Hostname: page-component-7857688df4-jhtpx Total loading time: 0 Render date: 2025-11-17T16:26:20.842Z Has data issue: false hasContentIssue false

The epidote–törnebohmite polysomatic series: structural relationships and complexity

Published online by Cambridge University Press:  04 August 2025

Sergey V. Krivovichev*
Affiliation:
Nanomaterials Research Centre, Kola Science Centre, Russian Academy of Sciences, Apatity, Russia Department of Crystallography, St. Petersburg State University, Petersburg, Russia

Abstract

The ETn homologous row of the epidote–törnebohmite polysomatic series is considered, which includes minerals of the epidote (n = 0) and gatelite (n = 1) supergroups and radekškodaite group (n = 2). The crystal structures of members of the series are based upon the alternation of epidote (E) and törnebohmite (T) two-dimensional modules. The aristotype structure types of the members of the row crystallise in the P21/m space group with the unit-cell parameters a ≈ 8.90, b ≈ 5.65, c ≈ (10.10 + 7.50n) Å, β ≈ 116.5° and V ≈ (455 + 338n) Å3. The general formula for the members of the row can be expressed as A2(n+1)Mn+3[Si2O7][SiO4]2n+1Xn+2 (X = O, OH and F). The structure model for the hypothetical ET3 member of the series is constructed and the general formulae are derived for the calculation of the number of atoms per unit cell and the number and multiplicities of the atom sites for any value of n. The concept of K-sequence is introduced that is analogous to the concept of a Wyckoff sequence. The general formulae for the information-based complexity parameters are derived for the ETn homologous row of the epidote–törnebohmite polysomatic series with different parities of n. The present absence of the members of the series with n > 2 reflects the entropic restrictions on the polysomatic series that confirm the principle of maximal simplicity for modular inorganic structures.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Guest Editor: Robert F. Martin

This paper is part of a collection in tribute to the work of Edward Grew at 80

References

Aksenov, S.M., Charkin, D.O., Banaru, A.M., Banaru, D.A., Volkov, S.N., Deineko, D.V., Kuznetsov, A.N., Rastsvetaeva, R.K., Chukanov, N.V., Shkurskii, B.B. and Yamnova, N.A. (2023) Modularity, polytypism, topology, and complexity of crystal structures of inorganic compounds (Review). Journal of Structural Chemistry, 64, 17972028.Google Scholar
Aksenov, S.M., Zarubina, E.S., Rastsvetaeva, R.K., Chukanov, N.V. and Filina, M.I. (2024) Refinement of the crystal structure of christofschäferite-(Ce) and the modular aspect of the chevkinite polysomatic series with the general formula of {A4B(T2O7)2}{C2D2O8}m (m = 1, 2). Lithosphere (Russian Federation), 24, 264283.Google Scholar
Bonazzi, P., Bindi, L. and Parodi, G. (2003) Gatelite-(Ce), a new REE-bearing mineral from Trimouns, French Pyrenees: Crystal structure and polysomatic relationships with epidote and törnebohmite-(Ce). American Mineralogist, 88, 223228.Google Scholar
Bonazzi, P., Lepore, G.O., Bindi, L., Chopin, C., Husdal, T.A. and Medenbach, O. (2014) Perbøeite-(Ce) and alnaperbøeite-(Ce), two new members of the epidote–törnebohmite polysomatic series: Chemistry, structure, dehydrogenation, and clue for a sodian epidote end-member. American Mineralogist, 99, 157169.Google Scholar
Bonazzi, P., Holtstam, D. and Bindi, L. (2019) Gatelite-supergroup minerals: recommended nomenclature and review. European Journal of Mineralogy, 31, 173181.Google Scholar
Bragg, L. and Claringbull, G.F. (1965) Crystal Structures of Minerals. Cornell University Press, Ithaca, New York, 419 pp.Google Scholar
Cámara, F., Kampf, A.R., Nestola, F., Ciriotti, M.E., Spartà, D. and Balestra, C. (2021) Demagistrisite, the missing link in a polysomatic series from lawsonite to orientite. The Canadian Mineralogist, 59, 91105.Google Scholar
Campo-Rodriguez, Y.T.C., Ciobanu, C.L., Slattery, A., Cook, N.J., Schutesky, M.E., Ehrig, K., King, S.A. and Yao, J. (2024) Polysomatic intergrowths between amphiboles and non-classical pyriboles in magnetite: Smallest-scale features recording a protracted geological history. American Mineralogist, 109, 17981818.Google Scholar
Ciobanu, C.L., Verdugo-Ihl, M.R., Cook, N.J., Ehrig, K., Slattery, A. and Courtney-Davies, L. (2022) Ferro-Tschermakite with polysomatic chain-width disorder identified in silician magnetite from Wirrda Well, South Australia: A HAADF STEM study. American Mineralogist, 107, 765777.Google Scholar
Collins, C., Dyer, M.S., Pitcher, M.J., Whitehead, G.F.S., Zanella, M., Mandal, P., Claridge, J.B., Darling, G.R. and Rosseinsky, M.J. (2017) Accelerated discovery of two crystal structure types in a complex inorganic phase field. Nature, 546, 280284.Google Scholar
Conconi, R., Fumagalli, P. and Capitani, G. (2023) A multi-methodological study of the bastnäsite-synchysite polysomatic series: Tips and tricks of polysome identification and the origin of syntactic intergrowths. American Mineralogist, 108, 16581668.Google Scholar
Ferraris, G. (1997) Polysomatism as a tool for correlating properties and structure. Pp. 275295 in: Modular Aspects of Minerals (Merlino, S., editor). European Mineralogical Union Notes in Mineralogy. Vol. 1. Eötvös University Press, Budapest.Google Scholar
Ferraris, G., Makovicky, E. and Merlino, S. (2005) Crystallography of Modular Materials. Oxford University Press, Oxford, UK, 384 pp.Google Scholar
Haque, N., Hughes, A., Lim, S. and Vernon, C. (2014) Rare Earth Elements: Overview of Mining, Mineralogy, Uses, Sustainability and Environmental Impact. Resources, 3, 614635.Google Scholar
Hatert, F., Mills, S.J., Pasero, M., Miyawaki, R. and Bosi, F. (2023) CNMNC guidelines for the nomenclature of polymorphs and polysomes. Mineralogical Magazine, 87, 225232.Google Scholar
Hentschel, F., Janots, E., Trepmann, C.A., Magnin, V. and Lanari, P. (2020) Corona formation around monazite and xenotime during greenschist-facies metamorphism and deformation, European Journal of Mineralogy, 32, 521544.Google Scholar
Hornfeck, W. (2022) On the combinatorics of crystal structures: number of Wyckoff sequences of given length. Acta Crystallographica A, 78, 149154.Google Scholar
Hoshino, M., Kimata, M., Nishida, N., Kyono, A., Shimizu, M. and Takizawa, S. (2005) The chemistry of allanite from the Daibosatsu Pass, Yamanashi, Japan. Mineralogical Magazine, 69, 403423.Google Scholar
Kasatkin, A.V., Zubkova, N.V., Pekov, I.V., Chukanov, N.V., Ksenofontov, D.A., Agakhanov, A.A., Belakovskiy, D.I., Polekhovsky, Y.S., Kuznetsov, A.M., Britvin, S.N., Pushcharovsky, D.Y. and Nestola, F. (2020) The mineralogy of the historical Mochalin Log REE deposit, South Urals, Russia. Part II. Radekškodaite-(La), (CaLa5)(Al4Fe2+)[Si2O7][SiO4]5O(OH)3 and radekškodaite-(Ce), (CaCe5)(Al4Fe2+)[Si2O7][SiO4]5O(OH)3, two new minerals with a novel structure-type belonging to the epidote–törnebohmite polysomatic series. Mineralogical Magazine, 84, 839853.Google Scholar
Kasatkin, A.V., Zubkova, N.V., Škoda, R., Pekov, I.V., Agakhanov, A.A., Gurzhiy, V.V., Ksenofontov, D.A., Belakovskiy, D.I. and Kuznetsov, A.M. (2024) The mineralogy of the historical Mochalin Log REE deposit, South Urals, Russia. Part V. Zilbermintsite-(La), (CaLa5)(Fe3+Al3Fe2+)[Si2O7][SiO4]5O(OH)3, a new mineral with ET 2 type structure and a definition of the radekškodaite group. Mineralogical Magazine, 88, 302311.Google Scholar
Krivovichev, S.V. (2012) Topological complexity of crystal structures: quantitative approach. Acta Crystallographica A, 68, 393398.Google Scholar
Krivovichev, S.V. (2013) Structural complexity of minerals: information storage and processing in the mineral world. Mineralogical Magazine, 77, 275326.Google Scholar
Krivovichev, S.V. (2014) Which inorganic structures are the most complex? Angewandte Chemie-International Edition, 53, 654661.Google Scholar
Krivovichev, S.V. (2021) The principle of maximal simplicity for modular inorganic crystal structures. Crystals, 11, 1472.Google Scholar
Krivovichev, S.V., Krivovichev, V.G., Hazen, R.M., Aksenov, S.M., Avdontceva, M.S., Banaru, A.M., Gorelova, L.A., Ismagilova, R.M., Kornyakov, I.V., Kuporev, I.V., Morrison, S.M., Panikorovskii, T.L. and Starova, G.L. (2022) Structural and chemical complexity of minerals: an update. Mineralogical Magazine, 86, 183204.Google Scholar
Magnéli, A. (1953) Structures of the ReO3-type with recurrent dislocations of atoms: ‘homologous series’ of molybdenum and tungsten oxides. Acta Crystallographica, 6, 495500.Google Scholar
Malcherek, T., Schlüter, J. and Schäfer, C. (2021) Perrierite-(Ce) from the Laacher See tephra, Eifel, Germany, and the modular character of the chevkinite group of minerals. Physics and Chemistry of Minerals, 48, 10.Google Scholar
Merlino, S. and Pasero, M. (1997) Polysomatic approach in the crystal chemistry of minerals. Pp. 297312 in: Modular Aspects of Minerals (Merlino, S., editor). European Mineralogical Union Notes in Mineralogy. Vol. 1. Eötvös University Press, Budapest.Google Scholar
Ogawa, K. and Walsh, A. (2025) Electrostatic control of electronic structure in modular inorganic crystals. Journal of the American Chemical Society, 147, 821829.Google Scholar
Rao, C., Gu, X., Wang, R., Xia, Q., Dong, C., Hatert, F., Dal Bo, F., Yu, X. and Wang, W. (2022) Zinconigerite-2N1S ZnSn2Al12O22(OH)2 and zinconigerite-6N6S Zn3Sn2Al16O30(OH)2, two new minerals of the nolanite-spinel polysomatic series from the Xianghualing skarn, Hunan Province, China. American Mineralogist, 107, 19521959.Google Scholar
Shen, J. and Moore, P.B. (1982) Törnebohmite, RE2Al(OH)[SiO4]2: crystal structure and genealogy of RE(III)Si(IV) ⇄ Ca(II)P(V) isomorphisms. American Mineralogist, 67, 10211028.Google Scholar
Thompson, J.B. (1970) Geometrical possibilities for amphibole structures: model biopyriboles. American Mineralogist, 55, 292293.Google Scholar
Thompson, J.B. (1978) Biopyriboles and polysomatic series. American Mineralogist, 63, 239249.Google Scholar
Tsuchiya, J., Mizoguchi, T., Inoué, S. and Thompson, E.C. (2024) First-principles investigations of antigorite polysomatism under pressure. Journal of Geophysical Research: Solid Earth, 129, e2023JB028060.Google Scholar
Veblen, D.R. (1991) Polysomatism and polysomatic series: a review and applications. American Mineralogist, 76, 801826.Google Scholar
Xiao, Z. and Zhang, W. (2024) Review of allanite: Properties, occurrence and mineral processing technologies. Green and Smart Mining Engineering, 1, 4052.Google Scholar
Yudintsev, S.V., Nickolsky, M.S., Ojovan, M.I., Stefanovsky, O.I., Nikonov, B.S. and Ulanova, A.S. (2022) Zirconolite polytypes and murataite polysomes in matrices for the REE-actinide fraction of HLW. Materials, 15, 6091.Google Scholar