1 Introduction
 The aim of this paper is to extend some results on Loewy lengths of centers of blocks obtained in [Reference Külshammer and Sambale9, Reference Otokita12]. In the following we will reuse some of the notation introduced in [Reference Külshammer and Sambale9]. In particular, 
                $B$
             is a block of a finite group
$B$
             is a block of a finite group 
                $G$
             with respect to an algebraically closed field
$G$
             with respect to an algebraically closed field 
                $F$
             of characteristic
$F$
             of characteristic 
                $p>0$
            . Moreover, let
$p>0$
            . Moreover, let 
                $D$
             be a defect group of
$D$
             be a defect group of 
                $B$
            . The second author has shown in [Reference Otokita12, Corollary 3.3] that the Loewy length of the center of
$B$
            . The second author has shown in [Reference Otokita12, Corollary 3.3] that the Loewy length of the center of 
                $B$
             is bounded by
$B$
             is bounded by
 $$\begin{eqnarray}LL(ZB)\leqslant |D|-\frac{|D|}{\exp (D)}+1\end{eqnarray}$$
$$\begin{eqnarray}LL(ZB)\leqslant |D|-\frac{|D|}{\exp (D)}+1\end{eqnarray}$$
             where 
                $\exp (D)$
             is the exponent of
$\exp (D)$
             is the exponent of 
                $D$
            . It was already known to Okuyama [Reference Okuyama10] that this bound is best possible if
$D$
            . It was already known to Okuyama [Reference Okuyama10] that this bound is best possible if 
                $D$
             is cyclic. The first and the third author have given in [Reference Külshammer and Sambale9, Theorem 1] the optimal bound
$D$
             is cyclic. The first and the third author have given in [Reference Külshammer and Sambale9, Theorem 1] the optimal bound 
                $LL(ZB)\leqslant LL(FD)$
             for blocks with abelian defect groups. Our main result of the present paper establishes the following bound for blocks with nonabelian defect groups:
$LL(ZB)\leqslant LL(FD)$
             for blocks with abelian defect groups. Our main result of the present paper establishes the following bound for blocks with nonabelian defect groups: 
 $$\begin{eqnarray}LL(ZB)<\min \{p^{d-1},4p^{d-2}\}\end{eqnarray}$$
$$\begin{eqnarray}LL(ZB)<\min \{p^{d-1},4p^{d-2}\}\end{eqnarray}$$
             where 
                $|D|=p^{d}$
            . As a consequence we obtain
$|D|=p^{d}$
            . As a consequence we obtain 
 $$\begin{eqnarray}LL(ZB)\leqslant p^{d-1}+p-1\end{eqnarray}$$
$$\begin{eqnarray}LL(ZB)\leqslant p^{d-1}+p-1\end{eqnarray}$$
             for all blocks with noncyclic defect groups. It can be seen that this bound is achieved whenever 
                $B$
             is nilpotent and
$B$
             is nilpotent and 
                $D\cong C_{p^{d-1}}\times C_{p}$
            .
$D\cong C_{p^{d-1}}\times C_{p}$
            .
 In the second part of the paper we show that 
                $LL(ZB)$
             depends more on
$LL(ZB)$
             depends more on 
                $\exp (D)$
             than on
$\exp (D)$
             than on 
                $|D|$
            . We prove for instance that
$|D|$
            . We prove for instance that 
                $LL(ZB)\leqslant d^{2}\exp (D)$
             unless
$LL(ZB)\leqslant d^{2}\exp (D)$
             unless 
                $d=0$
            . Finally, we use the opportunity to improve a result of Willems [Reference Willems15] about blocks with uniserial center.
$d=0$
            . Finally, we use the opportunity to improve a result of Willems [Reference Willems15] about blocks with uniserial center.
 In addition to the notation used in the papers cited above, we introduce the following objects. Let 
                $\operatorname{Cl}(G)$
             be the set of conjugacy classes of
$\operatorname{Cl}(G)$
             be the set of conjugacy classes of 
                $G$
            . A
$G$
            . A 
                $p$
            -subgroup
$p$
            -subgroup 
                $P\leqslant G$
             is called a defect group of
$P\leqslant G$
             is called a defect group of 
                $K\in \operatorname{Cl}(G)$
             if
$K\in \operatorname{Cl}(G)$
             if 
                $P$
             is a Sylow
$P$
             is a Sylow 
                $p$
            -subgroup of
$p$
            -subgroup of 
                $\operatorname{C}_{G}(x)$
             for some
$\operatorname{C}_{G}(x)$
             for some 
                $x\in K$
            . Let
$x\in K$
            . Let 
                $\operatorname{Cl}_{P}(G)$
             be the set of conjugacy classes with defect group
$\operatorname{Cl}_{P}(G)$
             be the set of conjugacy classes with defect group 
                $P$
            . Let
$P$
            . Let 
                $K^{+}:=\sum _{x\in K}x\in FG$
             and
$K^{+}:=\sum _{x\in K}x\in FG$
             and 
 $$\begin{eqnarray}\displaystyle I_{P}(G) & := & \displaystyle \langle K^{+}:K\in \operatorname{Cl}_{P}(G)\rangle \subseteq ZFG,\nonumber\\ \displaystyle I_{{\leqslant}P}(G) & := & \displaystyle \mathop{\sum }_{Q\leqslant P}I_{Q}(G)\unlhd ZFG,\nonumber\\ \displaystyle I_{{<}P}(G) & := & \displaystyle \mathop{\sum }_{Q<P}I_{Q}(G)\unlhd ZFG\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle I_{P}(G) & := & \displaystyle \langle K^{+}:K\in \operatorname{Cl}_{P}(G)\rangle \subseteq ZFG,\nonumber\\ \displaystyle I_{{\leqslant}P}(G) & := & \displaystyle \mathop{\sum }_{Q\leqslant P}I_{Q}(G)\unlhd ZFG,\nonumber\\ \displaystyle I_{{<}P}(G) & := & \displaystyle \mathop{\sum }_{Q<P}I_{Q}(G)\unlhd ZFG\nonumber\end{eqnarray}$$
             (here 
                $\unlhd$
             means that the subsets are ideals).
$\unlhd$
             means that the subsets are ideals).
2 Results
We begin by restating a lemma of Passman [Reference Passman13, Lemma 2]. For the convenience of the reader we provide a (slightly easier) proof.
Lemma 1. Let 
                      $P$
                   be a central
$P$
                   be a central 
                      $p$
                  -subgroup of
$p$
                  -subgroup of 
                      $G$
                  . Then
$G$
                  . Then 
                      $I_{{\leqslant}P}(G)\cdot JZFG=I_{{\leqslant}P}(G)\cdot JFP$
                  .
$I_{{\leqslant}P}(G)\cdot JZFG=I_{{\leqslant}P}(G)\cdot JFP$
                  .
Proof. Let 
                      $K$
                   be a conjugacy class of
$K$
                   be a conjugacy class of 
                      $G$
                   with defect group
$G$
                   with defect group 
                      $P$
                  , and let
$P$
                  , and let 
                      $x\in K$
                  . Then
$x\in K$
                  . Then 
                      $P$
                   is the only Sylow
$P$
                   is the only Sylow 
                      $p$
                  -subgroup of
$p$
                  -subgroup of 
                      $\operatorname{C}_{G}(x)$
                  , and the
$\operatorname{C}_{G}(x)$
                  , and the 
                      $p$
                  -factor
$p$
                  -factor 
                      $u$
                   of
$u$
                   of 
                      $x$
                   centralizes
$x$
                   centralizes 
                      $x$
                  . Thus
$x$
                  . Thus 
                      $u\in P$
                  . Hence
$u\in P$
                  . Hence 
                      $u$
                   is the
$u$
                   is the 
                      $p$
                  -factor of every element in
$p$
                  -factor of every element in 
                      $K$
                  , and
$K$
                  , and 
                      $K=uK^{\prime }$
                   where
$K=uK^{\prime }$
                   where 
                      $K^{\prime }$
                   is a
$K^{\prime }$
                   is a 
                      $p$
                  -regular conjugacy class of
$p$
                  -regular conjugacy class of 
                      $G$
                   with defect group
$G$
                   with defect group 
                      $P$
                  . This shows that
$P$
                  . This shows that 
                      $I:=I_{{\leqslant}P}(G)$
                   is a free
$I:=I_{{\leqslant}P}(G)$
                   is a free 
                      $FP$
                  -module with the
$FP$
                  -module with the 
                      $p$
                  -regular class sums with defect group
$p$
                  -regular class sums with defect group 
                      $P$
                   as an
$P$
                   as an 
                      $FP$
                  -basis. The canonical epimorphism
$FP$
                  -basis. The canonical epimorphism 
                      $\unicode[STIX]{x1D708}:FG\rightarrow F[G/P]$
                   maps
$\unicode[STIX]{x1D708}:FG\rightarrow F[G/P]$
                   maps 
                      $I$
                   into
$I$
                   into 
                      $I_{1}(G/P)\subseteq SF[G/P]$
                   (recall that
$I_{1}(G/P)\subseteq SF[G/P]$
                   (recall that 
                      $SF[G/P]$
                   is the socle of
$SF[G/P]$
                   is the socle of 
                      $F[G/P]$
                  ). Thus
$F[G/P]$
                  ). Thus 
                      $\unicode[STIX]{x1D708}(I\cdot JZFG)\subseteq SF[G/P]\cdot JZF[G/P]=0$
                  . Hence
$\unicode[STIX]{x1D708}(I\cdot JZFG)\subseteq SF[G/P]\cdot JZF[G/P]=0$
                  . Hence 
                      $I\cdot JZFG\subseteq I\cdot JFP$
                  . The other inclusion is trivial.◻
$I\cdot JZFG\subseteq I\cdot JFP$
                  . The other inclusion is trivial.◻
Lemma 2. Let 
                      $P\leqslant G$
                   be a
$P\leqslant G$
                   be a 
                      $p$
                  -subgroup of order
$p$
                  -subgroup of order 
                      $p^{n}$
                  . Then
$p^{n}$
                  . Then
- (i)  $I_{{\leqslant}P}(G)\cdot JZFG^{LL(F\operatorname{Z}(P))}\subseteq I_{{<}P}(G)$
                           . $I_{{\leqslant}P}(G)\cdot JZFG^{LL(F\operatorname{Z}(P))}\subseteq I_{{<}P}(G)$
                           .
- (ii)  $I_{{\leqslant}P}(G)\cdot JZFG^{(p^{n+1}-1)/(p-1)}=0$
                           . $I_{{\leqslant}P}(G)\cdot JZFG^{(p^{n+1}-1)/(p-1)}=0$
                           .
Proof.
- (i) Let  $\operatorname{Br}_{P}:ZFG\rightarrow ZF\operatorname{C}_{G}(P)$
                            be the Brauer homomorphism. Since $\operatorname{Br}_{P}:ZFG\rightarrow ZF\operatorname{C}_{G}(P)$
                            be the Brauer homomorphism. Since $\operatorname{Ker}(\operatorname{Br}_{P})\cap I_{{\leqslant}P}(G)=I_{{<}P}(G)$
                           , we need to show that $\operatorname{Ker}(\operatorname{Br}_{P})\cap I_{{\leqslant}P}(G)=I_{{<}P}(G)$
                           , we need to show that $\operatorname{Br}_{P}(I_{{\leqslant}P}(G)\cdot JZFG^{LL(F\operatorname{Z}(P))})=0$
                           . By Lemma 1 we have $\operatorname{Br}_{P}(I_{{\leqslant}P}(G)\cdot JZFG^{LL(F\operatorname{Z}(P))})=0$
                           . By Lemma 1 we have $$\begin{eqnarray}\displaystyle & & \displaystyle \operatorname{Br}_{P}(I_{{\leqslant}P}(G)\cdot JZFG^{LL(F\operatorname{Z}(P))})\nonumber\\ \displaystyle & & \displaystyle \quad \subseteq I_{{\leqslant}\operatorname{Z}(P)}(\operatorname{C}_{G}(P))\cdot JZF\operatorname{C}_{G}(P)^{LL(F\operatorname{Z}(P))}\nonumber\\ \displaystyle & & \displaystyle \quad =I_{{\leqslant}\operatorname{Z}(P)}(\operatorname{C}_{G}(P))\cdot JF\operatorname{Z}(P)^{LL(F\operatorname{Z}(P))}=0.\nonumber\end{eqnarray}$$ $$\begin{eqnarray}\displaystyle & & \displaystyle \operatorname{Br}_{P}(I_{{\leqslant}P}(G)\cdot JZFG^{LL(F\operatorname{Z}(P))})\nonumber\\ \displaystyle & & \displaystyle \quad \subseteq I_{{\leqslant}\operatorname{Z}(P)}(\operatorname{C}_{G}(P))\cdot JZF\operatorname{C}_{G}(P)^{LL(F\operatorname{Z}(P))}\nonumber\\ \displaystyle & & \displaystyle \quad =I_{{\leqslant}\operatorname{Z}(P)}(\operatorname{C}_{G}(P))\cdot JF\operatorname{Z}(P)^{LL(F\operatorname{Z}(P))}=0.\nonumber\end{eqnarray}$$
- (ii) We argue by induction on  $n$
                           . The case $n$
                           . The case $n=1$
                            follows from $n=1$
                            follows from $I_{1}(G)\subseteq SFG$
                           . Now suppose that the claim holds for $I_{1}(G)\subseteq SFG$
                           . Now suppose that the claim holds for $n-1$
                           . Since $n-1$
                           . Since $LL(F\operatorname{Z}(P))\leqslant |P|=p^{n}$
                           , (i) implies $LL(F\operatorname{Z}(P))\leqslant |P|=p^{n}$
                           , (i) implies $$\begin{eqnarray}\displaystyle I_{{\leqslant}P}(G)\cdot JZFG^{(p^{n+1}-1)/(p-1)} & = & \displaystyle I_{{\leqslant}P}(G)\cdot JZFG^{p^{n}}JZFG^{(p^{n}-1)/(p-1)}\nonumber\\ \displaystyle & \subseteq & \displaystyle I_{{<}P}(G)\cdot JZFG^{(p^{n}-1)/(p-1)}\nonumber\\ \displaystyle & = & \displaystyle \mathop{\sum }_{Q<P}I_{{\leqslant}Q}(G)\cdot JZFG^{(p^{n}-1)/(p-1)}=0.\qquad \nonumber\end{eqnarray}$$ $$\begin{eqnarray}\displaystyle I_{{\leqslant}P}(G)\cdot JZFG^{(p^{n+1}-1)/(p-1)} & = & \displaystyle I_{{\leqslant}P}(G)\cdot JZFG^{p^{n}}JZFG^{(p^{n}-1)/(p-1)}\nonumber\\ \displaystyle & \subseteq & \displaystyle I_{{<}P}(G)\cdot JZFG^{(p^{n}-1)/(p-1)}\nonumber\\ \displaystyle & = & \displaystyle \mathop{\sum }_{Q<P}I_{{\leqslant}Q}(G)\cdot JZFG^{(p^{n}-1)/(p-1)}=0.\qquad \nonumber\end{eqnarray}$$
Recall from [Reference Külshammer and Sambale9, Lemma 9] the following group
 $$\begin{eqnarray}W_{p^{d}}:=\langle x,y,z\mid x^{p^{d-2}}=y^{p}=z^{p}=[x,y]=[x,z]=1,[y,z]=x^{p^{d-3}}\rangle .\end{eqnarray}$$
$$\begin{eqnarray}W_{p^{d}}:=\langle x,y,z\mid x^{p^{d-2}}=y^{p}=z^{p}=[x,y]=[x,z]=1,[y,z]=x^{p^{d-3}}\rangle .\end{eqnarray}$$
             Note that 
                $W_{p^{d}}$
             is a central product of
$W_{p^{d}}$
             is a central product of 
                $C_{p^{d-2}}$
             and an extraspecial group of order
$C_{p^{d-2}}$
             and an extraspecial group of order 
                $p^{3}$
            . Now we prove our main theorem which improves [Reference Külshammer and Sambale9, Theorem 12].
$p^{3}$
            . Now we prove our main theorem which improves [Reference Külshammer and Sambale9, Theorem 12].
Theorem 3. Let 
                      $B$
                   be a block of
$B$
                   be a block of 
                      $FG$
                   with nonabelian defect group
$FG$
                   with nonabelian defect group 
                      $D$
                   of order
$D$
                   of order 
                      $p^{d}$
                  . Then (at least) one of the following holds
$p^{d}$
                  . Then (at least) one of the following holds
- (i)  $LL(ZB)<3p^{d-2}$
                           . $LL(ZB)<3p^{d-2}$
                           .
- (ii)  $p\geqslant 5$
                           , $p\geqslant 5$
                           , $D\cong W_{p^{d}}$
                            and $D\cong W_{p^{d}}$
                            and $LL(ZB)<4p^{d-2}$
                           . $LL(ZB)<4p^{d-2}$
                           .
In any case we have
 $$\begin{eqnarray}LL(ZB)<\min \{p^{d-1},4p^{d-2}\}.\end{eqnarray}$$
$$\begin{eqnarray}LL(ZB)<\min \{p^{d-1},4p^{d-2}\}.\end{eqnarray}$$
                  
Proof. By [Reference Külshammer and Sambale9, Proposition 15], we may assume that 
                      $p>2$
                  . Since
$p>2$
                  . Since 
                      $D$
                   is nonabelian,
$D$
                   is nonabelian, 
                      $|D:\operatorname{Z}(D)|\geqslant p^{2}$
                   and
$|D:\operatorname{Z}(D)|\geqslant p^{2}$
                   and 
                      $LL(F\operatorname{Z}(D))\leqslant p^{d-2}$
                  . Let
$LL(F\operatorname{Z}(D))\leqslant p^{d-2}$
                  . Let 
                      $Q$
                   be a maximal subgroup of
$Q$
                   be a maximal subgroup of 
                      $D$
                  . If
$D$
                  . If 
                      $Q$
                   is cyclic, then
$Q$
                   is cyclic, then 
                      $D\cong M_{p^{n}}$
                   (see [Reference Gorenstein4, Theorem 5.4.4]) and the claim follows from [Reference Külshammer and Sambale9, Proposition 10]. Hence, we may assume that
$D\cong M_{p^{n}}$
                   (see [Reference Gorenstein4, Theorem 5.4.4]) and the claim follows from [Reference Külshammer and Sambale9, Proposition 10]. Hence, we may assume that 
                      $Q$
                   is not cyclic. Then
$Q$
                   is not cyclic. Then 
                      $LL(F\operatorname{Z}(Q))\leqslant p^{d-2}+p-1$
                  . Now setting
$LL(F\operatorname{Z}(Q))\leqslant p^{d-2}+p-1$
                  . Now setting 
                      $\unicode[STIX]{x1D706}:=(p^{d-1}-1)/(p-1)$
                   it follows from Lemma 2 that
$\unicode[STIX]{x1D706}:=(p^{d-1}-1)/(p-1)$
                   it follows from Lemma 2 that 
 $$\begin{eqnarray}\displaystyle JZB^{2p^{d-2}+p-1+\unicode[STIX]{x1D706}} & \subseteq & \displaystyle 1_{B}JZFG^{2p^{d-2}+p-1+\unicode[STIX]{x1D706}}\subseteq I_{{\leqslant}D}(G)\cdot JZFG^{2p^{d-2}+p-1+\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & \subseteq & \displaystyle I_{{<}D}(G)\cdot JZFG^{p^{d-2}+p-1+\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & = & \displaystyle \mathop{\sum }_{Q<D}I_{{\leqslant}Q}(G)\cdot JZFG^{p^{d-2}+p-1+\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & \subseteq & \displaystyle \mathop{\sum }_{Q<D}I_{{<}Q}(G)\cdot JZFG^{\unicode[STIX]{x1D706}}=0.\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle JZB^{2p^{d-2}+p-1+\unicode[STIX]{x1D706}} & \subseteq & \displaystyle 1_{B}JZFG^{2p^{d-2}+p-1+\unicode[STIX]{x1D706}}\subseteq I_{{\leqslant}D}(G)\cdot JZFG^{2p^{d-2}+p-1+\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & \subseteq & \displaystyle I_{{<}D}(G)\cdot JZFG^{p^{d-2}+p-1+\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & = & \displaystyle \mathop{\sum }_{Q<D}I_{{\leqslant}Q}(G)\cdot JZFG^{p^{d-2}+p-1+\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & \subseteq & \displaystyle \mathop{\sum }_{Q<D}I_{{<}Q}(G)\cdot JZFG^{\unicode[STIX]{x1D706}}=0.\nonumber\end{eqnarray}$$
                   Since 
                      $2p^{d-2}+p-1+\unicode[STIX]{x1D706}\leqslant 4p^{d-2}$
                  , we are done in case
$2p^{d-2}+p-1+\unicode[STIX]{x1D706}\leqslant 4p^{d-2}$
                  , we are done in case 
                      $p\geqslant 5$
                   and
$p\geqslant 5$
                   and 
                      $D\cong W_{p^{d}}$
                  . If
$D\cong W_{p^{d}}$
                  . If 
                      $p=3$
                   and
$p=3$
                   and 
                      $D\cong W_{p^{d}}$
                  , then the claim follows from [Reference Külshammer and Sambale9, Lemma 11]. Now suppose that
$D\cong W_{p^{d}}$
                  , then the claim follows from [Reference Külshammer and Sambale9, Lemma 11]. Now suppose that 
                      $D\not \cong W_{p^{d}}$
                  . If
$D\not \cong W_{p^{d}}$
                  . If 
                      $\operatorname{Z}(D)$
                   is cyclic of order
$\operatorname{Z}(D)$
                   is cyclic of order 
                      $p^{d-2}$
                  , then the claim follows from [Reference Külshammer and Sambale9, Lemma 9 and Proposition 10]. Hence, suppose that
$p^{d-2}$
                  , then the claim follows from [Reference Külshammer and Sambale9, Lemma 9 and Proposition 10]. Hence, suppose that 
                      $\operatorname{Z}(D)$
                   is noncyclic or
$\operatorname{Z}(D)$
                   is noncyclic or 
                      $|\operatorname{Z}(D)|<p^{d-2}$
                  . Then
$|\operatorname{Z}(D)|<p^{d-2}$
                  . Then 
                      $d\geqslant 4$
                   and
$d\geqslant 4$
                   and 
                      $LL(F\operatorname{Z}(D))\leqslant p^{d-3}+p-1$
                  . The arguments above give
$LL(F\operatorname{Z}(D))\leqslant p^{d-3}+p-1$
                  . The arguments above give 
                      $LL(ZB)\leqslant p^{d-2}+p^{d-3}+2p-2+\unicode[STIX]{x1D706}$
                  , hence we are done whenever
$LL(ZB)\leqslant p^{d-2}+p^{d-3}+2p-2+\unicode[STIX]{x1D706}$
                  , hence we are done whenever 
                      $p>3$
                  .
$p>3$
                  .
 In the following we assume that 
                      $p=3$
                  . Here we have
$p=3$
                  . Here we have 
                      $LL(ZB)\leqslant 3^{d-2}+3^{d-3}+4+\frac{1}{2}(3^{d-1}-1)$
                   and it suffices to handle the case
$LL(ZB)\leqslant 3^{d-2}+3^{d-3}+4+\frac{1}{2}(3^{d-1}-1)$
                   and it suffices to handle the case 
                      $d=4$
                  . By [Reference Otokita12, Theorem 3.2], there exists a nontrivial
$d=4$
                  . By [Reference Otokita12, Theorem 3.2], there exists a nontrivial 
                      $B$
                  -subsection
$B$
                  -subsection 
                      $(u,b)$
                   such that
$(u,b)$
                   such that 
 $$\begin{eqnarray}LL(ZB)\leqslant (|\langle u\rangle |-1)LL(Z\overline{b})+1\end{eqnarray}$$
$$\begin{eqnarray}LL(ZB)\leqslant (|\langle u\rangle |-1)LL(Z\overline{b})+1\end{eqnarray}$$
                   where 
                      $\overline{b}$
                   is the unique block of
$\overline{b}$
                   is the unique block of 
                      $F\operatorname{C}_{G}(u)/\langle u\rangle$
                   dominated by
$F\operatorname{C}_{G}(u)/\langle u\rangle$
                   dominated by 
                      $b$
                  . We may assume that
$b$
                  . We may assume that 
                      $\overline{b}$
                   has defect group
$\overline{b}$
                   has defect group 
                      $\operatorname{C}_{D}(u)/\langle u\rangle$
                   (see [Reference Sambale14, Lemma 1.34]). If
$\operatorname{C}_{D}(u)/\langle u\rangle$
                   (see [Reference Sambale14, Lemma 1.34]). If 
                      $u\notin \operatorname{Z}(D)$
                  , we obtain
$u\notin \operatorname{Z}(D)$
                  , we obtain 
                      $LL(ZB)<|\!\operatorname{C}_{D}(u)|\leqslant 27$
                   as desired. Hence, let
$LL(ZB)<|\!\operatorname{C}_{D}(u)|\leqslant 27$
                   as desired. Hence, let 
                      $u\in \operatorname{Z}(D)$
                  . Then
$u\in \operatorname{Z}(D)$
                  . Then 
                      $D/\langle u\rangle$
                   is not cyclic. Moreover, by our assumption on
$D/\langle u\rangle$
                   is not cyclic. Moreover, by our assumption on 
                      $\operatorname{Z}(D)$
                  , we have
$\operatorname{Z}(D)$
                  , we have 
                      $|\langle u\rangle |=3$
                  . Now it follows from [Reference Külshammer and Sambale9, Theorem 1, Proposition 10 and Lemma 11] applied to
$|\langle u\rangle |=3$
                  . Now it follows from [Reference Külshammer and Sambale9, Theorem 1, Proposition 10 and Lemma 11] applied to 
                      $\overline{b}$
                   that
$\overline{b}$
                   that 
 $$\begin{eqnarray}\hspace{82.79993pt}LL(ZB)\leqslant 2LL(Z\overline{b})+1\leqslant 23<27.\hspace{82.79993pt}\square\end{eqnarray}$$
$$\begin{eqnarray}\hspace{82.79993pt}LL(ZB)\leqslant 2LL(Z\overline{b})+1\leqslant 23<27.\hspace{82.79993pt}\square\end{eqnarray}$$
                   We do not expect that the bounds in Theorem 3 are sharp. In fact, we do not know if there are 
                $p$
            -blocks
$p$
            -blocks 
                $B$
             with nonabelian defect groups of order
$B$
             with nonabelian defect groups of order 
                $p^{d}$
             such that
$p^{d}$
             such that 
                $p>2$
             and
$p>2$
             and 
                $LL(ZB)>p^{d-2}$
            . See also Proposition 7 below.
$LL(ZB)>p^{d-2}$
            . See also Proposition 7 below.
Corollary 4. Let 
                      $B$
                   be a block of
$B$
                   be a block of 
                      $FG$
                   with noncyclic defect group of order
$FG$
                   with noncyclic defect group of order 
                      $p^{d}$
                  . Then
$p^{d}$
                  . Then 
 $$\begin{eqnarray}LL(ZB)\leqslant p^{d-1}+p-1.\end{eqnarray}$$
$$\begin{eqnarray}LL(ZB)\leqslant p^{d-1}+p-1.\end{eqnarray}$$
                  
Proof. By Theorem 3, we may assume that 
                      $B$
                   has abelian defect group
$B$
                   has abelian defect group 
                      $D$
                  . Then [Reference Külshammer and Sambale9, Theorem 1] implies
$D$
                  . Then [Reference Külshammer and Sambale9, Theorem 1] implies 
                      $LL(ZB)\leqslant LL(FD)\leqslant p^{d-1}+p-1$
                  .◻
$LL(ZB)\leqslant LL(FD)\leqslant p^{d-1}+p-1$
                  .◻
We are now in a position to generalize [Reference Külshammer and Sambale9, Corollary 16].
Corollary 5. Let 
                      $B$
                   be a block of
$B$
                   be a block of 
                      $FG$
                   with defect group
$FG$
                   with defect group 
                      $D$
                   of order
$D$
                   of order 
                      $p^{d}$
                   such that
$p^{d}$
                   such that 
                      $LL(ZB)\geqslant \min \{p^{d-1},4p^{d-2}\}$
                  . Then one of the following holds
$LL(ZB)\geqslant \min \{p^{d-1},4p^{d-2}\}$
                  . Then one of the following holds
- (i)  $D$
                            is cyclic. $D$
                            is cyclic.
- (ii)  $D\cong C_{p^{d-1}}\times C_{p}$
                           . $D\cong C_{p^{d-1}}\times C_{p}$
                           .
- (iii)  $D\cong C_{2}\times C_{2}\times C_{2}$
                            and $D\cong C_{2}\times C_{2}\times C_{2}$
                            and $B$
                            is nilpotent. $B$
                            is nilpotent.
Proof. Again by Theorem 3 we may assume that 
                      $D$
                   is abelian. By [Reference Külshammer and Sambale9, Corollary 16], we may assume that
$D$
                   is abelian. By [Reference Külshammer and Sambale9, Corollary 16], we may assume that 
                      $p>2$
                  . Suppose that
$p>2$
                  . Suppose that 
                      $D$
                   is of type
$D$
                   is of type 
                      $(p^{a_{1}},\ldots ,p^{a_{s}})$
                   such that
$(p^{a_{1}},\ldots ,p^{a_{s}})$
                   such that 
                      $s\geqslant 3$
                  . Then
$s\geqslant 3$
                  . Then 
 $$\begin{eqnarray}\displaystyle \min \{p^{d-1},4p^{d-2}\} & {\leqslant} & \displaystyle LL(ZB)=p^{a_{1}}+\cdots +p^{a_{s}}-s+1\nonumber\\ \displaystyle & {\leqslant} & \displaystyle p^{a_{1}}+p^{a_{2}}+p^{a_{3}+\cdots +a_{s}}-2\leqslant p^{d-2}+2(p-1).\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle \min \{p^{d-1},4p^{d-2}\} & {\leqslant} & \displaystyle LL(ZB)=p^{a_{1}}+\cdots +p^{a_{s}}-s+1\nonumber\\ \displaystyle & {\leqslant} & \displaystyle p^{a_{1}}+p^{a_{2}}+p^{a_{3}+\cdots +a_{s}}-2\leqslant p^{d-2}+2(p-1).\nonumber\end{eqnarray}$$
                   This clearly leads to a contradiction. Therefore, 
                      $s\leqslant 2$
                   and the claim follows.◻
$s\leqslant 2$
                   and the claim follows.◻
 In case (i) of Corollary 5 it is known conversely that 
                $LL(ZB)=(p^{d}-1)/l(B)+1>p^{d-1}$
             (see [Reference Koshitani, Külshammer and Sambale7, Corollary 2.8]).
$LL(ZB)=(p^{d}-1)/l(B)+1>p^{d-1}$
             (see [Reference Koshitani, Külshammer and Sambale7, Corollary 2.8]).
Our next result gives a more precise bound by invoking the exponent of a defect group.
Theorem 6. Let 
                      $B$
                   be a block of
$B$
                   be a block of 
                      $FG$
                   with defect group
$FG$
                   with defect group 
                      $D$
                   of order
$D$
                   of order 
                      $p^{d}>1$
                   and exponent
$p^{d}>1$
                   and exponent 
                      $p^{e}$
                  . Then
$p^{e}$
                  . Then 
 $$\begin{eqnarray}LL(ZB)\leqslant \biggl(\frac{d}{e}+1\biggr)\biggl(\frac{d}{2}+\frac{1}{p-1}\biggr)(p^{e}-1).\end{eqnarray}$$
$$\begin{eqnarray}LL(ZB)\leqslant \biggl(\frac{d}{e}+1\biggr)\biggl(\frac{d}{2}+\frac{1}{p-1}\biggr)(p^{e}-1).\end{eqnarray}$$
                   In particular, 
                      $LL(ZB)\leqslant d^{2}p^{e}$
                  .
$LL(ZB)\leqslant d^{2}p^{e}$
                  .
Proof. Let 
                      $\unicode[STIX]{x1D6FC}:=\lfloor d/e\rfloor$
                  . Let
$\unicode[STIX]{x1D6FC}:=\lfloor d/e\rfloor$
                  . Let 
                      $P\leqslant D$
                   be abelian of order
$P\leqslant D$
                   be abelian of order 
                      $p^{ie+j}$
                   with
$p^{ie+j}$
                   with 
                      $0\leqslant i\leqslant \unicode[STIX]{x1D6FC}$
                   and
$0\leqslant i\leqslant \unicode[STIX]{x1D6FC}$
                   and 
                      $0\leqslant j<e$
                  . If
$0\leqslant j<e$
                  . If 
                      $P$
                   has type
$P$
                   has type 
                      $(p^{a_{1}},\ldots ,p^{a_{r}})$
                  , then
$(p^{a_{1}},\ldots ,p^{a_{r}})$
                  , then 
                      $a_{i}\leqslant e$
                   for
$a_{i}\leqslant e$
                   for 
                      $i=1,\ldots ,r$
                   and
$i=1,\ldots ,r$
                   and 
 $$\begin{eqnarray}LL(FP)=(p^{a_{1}}-1)+\cdots +(p^{a_{r}}-1)+1\leqslant i(p^{e}-1)+p^{j}.\end{eqnarray}$$
$$\begin{eqnarray}LL(FP)=(p^{a_{1}}-1)+\cdots +(p^{a_{r}}-1)+1\leqslant i(p^{e}-1)+p^{j}.\end{eqnarray}$$
                  Arguing as in Theorem 3, we obtain
 $$\begin{eqnarray}\displaystyle LL(ZB) & {\leqslant} & \displaystyle \mathop{\sum }_{i=0}^{\unicode[STIX]{x1D6FC}}\mathop{\sum }_{j=0}^{e-1}i(p^{e}-1)+p^{j}=e(p^{e}-1)\biggl(\mathop{\sum }_{i=0}^{\unicode[STIX]{x1D6FC}}i\biggr)+(\unicode[STIX]{x1D6FC}+1)\frac{p^{e}-1}{p-1}\nonumber\\ \displaystyle & = & \displaystyle e(p^{e}-1)\frac{\unicode[STIX]{x1D6FC}(\unicode[STIX]{x1D6FC}+1)}{2}+(\unicode[STIX]{x1D6FC}+1)\frac{p^{e}-1}{p-1}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \biggl(\frac{d}{e}+1\biggr)\biggl(\frac{d}{2}+\frac{1}{p-1}\biggr)(p^{e}-1).\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle LL(ZB) & {\leqslant} & \displaystyle \mathop{\sum }_{i=0}^{\unicode[STIX]{x1D6FC}}\mathop{\sum }_{j=0}^{e-1}i(p^{e}-1)+p^{j}=e(p^{e}-1)\biggl(\mathop{\sum }_{i=0}^{\unicode[STIX]{x1D6FC}}i\biggr)+(\unicode[STIX]{x1D6FC}+1)\frac{p^{e}-1}{p-1}\nonumber\\ \displaystyle & = & \displaystyle e(p^{e}-1)\frac{\unicode[STIX]{x1D6FC}(\unicode[STIX]{x1D6FC}+1)}{2}+(\unicode[STIX]{x1D6FC}+1)\frac{p^{e}-1}{p-1}\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \biggl(\frac{d}{e}+1\biggr)\biggl(\frac{d}{2}+\frac{1}{p-1}\biggr)(p^{e}-1).\nonumber\end{eqnarray}$$
                  This proves the first claim. For the second claim we note that
 $$\begin{eqnarray}\biggl(\frac{d}{e}+1\biggr)\biggl(\frac{d}{2}+\frac{1}{p-1}\biggr)\leqslant (d+1)\biggl(\frac{d}{2}+1\biggr)\leqslant d^{2}\end{eqnarray}$$
$$\begin{eqnarray}\biggl(\frac{d}{e}+1\biggr)\biggl(\frac{d}{2}+\frac{1}{p-1}\biggr)\leqslant (d+1)\biggl(\frac{d}{2}+1\biggr)\leqslant d^{2}\end{eqnarray}$$
                   unless 
                      $d\leqslant 3$
                  . In these small cases the claim follows from Theorem 3 and Corollary 4.◻
$d\leqslant 3$
                  . In these small cases the claim follows from Theorem 3 and Corollary 4.◻
 If 
                $2e>d$
             and
$2e>d$
             and 
                $p$
             is large, then the bound in Theorem 6 is approximately
$p$
             is large, then the bound in Theorem 6 is approximately 
                $dp^{e}$
            . The groups of the form
$dp^{e}$
            . The groups of the form 
                $G=D=C_{p^{e}}\times \cdots \times C_{p^{e}}$
             show that there is no bound of the form
$G=D=C_{p^{e}}\times \cdots \times C_{p^{e}}$
             show that there is no bound of the form 
                $LL(ZB)\leqslant Cp^{e}$
             where
$LL(ZB)\leqslant Cp^{e}$
             where 
                $C$
             is an absolute constant. A more careful argumentation in the proof above gives the stronger (but opaque) bound
$C$
             is an absolute constant. A more careful argumentation in the proof above gives the stronger (but opaque) bound 
 $$\begin{eqnarray}\displaystyle LL(ZB) & {\leqslant} & \displaystyle \unicode[STIX]{x1D6FC}(p^{e}-1)\biggl(\frac{e(\unicode[STIX]{x1D6FC}-1)}{2}+\frac{1}{p-1}+d-\unicode[STIX]{x1D6FC}e\biggr)+\unicode[STIX]{x1D6FD}(p^{e}-1)\nonumber\\ \displaystyle & & \displaystyle +\,\frac{p^{d-\unicode[STIX]{x1D6FC}e}-1}{p-1}+p^{d-2-\unicode[STIX]{x1D6FD}e}\nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle LL(ZB) & {\leqslant} & \displaystyle \unicode[STIX]{x1D6FC}(p^{e}-1)\biggl(\frac{e(\unicode[STIX]{x1D6FC}-1)}{2}+\frac{1}{p-1}+d-\unicode[STIX]{x1D6FC}e\biggr)+\unicode[STIX]{x1D6FD}(p^{e}-1)\nonumber\\ \displaystyle & & \displaystyle +\,\frac{p^{d-\unicode[STIX]{x1D6FC}e}-1}{p-1}+p^{d-2-\unicode[STIX]{x1D6FD}e}\nonumber\end{eqnarray}$$
             for nonabelian defect groups where 
                $\unicode[STIX]{x1D6FC}:=\lfloor (d-1)/e\rfloor$
             and
$\unicode[STIX]{x1D6FC}:=\lfloor (d-1)/e\rfloor$
             and 
                $\unicode[STIX]{x1D6FD}:=\lfloor (d-2)/e\rfloor$
            . We omit the details.
$\unicode[STIX]{x1D6FD}:=\lfloor (d-2)/e\rfloor$
            . We omit the details.
 In the next result we compute the Loewy length for 
                $d=e+1$
            .
$d=e+1$
            .
Proposition 7. Let 
                      $B$
                   be a block of
$B$
                   be a block of 
                      $FG$
                   with nonabelian defect group of order
$FG$
                   with nonabelian defect group of order 
                      $p^{d}$
                   and exponent
$p^{d}$
                   and exponent 
                      $p^{d-1}$
                  . Then
$p^{d-1}$
                  . Then 
 $$\begin{eqnarray}LL(ZB)\leqslant \left\{\begin{array}{@{}ll@{}}2^{d-2}+1\quad & \text{if }p=2,\\ p^{d-2}\quad & \text{if }p>2\end{array}\right.\end{eqnarray}$$
$$\begin{eqnarray}LL(ZB)\leqslant \left\{\begin{array}{@{}ll@{}}2^{d-2}+1\quad & \text{if }p=2,\\ p^{d-2}\quad & \text{if }p>2\end{array}\right.\end{eqnarray}$$
                   and both bounds are optimal for every 
                      $d\geqslant 3$
                  .
$d\geqslant 3$
                  .
Proof. Let 
                      $D$
                   be a defect group of
$D$
                   be a defect group of 
                      $B$
                  . If
$B$
                  . If 
                      $p>2$
                  , then
$p>2$
                  , then 
                      $D\cong M_{p^{d}}$
                   (see [Reference Gorenstein4, Theorem 5.4.4]) and we have shown
$D\cong M_{p^{d}}$
                   (see [Reference Gorenstein4, Theorem 5.4.4]) and we have shown 
                      $LL(ZB)\leqslant p^{d-2}$
                   in [Reference Külshammer and Sambale9, Proposition 10]. Equality holds if and only if
$LL(ZB)\leqslant p^{d-2}$
                   in [Reference Külshammer and Sambale9, Proposition 10]. Equality holds if and only if 
                      $B$
                   is nilpotent.
$B$
                   is nilpotent.
 Therefore, we may assume 
                      $p=2$
                   in the following. The modular groups
$p=2$
                   in the following. The modular groups 
                      $M_{2^{d}}$
                   are still handled by [Reference Külshammer and Sambale9, Proposition 10]. Hence, it remains to consider the defect groups of maximal nilpotency class, i. e.,
$M_{2^{d}}$
                   are still handled by [Reference Külshammer and Sambale9, Proposition 10]. Hence, it remains to consider the defect groups of maximal nilpotency class, i. e., 
                      $D\in \{D_{2^{d}},Q_{2^{d}},SD_{2^{d}}\}$
                  . By [Reference Külshammer and Sambale9, Proposition 10], we may assume that
$D\in \{D_{2^{d}},Q_{2^{d}},SD_{2^{d}}\}$
                  . By [Reference Külshammer and Sambale9, Proposition 10], we may assume that 
                      $d\geqslant 4$
                  . The isomorphism type of
$d\geqslant 4$
                  . The isomorphism type of 
                      $ZB$
                   is uniquely determined by
$ZB$
                   is uniquely determined by 
                      $D$
                   and the fusion system of
$D$
                   and the fusion system of 
                      $B$
                   (see [Reference Cabanes and Picaronny2]). The possible cases are listed in [Reference Sambale14, Theorem 8.1]. If
$B$
                   (see [Reference Cabanes and Picaronny2]). The possible cases are listed in [Reference Sambale14, Theorem 8.1]. If 
                      $B$
                   is nilpotent, [Reference Külshammer and Sambale9, Proposition 8] gives
$B$
                   is nilpotent, [Reference Külshammer and Sambale9, Proposition 8] gives 
                      $LL(ZB)=LL(ZFD)\leqslant LL(FD^{\prime })=2^{d-2}$
                  . Moreover, in the case
$LL(ZB)=LL(ZFD)\leqslant LL(FD^{\prime })=2^{d-2}$
                  . Moreover, in the case 
                      $D\cong D_{2^{d}}$
                   and
$D\cong D_{2^{d}}$
                   and 
                      $l(B)=3$
                   we have
$l(B)=3$
                   we have 
                      $LL(ZB)\leqslant k(B)-l(B)+1=2^{d-2}+1$
                   by [Reference Otokita12, Proposition 2.2]. In the remaining cases we present
$LL(ZB)\leqslant k(B)-l(B)+1=2^{d-2}+1$
                   by [Reference Otokita12, Proposition 2.2]. In the remaining cases we present 
                      $B$
                   by quivers with relations which were constructed originally by Erdmann [Reference Erdmann3]. We refer to [Reference Holm5, Appendix B]. Keep in mind that we need to consider only one quiver for each fusion system.
$B$
                   by quivers with relations which were constructed originally by Erdmann [Reference Erdmann3]. We refer to [Reference Holm5, Appendix B]. Keep in mind that we need to consider only one quiver for each fusion system.
- (i)  $D\cong D_{2^{d}}$
                           , $D\cong D_{2^{d}}$
                           , $l(B)=2$
                           :By [Reference Holm5, Lemma 2.3.3], we have $l(B)=2$
                           :By [Reference Holm5, Lemma 2.3.3], we have It follows that It follows that $$\begin{eqnarray}ZB=\operatorname{span}\{1,\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE},\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE},\unicode[STIX]{x1D702}^{i}:i=1,\ldots ,2^{d-2}\}.\end{eqnarray}$$ $$\begin{eqnarray}ZB=\operatorname{span}\{1,\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE},\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE},\unicode[STIX]{x1D702}^{i}:i=1,\ldots ,2^{d-2}\}.\end{eqnarray}$$ $JZB^{2}=\langle \unicode[STIX]{x1D702}^{2}\rangle$
                            and $JZB^{2}=\langle \unicode[STIX]{x1D702}^{2}\rangle$
                            and $LL(ZB)=2^{d-2}+1$
                           . $LL(ZB)=2^{d-2}+1$
                           .
- (ii)  $D\cong Q_{2^{d}}$
                           , $D\cong Q_{2^{d}}$
                           , $l(B)=2$
                           : Here [Reference Zimmermann16, Lemma 6] gives the isomorphism type of $l(B)=2$
                           : Here [Reference Zimmermann16, Lemma 6] gives the isomorphism type of $ZB$
                            directly as a quotient of a polynomial ring It follows that $ZB$
                            directly as a quotient of a polynomial ring It follows that $$\begin{eqnarray}\displaystyle ZB & \cong & \displaystyle F[U,Y,S,T]/\!(Y^{2^{d-2}+1},U^{2}-Y^{2^{d-2}},S^{2},T^{2},SY,\nonumber\\ \displaystyle & & \displaystyle SU,ST,UY,UT,YT)\!.\nonumber\end{eqnarray}$$ $$\begin{eqnarray}\displaystyle ZB & \cong & \displaystyle F[U,Y,S,T]/\!(Y^{2^{d-2}+1},U^{2}-Y^{2^{d-2}},S^{2},T^{2},SY,\nonumber\\ \displaystyle & & \displaystyle SU,ST,UY,UT,YT)\!.\nonumber\end{eqnarray}$$ $JZB^{2}=(Y^{2})$
                            and again $JZB^{2}=(Y^{2})$
                            and again $LL(ZB)=2^{d-2}+1$
                           . $LL(ZB)=2^{d-2}+1$
                           .
- (iii)  $D\cong Q_{2^{d}}$
                           , $D\cong Q_{2^{d}}$
                           , $l(B)=3$
                           :By [Reference Holm5, Lemma 2.5.15], $l(B)=3$
                           :By [Reference Holm5, Lemma 2.5.15], We compute We compute $$\begin{eqnarray}\displaystyle ZB & = & \displaystyle \operatorname{span}\{\!1,\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD},(\unicode[STIX]{x1D705}\unicode[STIX]{x1D706})^{i}+(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{i},\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}+\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF},(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2},(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}},\nonumber\\ \displaystyle & & \displaystyle (\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}:i=1,\ldots ,2^{d-2}-1\!\}\!.\nonumber\end{eqnarray}$$
                           Hence, $$\begin{eqnarray}\displaystyle ZB & = & \displaystyle \operatorname{span}\{\!1,\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD},(\unicode[STIX]{x1D705}\unicode[STIX]{x1D706})^{i}+(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{i},\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}+\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF},(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2},(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}},\nonumber\\ \displaystyle & & \displaystyle (\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}:i=1,\ldots ,2^{d-2}-1\!\}\!.\nonumber\end{eqnarray}$$
                           Hence, $$\begin{eqnarray}\displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})^{2}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}+(\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})^{2}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}+\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}\unicode[STIX]{x1D6FD}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}+(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}+\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF})=\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{3}=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle \!\!\!\!\!\!\!\!((\unicode[STIX]{x1D705}\unicode[STIX]{x1D706})^{2^{d-2}-1}+(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}-1})(\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})=\unicode[STIX]{x1D705}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}+(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}+(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}+\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF})=\unicode[STIX]{x1D706}\unicode[STIX]{x1D705}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}=\unicode[STIX]{x1D705}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}=\unicode[STIX]{x1D706}\unicode[STIX]{x1D705}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D705}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}+\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF})^{2}=(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}+(\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF})^{2}=(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}=(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}+(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}+\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF})(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}+\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF})(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}=\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF}(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}=\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D705}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}+\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF})(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}=(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D705}\unicode[STIX]{x1D702}(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=0. & \displaystyle \nonumber\end{eqnarray}$$ $$\begin{eqnarray}\displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})^{2}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}+(\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})^{2}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}+\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}\unicode[STIX]{x1D6FD}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}+(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}+\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF})=\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{3}=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle \!\!\!\!\!\!\!\!((\unicode[STIX]{x1D705}\unicode[STIX]{x1D706})^{2^{d-2}-1}+(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}-1})(\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})=\unicode[STIX]{x1D705}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}+(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}+(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}+\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF})=\unicode[STIX]{x1D706}\unicode[STIX]{x1D705}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}=\unicode[STIX]{x1D705}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}=\unicode[STIX]{x1D706}\unicode[STIX]{x1D705}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D705}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}+\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF})^{2}=(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}+(\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF})^{2}=(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}=(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}+(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}+\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF})(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}+\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF})(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}=\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF}(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}=\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D705}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}+\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF})(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}=(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D705}\unicode[STIX]{x1D702}(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=0. & \displaystyle \nonumber\end{eqnarray}$$ $JZB^{2}=\langle (\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}+(\unicode[STIX]{x1D705}\unicode[STIX]{x1D706})^{2},(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}+(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}\rangle$
                            and $JZB^{2}=\langle (\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}+(\unicode[STIX]{x1D705}\unicode[STIX]{x1D706})^{2},(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}+(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}\rangle$
                            and $JZB^{3}=\langle (\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{3}+(\unicode[STIX]{x1D705}\unicode[STIX]{x1D706})^{3}\rangle$
                           . This implies $JZB^{3}=\langle (\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{3}+(\unicode[STIX]{x1D705}\unicode[STIX]{x1D706})^{3}\rangle$
                           . This implies $LL(ZB)=2^{d-2}+1$
                           . $LL(ZB)=2^{d-2}+1$
                           .
- (iv)  $D\cong SD_{2^{d}}$
                           , $D\cong SD_{2^{d}}$
                           , $k(B)=2^{d-2}+3$
                            and $k(B)=2^{d-2}+3$
                            and $l(B)=2$
                           :By [Reference Holm and Zimmermann6, Section 5.1], we have $l(B)=2$
                           :By [Reference Holm and Zimmermann6, Section 5.1], we have As in (i) we obtain As in (i) we obtain $$\begin{eqnarray}ZB=\operatorname{span}\{1,\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE},\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE},\unicode[STIX]{x1D702}^{i}:i=1,\ldots ,2^{d-2}\}.\end{eqnarray}$$ $$\begin{eqnarray}ZB=\operatorname{span}\{1,\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE},\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE},\unicode[STIX]{x1D702}^{i}:i=1,\ldots ,2^{d-2}\}.\end{eqnarray}$$ $JZB^{2}=\langle \unicode[STIX]{x1D702}^{2}\rangle$
                            and $JZB^{2}=\langle \unicode[STIX]{x1D702}^{2}\rangle$
                            and $LL(ZB)=2^{d-2}+1$
                           . $LL(ZB)=2^{d-2}+1$
                           .
- (v)  $D\cong SD_{2^{d}}$
                           , $D\cong SD_{2^{d}}$
                           , $k(B)=2^{d-2}+4$
                            and $k(B)=2^{d-2}+4$
                            and $l(B)=2$
                           :By [Reference Holm and Zimmermann6, Section 5.2.2], we have $l(B)=2$
                           :By [Reference Holm and Zimmermann6, Section 5.2.2], we have Since Since $$\begin{eqnarray}\displaystyle ZB & = & \displaystyle \operatorname{span}\{\!1,\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD},\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE},(\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2},\unicode[STIX]{x1D702}^{i},\nonumber\\ \displaystyle & & \displaystyle \unicode[STIX]{x1D702}+\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}:i=2,\ldots ,2^{d-2}\!\}\!.\nonumber\end{eqnarray}$$ $$\begin{eqnarray}\displaystyle ZB & = & \displaystyle \operatorname{span}\{\!1,\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD},\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE},(\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2},\unicode[STIX]{x1D702}^{i},\nonumber\\ \displaystyle & & \displaystyle \unicode[STIX]{x1D702}+\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}:i=2,\ldots ,2^{d-2}\!\}\!.\nonumber\end{eqnarray}$$ $(\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC})^{2}$
                            and $(\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC})^{2}$
                            and $(\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD})^{2}=\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}=\unicode[STIX]{x1D702}^{2^{d-2}}$
                           , it follows that Similarly, $(\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD})^{2}=\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}=\unicode[STIX]{x1D702}^{2^{d-2}}$
                           , it follows that Similarly, $$\begin{eqnarray}(\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD})^{2}=(\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}+(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC})^{2}+(\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD})^{2}=\unicode[STIX]{x1D702}^{2^{d-2}}.\end{eqnarray}$$
                           Consequently, $$\begin{eqnarray}(\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD})^{2}=(\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}+(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC})^{2}+(\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD})^{2}=\unicode[STIX]{x1D702}^{2^{d-2}}.\end{eqnarray}$$
                           Consequently, $$\begin{eqnarray}\displaystyle & \displaystyle (\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD})\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD})\unicode[STIX]{x1D702}^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D702}+\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC})=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle \unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}(\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle \unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D702}^{2}=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D702}^{2}\unicode[STIX]{x1D6FE}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle \unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}(\unicode[STIX]{x1D702}+\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC})=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}(\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}\unicode[STIX]{x1D6FC}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}(\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}\unicode[STIX]{x1D702}^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}(\unicode[STIX]{x1D702}+\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC})=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle \unicode[STIX]{x1D702}^{2}(\unicode[STIX]{x1D702}+\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC})=\unicode[STIX]{x1D702}^{3}, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D702}+\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC})^{2}=\unicode[STIX]{x1D702}^{2}. & \displaystyle \nonumber\end{eqnarray}$$ $$\begin{eqnarray}\displaystyle & \displaystyle (\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD})\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD})\unicode[STIX]{x1D702}^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D702}+\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC})=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle \unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}(\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle \unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D702}^{2}=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D702}^{2}\unicode[STIX]{x1D6FE}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle \unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}(\unicode[STIX]{x1D702}+\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC})=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}(\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}\unicode[STIX]{x1D6FC}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}(\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}\unicode[STIX]{x1D702}^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}(\unicode[STIX]{x1D702}+\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC})=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle \unicode[STIX]{x1D702}^{2}(\unicode[STIX]{x1D702}+\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC})=\unicode[STIX]{x1D702}^{3}, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D702}+\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC})^{2}=\unicode[STIX]{x1D702}^{2}. & \displaystyle \nonumber\end{eqnarray}$$ $JZB^{2}=\langle \unicode[STIX]{x1D702}^{2}\rangle$
                            and $JZB^{2}=\langle \unicode[STIX]{x1D702}^{2}\rangle$
                            and $LL(ZB)=2^{d-2}+1$
                           . $LL(ZB)=2^{d-2}+1$
                           .
- (vi)  $D\cong SD_{2^{d}}$
                           , $D\cong SD_{2^{d}}$
                           , $l(B)=3$
                           :From [Reference Holm5, Lemma 2.4.16] we get $l(B)=3$
                           :From [Reference Holm5, Lemma 2.4.16] we get We compute We compute $$\begin{eqnarray}\displaystyle ZB & = & \displaystyle \operatorname{span}\{\!1,(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{i}+(\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})^{i},\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705},(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}},(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2},\nonumber\\ \displaystyle & & \displaystyle \unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}:i=1,\ldots ,2^{d-2}-1\!\}.\nonumber\end{eqnarray}$$ $$\begin{eqnarray}\displaystyle ZB & = & \displaystyle \operatorname{span}\{\!1,(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{i}+(\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})^{i},\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705},(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}},(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2},\nonumber\\ \displaystyle & & \displaystyle \unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}:i=1,\ldots ,2^{d-2}-1\!\}.\nonumber\end{eqnarray}$$ $$\begin{eqnarray}\displaystyle & \displaystyle \!\!\!(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})((\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}-1}+(\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})^{2^{d-2}-1})=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}}+\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}\unicode[STIX]{x1D6FD}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}}+\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}}=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}=\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}\unicode[STIX]{x1D705}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}\unicode[STIX]{x1D705}\unicode[STIX]{x1D702}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}+(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}}+(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}, & \displaystyle \nonumber\end{eqnarray}$$ $$\begin{eqnarray}\displaystyle & \displaystyle \!\!\!(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})((\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}-1}+(\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})^{2^{d-2}-1})=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}}+\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}\unicode[STIX]{x1D6FD}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}}+\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}}=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}=\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}\unicode[STIX]{x1D705}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}\unicode[STIX]{x1D705}\unicode[STIX]{x1D702}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}+(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}}+(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}, & \displaystyle \nonumber\end{eqnarray}$$ $$\begin{eqnarray}\displaystyle (\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}} & = & \displaystyle \unicode[STIX]{x1D705}\unicode[STIX]{x1D706}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}-1}\nonumber\\ \displaystyle & = & \displaystyle \unicode[STIX]{x1D705}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}-1}=0,\nonumber\\ \displaystyle (\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2} & = & \displaystyle \unicode[STIX]{x1D706}(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}}\unicode[STIX]{x1D705}\nonumber\\ \displaystyle & = & \displaystyle \unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}-1}\unicode[STIX]{x1D705}=0,\nonumber\end{eqnarray}$$ $$\begin{eqnarray}\displaystyle (\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}} & = & \displaystyle \unicode[STIX]{x1D705}\unicode[STIX]{x1D706}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}-1}\nonumber\\ \displaystyle & = & \displaystyle \unicode[STIX]{x1D705}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}-1}=0,\nonumber\\ \displaystyle (\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2} & = & \displaystyle \unicode[STIX]{x1D706}(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}}\unicode[STIX]{x1D705}\nonumber\\ \displaystyle & = & \displaystyle \unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}-1}\unicode[STIX]{x1D705}=0,\nonumber\end{eqnarray}$$ $$\begin{eqnarray}\displaystyle (\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=0, & & \displaystyle \nonumber\end{eqnarray}$$ $$\begin{eqnarray}\displaystyle (\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=0, & & \displaystyle \nonumber\end{eqnarray}$$ $$\begin{eqnarray}\displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}}(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}} & = & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}}(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}\nonumber\\ \displaystyle & = & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=0,\nonumber\end{eqnarray}$$
                           Hence, $$\begin{eqnarray}\displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}}(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}} & = & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}}(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}\nonumber\\ \displaystyle & = & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=0,\nonumber\end{eqnarray}$$
                           Hence, $$\begin{eqnarray}\displaystyle & \displaystyle (\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}=(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}\unicode[STIX]{x1D705}\unicode[STIX]{x1D702}=0. & \displaystyle \nonumber\end{eqnarray}$$ $$\begin{eqnarray}\displaystyle & \displaystyle (\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}=(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}\unicode[STIX]{x1D705}\unicode[STIX]{x1D702}=0. & \displaystyle \nonumber\end{eqnarray}$$ $JZB^{2}=\langle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}+(\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})^{2},(\unicode[STIX]{x1D705}\unicode[STIX]{x1D706})^{2}+\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}\rangle$
                            and $JZB^{2}=\langle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}+(\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})^{2},(\unicode[STIX]{x1D705}\unicode[STIX]{x1D706})^{2}+\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}\rangle$
                            and $JZB^{3}=\langle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{3}+(\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})^{3}\rangle$
                           . This implies $JZB^{3}=\langle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{3}+(\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})^{3}\rangle$
                           . This implies $LL(ZB)=2^{d-2}+1$
                           . ◻ $LL(ZB)=2^{d-2}+1$
                           . ◻
 It is interesting to note the difference between even and odd primes in Proposition 7. For 
                $p=2$
            , non-nilpotent blocks give larger Loewy lengths while for
$p=2$
            , non-nilpotent blocks give larger Loewy lengths while for 
                $p>2$
             the maximal Loewy length is only attained for nilpotent blocks.
$p>2$
             the maximal Loewy length is only attained for nilpotent blocks.
 Recall that a lower defect group of a block 
                $B$
             of
$B$
             of 
                $FG$
             is a
$FG$
             is a 
                $p$
            -subgroup
$p$
            -subgroup 
                $Q\leqslant G$
             such that
$Q\leqslant G$
             such that 
 $$\begin{eqnarray}I_{{<}Q}(G)1_{B}\neq I_{{\leqslant}Q}(G)1_{B}.\end{eqnarray}$$
$$\begin{eqnarray}I_{{<}Q}(G)1_{B}\neq I_{{\leqslant}Q}(G)1_{B}.\end{eqnarray}$$
             In this case 
                $Q$
             is conjugate to a subgroup of a defect group
$Q$
             is conjugate to a subgroup of a defect group 
                $D$
             of
$D$
             of 
                $B$
             and conversely
$B$
             and conversely 
                $D$
             is also a lower defect group since
$D$
             is also a lower defect group since 
                $1_{B}\in I_{{\leqslant}D}(G)\setminus I_{{<}D}(G)$
            . It is clear that in the proofs of Theorems 3 and 6 it suffices to sum over the lower defect groups of
$1_{B}\in I_{{\leqslant}D}(G)\setminus I_{{<}D}(G)$
            . It is clear that in the proofs of Theorems 3 and 6 it suffices to sum over the lower defect groups of 
                $B$
            . In particular there exists a chain of lower defect groups
$B$
            . In particular there exists a chain of lower defect groups 
                $Q_{1}<\cdots <Q_{n}=D$
             such that
$Q_{1}<\cdots <Q_{n}=D$
             such that 
                $LL(ZB)\leqslant \sum _{i=1}^{n}LL(F\operatorname{Z}(Q_{i}))$
            . Unfortunately, it is hard to compute the lower defect groups of a given block.
$LL(ZB)\leqslant \sum _{i=1}^{n}LL(F\operatorname{Z}(Q_{i}))$
            . Unfortunately, it is hard to compute the lower defect groups of a given block.
The following proposition generalizes [Reference Willems15, Theorem 1.5].
Proposition 8. Let 
                      $B$
                   be a block of
$B$
                   be a block of 
                      $FG$
                  . Then
$FG$
                  . Then 
                      $ZB$
                   is uniserial if and only if
$ZB$
                   is uniserial if and only if 
                      $B$
                   is nilpotent with cyclic defect groups.
$B$
                   is nilpotent with cyclic defect groups.
Proof. Suppose first that 
                      $ZB$
                   is uniserial. Then
$ZB$
                   is uniserial. Then 
                      $ZB\cong F[X]/(X^{n})$
                   for some
$ZB\cong F[X]/(X^{n})$
                   for some 
                      $n\in \mathbb{N}$
                  ; in particular,
$n\in \mathbb{N}$
                  ; in particular, 
                      $ZB$
                   is a symmetric
$ZB$
                   is a symmetric 
                      $F$
                  -algebra. Then [Reference Okuyama and Tsushima11, Theorems 3 and 5] implies that
$F$
                  -algebra. Then [Reference Okuyama and Tsushima11, Theorems 3 and 5] implies that 
                      $B$
                   is nilpotent with abelian defect group
$B$
                   is nilpotent with abelian defect group 
                      $D$
                  . Thus, by a result of Broué and Puig [Reference Broué and Puig1] (see also [Reference Külshammer8]),
$D$
                  . Thus, by a result of Broué and Puig [Reference Broué and Puig1] (see also [Reference Külshammer8]), 
                      $B$
                   is Morita equivalent to
$B$
                   is Morita equivalent to 
                      $FD$
                  ; in particular,
$FD$
                  ; in particular, 
                      $FD$
                   is also uniserial. Thus
$FD$
                   is also uniserial. Thus 
                      $D$
                   is cyclic.
$D$
                   is cyclic.
 Conversely, suppose that 
                      $B$
                   is nilpotent with cyclic defect group
$B$
                   is nilpotent with cyclic defect group 
                      $D$
                  . Then the Broué–Puig result mentioned above implies that
$D$
                  . Then the Broué–Puig result mentioned above implies that 
                      $B$
                   is Morita equivalent of
$B$
                   is Morita equivalent of 
                      $FD$
                  . Thus
$FD$
                  . Thus 
                      $ZB\cong ZFD=FD$
                  . Since
$ZB\cong ZFD=FD$
                  . Since 
                      $FD$
                   is uniserial, the result follows.◻
$FD$
                   is uniserial, the result follows.◻
 A similar proof shows that 
                $ZB$
             is isomorphic to the group algebra of the Klein four group over an algebraically closed field of characteristic
$ZB$
             is isomorphic to the group algebra of the Klein four group over an algebraically closed field of characteristic 
                $2$
             if and only if
$2$
             if and only if 
                $B$
             is nilpotent with Klein four defect groups.
$B$
             is nilpotent with Klein four defect groups.
 
 


















































































