integers $0<s<n$
                                 
                              , integers $s_{i}$
                                 
                               with $s_{i}$
                                 
                               with $1\leqslant s_{i}\leqslant r_{i}$
                                 
                              , and subsets $1\leqslant s_{i}\leqslant r_{i}$
                                 
                              , and subsets $\{j_{1}^{i},\ldots ,j_{s_{i}}^{i}\}\subset \{1,\ldots ,r_{i}\}$
                                 
                               for each $\{j_{1}^{i},\ldots ,j_{s_{i}}^{i}\}\subset \{1,\ldots ,r_{i}\}$
                                 
                               for each $1\leqslant i\leqslant k$
                                 
                               such that for any tuple of integer $1\leqslant i\leqslant k$
                                 
                               such that for any tuple of integer $$\begin{eqnarray}\mathop{\sum }_{i=1}^{k}\mathop{\sum }_{l=1}^{s_{i}}\unicode[STIX]{x1D710}_{j_{l}^{i}}^{i}\unicode[STIX]{x1D709}_{j_{l}^{i}}^{i}\not \in \mathbb{Z},\end{eqnarray}$$ $$\begin{eqnarray}\mathop{\sum }_{i=1}^{k}\mathop{\sum }_{l=1}^{s_{i}}\unicode[STIX]{x1D710}_{j_{l}^{i}}^{i}\unicode[STIX]{x1D709}_{j_{l}^{i}}^{i}\not \in \mathbb{Z},\end{eqnarray}$$ $\boldsymbol{\unicode[STIX]{x1D710}}=(\unicode[STIX]{x1D710}_{j}^{i})$
                                 
                               with $\boldsymbol{\unicode[STIX]{x1D710}}=(\unicode[STIX]{x1D710}_{j}^{i})$
                                 
                               with $0\leqslant \unicode[STIX]{x1D710}_{j}^{i}\leqslant \unicode[STIX]{x1D707}_{j}^{i}$
                                 
                               where $0\leqslant \unicode[STIX]{x1D710}_{j}^{i}\leqslant \unicode[STIX]{x1D707}_{j}^{i}$
                                 
                               where $\unicode[STIX]{x1D710}_{j_{1}^{i}}^{i}+\cdots +\unicode[STIX]{x1D710}_{j_{s_{i}}^{i}}^{i}=s$
                                 
                               for $\unicode[STIX]{x1D710}_{j_{1}^{i}}^{i}+\cdots +\unicode[STIX]{x1D710}_{j_{s_{i}}^{i}}^{i}=s$
                                 
                               for $i=1,\ldots ,k$
                                 
                              . $i=1,\ldots ,k$
                                 
                              .
 Let 
                  
                      $\unicode[STIX]{x1D6EF}_{n,\unicode[STIX]{x1D706}=1}^{\boldsymbol{\unicode[STIX]{x1D707}},d,irr}$
                  
                be the locus of generic elements in
                     $\unicode[STIX]{x1D6EF}_{n,\unicode[STIX]{x1D706}=1}^{\boldsymbol{\unicode[STIX]{x1D707}},d,irr}$
                  
                be the locus of generic elements in 
                  
                      $\unicode[STIX]{x1D6EF}_{n,\unicode[STIX]{x1D706}=1}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                  
               , and let
                     $\unicode[STIX]{x1D6EF}_{n,\unicode[STIX]{x1D706}=1}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                  
               , and let 
                  
                      ${\mathcal{M}}_{DR}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}$
                  
                be the inverse image of
                     ${\mathcal{M}}_{DR}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}$
                  
                be the inverse image of 
                  
                      $\unicode[STIX]{x1D6EF}_{n,\unicode[STIX]{x1D706}=1}^{\boldsymbol{\unicode[STIX]{x1D707}},d,irr}$
                  
                via
                     $\unicode[STIX]{x1D6EF}_{n,\unicode[STIX]{x1D706}=1}^{\boldsymbol{\unicode[STIX]{x1D707}},d,irr}$
                  
                via 
                  
                      ${\mathcal{M}}_{DR}^{\boldsymbol{\unicode[STIX]{x1D707}}}\rightarrow \unicode[STIX]{x1D6EF}_{n,\unicode[STIX]{x1D706}=1}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                  
               .
                     ${\mathcal{M}}_{DR}^{\boldsymbol{\unicode[STIX]{x1D707}}}\rightarrow \unicode[STIX]{x1D6EF}_{n,\unicode[STIX]{x1D706}=1}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                  
               .
Remark 4.8. If 
                        
                            $d$
                        
                      and
                           $d$
                        
                      and 
                        
                            $\text{g.c.d.}(\boldsymbol{\unicode[STIX]{x1D707}})$
                        
                      have the greatest common divisor
                           $\text{g.c.d.}(\boldsymbol{\unicode[STIX]{x1D707}})$
                        
                      have the greatest common divisor 
                        
                            $r^{\prime }\neq 1$
                        
                     , then
                           $r^{\prime }\neq 1$
                        
                     , then 
                        
                            $\unicode[STIX]{x1D6EF}_{n,\unicode[STIX]{x1D706}=1}^{\boldsymbol{\unicode[STIX]{x1D707}},d,irr}=\emptyset$
                        
                     , since
                           $\unicode[STIX]{x1D6EF}_{n,\unicode[STIX]{x1D706}=1}^{\boldsymbol{\unicode[STIX]{x1D707}},d,irr}=\emptyset$
                        
                     , since 
 $$\begin{eqnarray}\mathop{\sum }_{i,j}\frac{\unicode[STIX]{x1D707}_{j}^{i}}{r^{\prime }}\unicode[STIX]{x1D709}_{j}^{i}=-\frac{d}{r^{\prime }}\in \mathbb{Z}\end{eqnarray}$$
                           $$\begin{eqnarray}\mathop{\sum }_{i,j}\frac{\unicode[STIX]{x1D707}_{j}^{i}}{r^{\prime }}\unicode[STIX]{x1D709}_{j}^{i}=-\frac{d}{r^{\prime }}\in \mathbb{Z}\end{eqnarray}$$
                        
                      for any 
                        
                            $\boldsymbol{\unicode[STIX]{x1D709}}\in \unicode[STIX]{x1D6EF}_{n,\unicode[STIX]{x1D706}=1}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                        
                     .
                           $\boldsymbol{\unicode[STIX]{x1D709}}\in \unicode[STIX]{x1D6EF}_{n,\unicode[STIX]{x1D706}=1}^{\boldsymbol{\unicode[STIX]{x1D707}},d}$
                        
                     .
 Conversely, if 
                        
                            $d$
                        
                      and
                           $d$
                        
                      and 
                        
                            $\text{g.c.d.}(\boldsymbol{\unicode[STIX]{x1D707}})$
                        
                      are coprime, then
                           $\text{g.c.d.}(\boldsymbol{\unicode[STIX]{x1D707}})$
                        
                      are coprime, then 
                        
                            $\unicode[STIX]{x1D6EF}_{n,\unicode[STIX]{x1D706}=1}^{\boldsymbol{\unicode[STIX]{x1D707}},d,irr}$
                        
                      is nonempty. (See Remark 4.10 as below and the proof of [Reference Hausel, Letellier and Rodriguez-Villegas5, Lemma 2.1.2].)
                           $\unicode[STIX]{x1D6EF}_{n,\unicode[STIX]{x1D706}=1}^{\boldsymbol{\unicode[STIX]{x1D707}},d,irr}$
                        
                      is nonempty. (See Remark 4.10 as below and the proof of [Reference Hausel, Letellier and Rodriguez-Villegas5, Lemma 2.1.2].)
Remark 4.9. See [Reference Inaba8, Section 2]
 For generic 
                        
                            $\boldsymbol{\unicode[STIX]{x1D709}}$
                        
                     , any regular singular
                           $\boldsymbol{\unicode[STIX]{x1D709}}$
                        
                     , any regular singular 
                        
                            $\boldsymbol{\unicode[STIX]{x1D709}}$
                        
                     -parabolic connection
                           $\boldsymbol{\unicode[STIX]{x1D709}}$
                        
                     -parabolic connection 
                        
                            $(E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})$
                        
                      is irreducible. Here, we call
                           $(E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})$
                        
                      is irreducible. Here, we call 
                        
                            $(E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})$
                        
                      
                     reducible if there is a nontrivial subbundle
                           $(E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})$
                        
                      
                     reducible if there is a nontrivial subbundle 
                        
                            $0\neq F\subsetneq E$
                        
                      such that
                           $0\neq F\subsetneq E$
                        
                      such that 
                        
                            $\unicode[STIX]{x1D6FB}(F)\subset F\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)$
                        
                     . We call
                           $\unicode[STIX]{x1D6FB}(F)\subset F\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)$
                        
                     . We call 
                        
                            $(E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})$
                        
                      
                     irreducible if it is not reducible. In particular, for generic
                           $(E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})$
                        
                      
                     irreducible if it is not reducible. In particular, for generic 
                        
                            $\boldsymbol{\unicode[STIX]{x1D709}}$
                        
                     , any
                           $\boldsymbol{\unicode[STIX]{x1D709}}$
                        
                     , any 
                        
                            $(E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})$
                        
                      is semistable.
                           $(E,\unicode[STIX]{x1D6FB},\{l_{\ast }^{(i)}\})$
                        
                      is semistable.
 Next, we construct a family of all generic character varieties of type 
                  
                      $\boldsymbol{\unicode[STIX]{x1D707}}$
                  
               . We put
                     $\boldsymbol{\unicode[STIX]{x1D707}}$
                  
               . We put 
                  
                      $r:=\sum r_{i}$
                  
                and
                     $r:=\sum r_{i}$
                  
                and 
 $$\begin{eqnarray}N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}}}:=\left\{\boldsymbol{\unicode[STIX]{x1D708}}=(\unicode[STIX]{x1D708}_{j}^{i})_{1\leqslant j\leqslant r_{i}}^{1\leqslant i\leqslant k}\in \mathbb{C}^{r}\,\left|\,\mathop{\prod }_{i,j}{\unicode[STIX]{x1D708}_{j}^{i}}^{\unicode[STIX]{x1D707}_{j}^{i}}=1\right.\right\},\end{eqnarray}$$
                     $$\begin{eqnarray}N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}}}:=\left\{\boldsymbol{\unicode[STIX]{x1D708}}=(\unicode[STIX]{x1D708}_{j}^{i})_{1\leqslant j\leqslant r_{i}}^{1\leqslant i\leqslant k}\in \mathbb{C}^{r}\,\left|\,\mathop{\prod }_{i,j}{\unicode[STIX]{x1D708}_{j}^{i}}^{\unicode[STIX]{x1D707}_{j}^{i}}=1\right.\right\},\end{eqnarray}$$
                  
                which is the set of eigenvalues of 
                  
                      $k$
                  
               -tuple of semisimple conjugacy classes
                     $k$
                  
               -tuple of semisimple conjugacy classes 
                  
                      $({\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k})$
                  
               . We denote by
                     $({\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k})$
                  
               . We denote by 
                  
                      ${\mathcal{U}}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                  
                the following subvariety of
                     ${\mathcal{U}}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                  
                the following subvariety of 
                  
                      $N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}}}\times \text{GL}(n,\mathbb{C})^{2g+n}$
                     $N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}}}\times \text{GL}(n,\mathbb{C})^{2g+n}$
                  
               
               
 $$\begin{eqnarray}\left\{(\boldsymbol{\unicode[STIX]{x1D708}},A_{1},B_{1},\ldots ,A_{g},B_{g},X_{1},\ldots ,X_{k})\,\left|\,\begin{array}{@{}l@{}}(1)~(A_{1},B_{1})\cdots (A_{g},B_{g})X_{1}\\ \qquad \cdots X_{k}=I_{n},\\ (2)~\text{For each}~i,\text{there is a filtration}\\ \quad ~~\mathbb{C}^{n}=W_{1}^{i}\supset W_{2}^{i}\supset \cdots \supset W_{r_{i}+1}^{i}\\ \quad ~~=0~\text{such that }\\ \quad ~~\dim W_{j}^{i}/W_{j+1}^{i}=\unicode[STIX]{x1D707}_{j}^{i}\text{ and }\\ \quad ~~(X_{i}-\unicode[STIX]{x1D708}_{j}^{i}\text{id})(W_{j}^{i})\subset W_{j+1}^{i}\\ \quad ~~\text{for any }i,j\end{array}\right.\right\}\end{eqnarray}$$
                     $$\begin{eqnarray}\left\{(\boldsymbol{\unicode[STIX]{x1D708}},A_{1},B_{1},\ldots ,A_{g},B_{g},X_{1},\ldots ,X_{k})\,\left|\,\begin{array}{@{}l@{}}(1)~(A_{1},B_{1})\cdots (A_{g},B_{g})X_{1}\\ \qquad \cdots X_{k}=I_{n},\\ (2)~\text{For each}~i,\text{there is a filtration}\\ \quad ~~\mathbb{C}^{n}=W_{1}^{i}\supset W_{2}^{i}\supset \cdots \supset W_{r_{i}+1}^{i}\\ \quad ~~=0~\text{such that }\\ \quad ~~\dim W_{j}^{i}/W_{j+1}^{i}=\unicode[STIX]{x1D707}_{j}^{i}\text{ and }\\ \quad ~~(X_{i}-\unicode[STIX]{x1D708}_{j}^{i}\text{id})(W_{j}^{i})\subset W_{j+1}^{i}\\ \quad ~~\text{for any }i,j\end{array}\right.\right\}\end{eqnarray}$$
                  
                where 
                  
                      $(\boldsymbol{\unicode[STIX]{x1D708}},A_{1},B_{1},\ldots ,A_{g},B_{g},X_{1},\ldots ,X_{k})\in N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}}}\times \text{GL}(n,\mathbb{C})^{2g+n}$
                  
               . The group
                     $(\boldsymbol{\unicode[STIX]{x1D708}},A_{1},B_{1},\ldots ,A_{g},B_{g},X_{1},\ldots ,X_{k})\in N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}}}\times \text{GL}(n,\mathbb{C})^{2g+n}$
                  
               . The group 
                  
                      $\text{PGL}(n,\mathbb{C})$
                  
                acts on
                     $\text{PGL}(n,\mathbb{C})$
                  
                acts on 
                  
                      $N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}}}\times \text{GL}(n,\mathbb{C})^{2g+n}$
                  
                which is trivial on
                     $N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}}}\times \text{GL}(n,\mathbb{C})^{2g+n}$
                  
                which is trivial on 
                  
                      $N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                  
                and conjugation on
                     $N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                  
                and conjugation on 
                  
                      $\text{GL}(n,\mathbb{C})^{2g+n}$
                  
               . We take the categorical quotient of
                     $\text{GL}(n,\mathbb{C})^{2g+n}$
                  
               . We take the categorical quotient of 
                  
                      ${\mathcal{U}}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                  
                by the
                     ${\mathcal{U}}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                  
                by the 
                  
                      $\text{PGL}(n,\mathbb{C})$
                  
               -action;
                     $\text{PGL}(n,\mathbb{C})$
                  
               -action; 
 $$\begin{eqnarray}\displaystyle {\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}}} & := & \displaystyle {\mathcal{U}}^{\boldsymbol{\unicode[STIX]{x1D707}}}/\!/\text{PGL}(n,\mathbb{C})\nonumber\\ \displaystyle & = & \displaystyle \text{Spec}(\mathbb{C}[{\mathcal{U}}^{\boldsymbol{\unicode[STIX]{x1D707}}}]^{\text{PGL}(n,\mathbb{C})}).\nonumber\end{eqnarray}$$
                     $$\begin{eqnarray}\displaystyle {\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}}} & := & \displaystyle {\mathcal{U}}^{\boldsymbol{\unicode[STIX]{x1D707}}}/\!/\text{PGL}(n,\mathbb{C})\nonumber\\ \displaystyle & = & \displaystyle \text{Spec}(\mathbb{C}[{\mathcal{U}}^{\boldsymbol{\unicode[STIX]{x1D707}}}]^{\text{PGL}(n,\mathbb{C})}).\nonumber\end{eqnarray}$$
                  
               The map
 $$\begin{eqnarray}\displaystyle {\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}}} & \longrightarrow & \displaystyle N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}}}\nonumber\\ \displaystyle [(\boldsymbol{\unicode[STIX]{x1D708}},A_{1},B_{1},\ldots ,A_{g},B_{g},X_{1},\ldots ,X_{k})] & \longmapsto & \displaystyle \boldsymbol{\unicode[STIX]{x1D708}}\nonumber\end{eqnarray}$$
                     $$\begin{eqnarray}\displaystyle {\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}}} & \longrightarrow & \displaystyle N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}}}\nonumber\\ \displaystyle [(\boldsymbol{\unicode[STIX]{x1D708}},A_{1},B_{1},\ldots ,A_{g},B_{g},X_{1},\ldots ,X_{k})] & \longmapsto & \displaystyle \boldsymbol{\unicode[STIX]{x1D708}}\nonumber\end{eqnarray}$$
                  
                is well defined. Let 
                  
                      $N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}\subset N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                  
                be the set of generic eigenvalues in the sense of Definition 4.1. Then we take the base change of
                     $N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}\subset N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                  
                be the set of generic eigenvalues in the sense of Definition 4.1. Then we take the base change of 
                  
                      ${\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}}}\rightarrow N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                  
                via the inclusion map
                     ${\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}}}\rightarrow N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                  
                via the inclusion map 
                  
                      $N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}{\hookrightarrow}N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                  
               , denoted by
                     $N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}{\hookrightarrow}N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}}}$
                  
               , denoted by 
 $$\begin{eqnarray}{\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}\longrightarrow N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},irr},\end{eqnarray}$$
                     $$\begin{eqnarray}{\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}\longrightarrow N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},irr},\end{eqnarray}$$
                  
                which is a family of any generic character varieties of type 
                  
                      $\boldsymbol{\unicode[STIX]{x1D707}}$
                  
               . Observe that the fiber over
                     $\boldsymbol{\unicode[STIX]{x1D707}}$
                  
               . Observe that the fiber over 
                  
                      $\boldsymbol{\unicode[STIX]{x1D708}}$
                  
                is precisely the space
                     $\boldsymbol{\unicode[STIX]{x1D708}}$
                  
                is precisely the space 
                  
                      ${\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})$
                  
                introduced in Definition 4.3.
                     ${\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})$
                  
                introduced in Definition 4.3.
We define the morphism
 $$\begin{eqnarray}rh_{d}:\unicode[STIX]{x1D6EF}_{n,\unicode[STIX]{x1D706}=1}^{\boldsymbol{\unicode[STIX]{x1D707}},d}\ni \boldsymbol{\unicode[STIX]{x1D709}}\longmapsto \boldsymbol{\unicode[STIX]{x1D708}}\in N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}}}\end{eqnarray}$$
                     $$\begin{eqnarray}rh_{d}:\unicode[STIX]{x1D6EF}_{n,\unicode[STIX]{x1D706}=1}^{\boldsymbol{\unicode[STIX]{x1D707}},d}\ni \boldsymbol{\unicode[STIX]{x1D709}}\longmapsto \boldsymbol{\unicode[STIX]{x1D708}}\in N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}}}\end{eqnarray}$$
                  
                by 
                  
                      $\unicode[STIX]{x1D708}_{j}^{i}=\text{exp}(-2\unicode[STIX]{x1D70B}\sqrt{-1}\unicode[STIX]{x1D709}_{j}^{i})$
                  
                for any
                     $\unicode[STIX]{x1D708}_{j}^{i}=\text{exp}(-2\unicode[STIX]{x1D70B}\sqrt{-1}\unicode[STIX]{x1D709}_{j}^{i})$
                  
                for any 
                  
                      $i,j$
                  
               .
                     $i,j$
                  
               .
Remark 4.10. (See the proof of [Reference Hausel, Letellier and Rodriguez-Villegas5, Lemma 2.1.2])
 Let 
                        
                            $({\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k})$
                        
                      be a
                           $({\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k})$
                        
                      be a 
                        
                            $k$
                        
                     -tuple of semisimple conjugacy classes such that the eigenvalue of any matrix in
                           $k$
                        
                     -tuple of semisimple conjugacy classes such that the eigenvalue of any matrix in 
                        
                            ${\mathcal{C}}_{i}$
                        
                      is
                           ${\mathcal{C}}_{i}$
                        
                      is 
                        
                            $(\text{exp}(-2\unicode[STIX]{x1D70B}\sqrt{-1}\unicode[STIX]{x1D709}_{1}^{i}),\ldots ,\text{exp}(-2\unicode[STIX]{x1D70B}\sqrt{-1}\unicode[STIX]{x1D709}_{r_{i}}^{i}))$
                        
                      where the multiplicity of
                           $(\text{exp}(-2\unicode[STIX]{x1D70B}\sqrt{-1}\unicode[STIX]{x1D709}_{1}^{i}),\ldots ,\text{exp}(-2\unicode[STIX]{x1D70B}\sqrt{-1}\unicode[STIX]{x1D709}_{r_{i}}^{i}))$
                        
                      where the multiplicity of 
                        
                            $\text{exp}(-2\unicode[STIX]{x1D70B}\sqrt{-1}\unicode[STIX]{x1D709}_{j}^{i})$
                        
                      is
                           $\text{exp}(-2\unicode[STIX]{x1D70B}\sqrt{-1}\unicode[STIX]{x1D709}_{j}^{i})$
                        
                      is 
                        
                            $\unicode[STIX]{x1D707}_{j}^{i}$
                        
                     . If
                           $\unicode[STIX]{x1D707}_{j}^{i}$
                        
                     . If 
                        
                            $\boldsymbol{\unicode[STIX]{x1D709}}$
                        
                      is generic, then
                           $\boldsymbol{\unicode[STIX]{x1D709}}$
                        
                      is generic, then 
                        
                            $({\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k})$
                        
                      is generic in the sense of Definition 4.1.
                           $({\mathcal{C}}_{1},\ldots ,{\mathcal{C}}_{k})$
                        
                      is generic in the sense of Definition 4.1.
Remark 4.11. For any 
                        
                            $\boldsymbol{\unicode[STIX]{x1D708}}\in N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}$
                        
                     , there exist integers
                           $\boldsymbol{\unicode[STIX]{x1D708}}\in N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}$
                        
                     , there exist integers 
                        
                            $d$
                        
                      with
                           $d$
                        
                      with
                        
                            $0\leqslant d<\text{g.c.d.}(\boldsymbol{\unicode[STIX]{x1D707}})$
                        
                      such that
                           $0\leqslant d<\text{g.c.d.}(\boldsymbol{\unicode[STIX]{x1D707}})$
                        
                      such that 
                        
                            $\boldsymbol{\unicode[STIX]{x1D708}}$
                        
                      is contained in the images of the morphisms
                           $\boldsymbol{\unicode[STIX]{x1D708}}$
                        
                      is contained in the images of the morphisms 
 $$\begin{eqnarray}rh_{d}:\unicode[STIX]{x1D6EF}_{n,\unicode[STIX]{x1D706}=1}^{\boldsymbol{\unicode[STIX]{x1D707}},d,irr}\longrightarrow N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},irr},\end{eqnarray}$$
                           $$\begin{eqnarray}rh_{d}:\unicode[STIX]{x1D6EF}_{n,\unicode[STIX]{x1D706}=1}^{\boldsymbol{\unicode[STIX]{x1D707}},d,irr}\longrightarrow N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},irr},\end{eqnarray}$$
                        
                      that is, 
                        
                            $\boldsymbol{\unicode[STIX]{x1D708}}\in \text{Im}(rh_{d})$
                        
                      for some
                           $\boldsymbol{\unicode[STIX]{x1D708}}\in \text{Im}(rh_{d})$
                        
                      for some 
                        
                            $d$
                        
                      (
                           $d$
                        
                      (
                        
                            $0\leqslant d<\text{g.c.d.}(\boldsymbol{\unicode[STIX]{x1D707}})$
                        
                     ).
                           $0\leqslant d<\text{g.c.d.}(\boldsymbol{\unicode[STIX]{x1D707}})$
                        
                     ).
 For each member 
                  
                      $(E,\unicode[STIX]{x1D6FB},\{l_{j}^{i}\})\in {\mathcal{M}}_{DR}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}$
                  
               ,
                     $(E,\unicode[STIX]{x1D6FB},\{l_{j}^{i}\})\in {\mathcal{M}}_{DR}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}$
                  
               , 
                  
                      $\text{Ker}(\unicode[STIX]{x1D6FB}^{an}|_{\unicode[STIX]{x1D6F4}_{0}})$
                  
                becomes a local system on
                     $\text{Ker}(\unicode[STIX]{x1D6FB}^{an}|_{\unicode[STIX]{x1D6F4}_{0}})$
                  
                becomes a local system on 
                  
                      $\unicode[STIX]{x1D6F4}_{0}$
                  
               , where
                     $\unicode[STIX]{x1D6F4}_{0}$
                  
               , where 
                  
                      $\unicode[STIX]{x1D6FB}^{an}$
                  
                means the analytic connection corresponding to
                     $\unicode[STIX]{x1D6FB}^{an}$
                  
                means the analytic connection corresponding to 
                  
                      $\unicode[STIX]{x1D6FB}$
                  
               . The local system
                     $\unicode[STIX]{x1D6FB}$
                  
               . The local system 
                  
                      $\text{Ker}(\unicode[STIX]{x1D6FB}^{an}|_{\unicode[STIX]{x1D6F4}_{0}})$
                  
                corresponds to a representation of
                     $\text{Ker}(\unicode[STIX]{x1D6FB}^{an}|_{\unicode[STIX]{x1D6F4}_{0}})$
                  
                corresponds to a representation of 
                  
                      $\unicode[STIX]{x1D70B}_{1}(\unicode[STIX]{x1D6F4}_{0})$
                  
               . Let
                     $\unicode[STIX]{x1D70B}_{1}(\unicode[STIX]{x1D6F4}_{0})$
                  
               . Let 
                  
                      $\unicode[STIX]{x1D6FE}_{i}$
                  
                be a loop around
                     $\unicode[STIX]{x1D6FE}_{i}$
                  
                be a loop around 
                  
                      $p_{i}$
                  
               . The representation of
                     $p_{i}$
                  
               . The representation of 
                  
                      $\unicode[STIX]{x1D6FE}_{i}$
                  
                is semisimple for
                     $\unicode[STIX]{x1D6FE}_{i}$
                  
                is semisimple for 
                  
                      $i=1,\ldots ,k$
                  
               , and the eigenvalues of the representation of
                     $i=1,\ldots ,k$
                  
               , and the eigenvalues of the representation of 
                  
                      $\unicode[STIX]{x1D6FE}_{i}$
                  
                are
                     $\unicode[STIX]{x1D6FE}_{i}$
                  
                are 
 $$\begin{eqnarray}\text{exp}(-2\unicode[STIX]{x1D70B}\sqrt{-1}\unicode[STIX]{x1D709}_{1}^{i}),\ldots ,\text{exp}(-2\unicode[STIX]{x1D70B}\sqrt{-1}\unicode[STIX]{x1D709}_{r_{i}}^{i})\end{eqnarray}$$
                     $$\begin{eqnarray}\text{exp}(-2\unicode[STIX]{x1D70B}\sqrt{-1}\unicode[STIX]{x1D709}_{1}^{i}),\ldots ,\text{exp}(-2\unicode[STIX]{x1D70B}\sqrt{-1}\unicode[STIX]{x1D709}_{r_{i}}^{i})\end{eqnarray}$$
                  
                where the multiplicities are 
                  
                      $\unicode[STIX]{x1D707}_{1}^{i},\ldots ,\unicode[STIX]{x1D707}_{r_{i}}^{i}$
                  
               , respectively. Then we can define the morphism
                     $\unicode[STIX]{x1D707}_{1}^{i},\ldots ,\unicode[STIX]{x1D707}_{r_{i}}^{i}$
                  
               , respectively. Then we can define the morphism 
 $$\begin{eqnarray}\mathbf{RH}_{\boldsymbol{\unicode[STIX]{x1D709}}}:{\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}})\longrightarrow {\mathcal{M}}_{\text{B}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})\end{eqnarray}$$
                     $$\begin{eqnarray}\mathbf{RH}_{\boldsymbol{\unicode[STIX]{x1D709}}}:{\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}})\longrightarrow {\mathcal{M}}_{\text{B}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})\end{eqnarray}$$
                  
                where 
                  
                      $\boldsymbol{\unicode[STIX]{x1D708}}=rh_{d}(\boldsymbol{\unicode[STIX]{x1D709}})$
                  
               . Then
                     $\boldsymbol{\unicode[STIX]{x1D708}}=rh_{d}(\boldsymbol{\unicode[STIX]{x1D709}})$
                  
               . Then 
                  
                      $\{\mathbf{RH}_{\boldsymbol{\unicode[STIX]{x1D709}}}\}$
                  
                induces the morphism
                     $\{\mathbf{RH}_{\boldsymbol{\unicode[STIX]{x1D709}}}\}$
                  
                induces the morphism 
 $$\begin{eqnarray}\mathbf{RH}:{\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}\longrightarrow {\mathcal{M}}_{\text{B}}^{\boldsymbol{\unicode[STIX]{x1D707}},irr},\end{eqnarray}$$
                     $$\begin{eqnarray}\mathbf{RH}:{\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}\longrightarrow {\mathcal{M}}_{\text{B}}^{\boldsymbol{\unicode[STIX]{x1D707}},irr},\end{eqnarray}$$
                  
               which gives the commutative diagram
 
                
            
The following theorem follows from the result of Inaba [Reference Inaba8, Theorem 2.2] and Inaba–Saito [Reference Inaba and Saito9].
Theorem 4.12. (See [Reference Inaba8, Theorem 2.2] and [Reference Inaba and Saito9])
The morphism
 $$\begin{eqnarray}\mathbf{RH}_{\boldsymbol{\unicode[STIX]{x1D709}}}:{\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}})\longrightarrow {\mathcal{M}}_{\text{B}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(rh_{d}(\boldsymbol{\unicode[STIX]{x1D709}}))\end{eqnarray}$$
                           $$\begin{eqnarray}\mathbf{RH}_{\boldsymbol{\unicode[STIX]{x1D709}}}:{\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}})\longrightarrow {\mathcal{M}}_{\text{B}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(rh_{d}(\boldsymbol{\unicode[STIX]{x1D709}}))\end{eqnarray}$$
                        
                      is an analytic isomorphism for any 
                        
                            $\boldsymbol{\unicode[STIX]{x1D709}}\in \unicode[STIX]{x1D6EF}_{n,\unicode[STIX]{x1D706}=1}^{\boldsymbol{\unicode[STIX]{x1D707}},d,irr}$
                        
                     .
                           $\boldsymbol{\unicode[STIX]{x1D709}}\in \unicode[STIX]{x1D6EF}_{n,\unicode[STIX]{x1D706}=1}^{\boldsymbol{\unicode[STIX]{x1D707}},d,irr}$
                        
                     .
Proof. We take any point 
                        
                            $\unicode[STIX]{x1D70C}\in {\mathcal{M}}_{\text{B}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(rh_{d}(\boldsymbol{\unicode[STIX]{x1D709}}))$
                        
                      where
                           $\unicode[STIX]{x1D70C}\in {\mathcal{M}}_{\text{B}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(rh_{d}(\boldsymbol{\unicode[STIX]{x1D709}}))$
                        
                      where 
                        
                            $\boldsymbol{\unicode[STIX]{x1D709}}$
                        
                      is generic. By  [Reference Inaba8, Proposition 3.1], we obtain the following isomorphism,
                           $\boldsymbol{\unicode[STIX]{x1D709}}$
                        
                      is generic. By  [Reference Inaba8, Proposition 3.1], we obtain the following isomorphism, 
 $$\begin{eqnarray}{\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}})\cong {\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}}^{\prime })\end{eqnarray}$$
                           $$\begin{eqnarray}{\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}})\cong {\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}}^{\prime })\end{eqnarray}$$
                        
                      where 
                        
                            $0\leqslant \text{Re}(\unicode[STIX]{x1D709}_{j}^{\prime i})<1$
                        
                      for any
                           $0\leqslant \text{Re}(\unicode[STIX]{x1D709}_{j}^{\prime i})<1$
                        
                      for any 
                        
                            $i,j$
                        
                     . Hence, we assume that
                           $i,j$
                        
                     . Hence, we assume that 
                        
                            $\boldsymbol{\unicode[STIX]{x1D709}}$
                        
                      satisfy
                           $\boldsymbol{\unicode[STIX]{x1D709}}$
                        
                      satisfy 
                        
                            $0\leqslant \text{Re}(\unicode[STIX]{x1D709}_{j}^{i})<1$
                        
                      for any
                           $0\leqslant \text{Re}(\unicode[STIX]{x1D709}_{j}^{i})<1$
                        
                      for any 
                        
                            $i,j$
                        
                     . By [Reference Deligne2, II, Proposition 5.4], there is a unique pair
                           $i,j$
                        
                     . By [Reference Deligne2, II, Proposition 5.4], there is a unique pair 
                        
                            $(E,\unicode[STIX]{x1D6FB}_{E})$
                        
                      where
                           $(E,\unicode[STIX]{x1D6FB}_{E})$
                        
                      where 
                        
                            $E$
                        
                      is a vector bundle on
                           $E$
                        
                      is a vector bundle on 
                        
                            $\unicode[STIX]{x1D6F4}$
                        
                      and
                           $\unicode[STIX]{x1D6F4}$
                        
                      and 
                        
                            $\unicode[STIX]{x1D6FB}_{E}:E\rightarrow E\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)$
                        
                      is a logarithmic connection, such that the local system
                           $\unicode[STIX]{x1D6FB}_{E}:E\rightarrow E\otimes \unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D6F4}}^{1}(D)$
                        
                      is a logarithmic connection, such that the local system 
                        
                            $\text{Ker}(\unicode[STIX]{x1D6FB}_{E}^{an})|_{\unicode[STIX]{x1D6F4}\setminus \{p_{1},\ldots ,p_{k}\}}$
                        
                      corresponds to the representation
                           $\text{Ker}(\unicode[STIX]{x1D6FB}_{E}^{an})|_{\unicode[STIX]{x1D6F4}\setminus \{p_{1},\ldots ,p_{k}\}}$
                        
                      corresponds to the representation 
                        
                            $\unicode[STIX]{x1D70C}$
                        
                      and all the eigenvalue of
                           $\unicode[STIX]{x1D70C}$
                        
                      and all the eigenvalue of 
                        
                            $\text{Res}_{p_{i}}(\unicode[STIX]{x1D6FB}_{E})$
                        
                      lie in
                           $\text{Res}_{p_{i}}(\unicode[STIX]{x1D6FB}_{E})$
                        
                      lie in 
                        
                            $\{z\in \mathbb{C}\mid 0\leqslant \text{Re}(z)<1\}$
                        
                     . Since
                           $\{z\in \mathbb{C}\mid 0\leqslant \text{Re}(z)<1\}$
                        
                     . Since 
                        
                            $\boldsymbol{\unicode[STIX]{x1D709}}$
                        
                      is generic, we can define a parabolic structure of
                           $\boldsymbol{\unicode[STIX]{x1D709}}$
                        
                      is generic, we can define a parabolic structure of 
                        
                            $(E,\unicode[STIX]{x1D6FB}_{E})$
                        
                     , uniquely. Therefore,
                           $(E,\unicode[STIX]{x1D6FB}_{E})$
                        
                     , uniquely. Therefore, 
                        
                            $\mathbf{RH}_{\boldsymbol{\unicode[STIX]{x1D709}}}$
                        
                      gives a one to one correspondence between the points of
                           $\mathbf{RH}_{\boldsymbol{\unicode[STIX]{x1D709}}}$
                        
                      gives a one to one correspondence between the points of 
                        
                            ${\mathcal{M}}_{DR}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}(\boldsymbol{\unicode[STIX]{x1D709}})$
                        
                      and the points of
                           ${\mathcal{M}}_{DR}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}(\boldsymbol{\unicode[STIX]{x1D709}})$
                        
                      and the points of 
                        
                            ${\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}(rh_{d}(\boldsymbol{\unicode[STIX]{x1D709}}))$
                        
                     . We can define this correspondence between flat families. Hence,
                           ${\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}(rh_{d}(\boldsymbol{\unicode[STIX]{x1D709}}))$
                        
                     . We can define this correspondence between flat families. Hence, 
 $$\begin{eqnarray}\mathbf{RH}_{\boldsymbol{\unicode[STIX]{x1D709}}}:{\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}})\longrightarrow {\mathcal{M}}_{\text{B}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(rh_{d}(\boldsymbol{\unicode[STIX]{x1D709}}))\end{eqnarray}$$
                           $$\begin{eqnarray}\mathbf{RH}_{\boldsymbol{\unicode[STIX]{x1D709}}}:{\mathcal{M}}_{\text{DR}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D709}})\longrightarrow {\mathcal{M}}_{\text{B}}^{\boldsymbol{\unicode[STIX]{x1D707}}}(rh_{d}(\boldsymbol{\unicode[STIX]{x1D709}}))\end{eqnarray}$$
                        
                     is an analytic isomorphism. ◻
Theorem 4.13. The Poincaré polynomials of character varieties 
                        
                            ${\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})$
                        
                      are independent of the choice of generic eigenvalues.
                           ${\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}})$
                        
                      are independent of the choice of generic eigenvalues.
Proof. We put
 $$\begin{eqnarray}N_{d}:=\text{Im}(\unicode[STIX]{x1D6EF}_{n,\unicode[STIX]{x1D706}=1}^{\boldsymbol{\unicode[STIX]{x1D707}},d,irr})\subset N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}.\end{eqnarray}$$
                           $$\begin{eqnarray}N_{d}:=\text{Im}(\unicode[STIX]{x1D6EF}_{n,\unicode[STIX]{x1D706}=1}^{\boldsymbol{\unicode[STIX]{x1D707}},d,irr})\subset N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}.\end{eqnarray}$$
                        
                      We can describe 
                        
                            $N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}$
                        
                      as follows:
                           $N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}$
                        
                      as follows: 
 $$\begin{eqnarray}N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}=N_{0}\cup N_{1}\cup \cdots \cup N_{\text{g.c.d.}(\boldsymbol{\unicode[STIX]{x1D707}})-1}\end{eqnarray}$$
                           $$\begin{eqnarray}N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}=N_{0}\cup N_{1}\cup \cdots \cup N_{\text{g.c.d.}(\boldsymbol{\unicode[STIX]{x1D707}})-1}\end{eqnarray}$$
                        
                     (see Remark 4.11).
 By Theorems 3.13 and 4.12, for any 
                        
                            $\boldsymbol{\unicode[STIX]{x1D708}}_{1},\boldsymbol{\unicode[STIX]{x1D708}}_{2}\in N_{d}\;(d=1,\ldots ,\text{g.c.d.}(\boldsymbol{\unicode[STIX]{x1D707}})-1)$
                        
                      the Poincaré polynomials of the character varieties
                           $\boldsymbol{\unicode[STIX]{x1D708}}_{1},\boldsymbol{\unicode[STIX]{x1D708}}_{2}\in N_{d}\;(d=1,\ldots ,\text{g.c.d.}(\boldsymbol{\unicode[STIX]{x1D707}})-1)$
                        
                      the Poincaré polynomials of the character varieties 
                        
                            ${\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}}_{\mathbf{1}})$
                        
                      and
                           ${\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}}_{\mathbf{1}})$
                        
                      and 
                        
                            ${\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}}_{\mathbf{2}})$
                        
                      are same. On the other hand, there is a dense subset in the analytic topology of
                           ${\mathcal{M}}_{B}^{\boldsymbol{\unicode[STIX]{x1D707}}}(\boldsymbol{\unicode[STIX]{x1D708}}_{\mathbf{2}})$
                        
                      are same. On the other hand, there is a dense subset in the analytic topology of 
                        
                            $N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}$
                        
                      such that the Poincaré polynomial is constant [Reference Hausel, Letellier and Rodriguez-Villegas5, Theorem 5.1.1]. Then the Poincaré polynomials is constant in
                           $N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}$
                        
                      such that the Poincaré polynomial is constant [Reference Hausel, Letellier and Rodriguez-Villegas5, Theorem 5.1.1]. Then the Poincaré polynomials is constant in 
                        
                            $N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}$
                        
                     .◻
                           $N_{n}^{\boldsymbol{\unicode[STIX]{x1D707}},irr}$
                        
                     .◻
Acknowledgments
The author would like to thank Professor Masa-Hiko Saito and Professor Kentaro Mitsui for many comments and discussions. He thanks Professor Masa-Hiko Saito for warm encouragement. The author is also grateful to the referee for reading the paper carefully and giving many valuable suggestion.
 
  
  
  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                         
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                      
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                      
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                     
                                    