Hostname: page-component-857557d7f7-zv5th Total loading time: 0 Render date: 2025-11-28T00:18:21.723Z Has data issue: false hasContentIssue false

A note on transverse sets and bilinear varieties

Published online by Cambridge University Press:  27 November 2025

LUKA MILIĆEVIĆ*
Affiliation:
Mathematical Institute of the Serbian Academy of Sciences and Arts, Kneza Mihaila 36, 11000 Belgrade, Serbia. e-mail: luka.milicevic@turing.mi.sanu.ac.rs

Abstract

Let G and H be finite-dimensional vector spaces over $\mathbb{F}_p$. A subset $A \subseteq G \times H$ is said to be transverse if all of its rows $\{x \in G \colon (x,y) \in A\}$, $y \in H$, are subspaces of G and all of its columns $\{y \in H \colon (x,y) \in A\}$, $x \in G$, are subspaces of H. As a corollary of a bilinear version of the Bogolyubov argument, Gowers and the author proved that dense transverse sets contain bilinear varieties of bounded codimension. In this paper, we provide a direct combinatorial proof of this fact. In particular, we improve the bounds and evade the use of Fourier analysis and Freiman’s theorem and its variants.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bienvenu, P.-Y. and , T.H.. A bilinear Bogolyubov theorem. European J. Combin. 77 (2019), 102113.10.1016/j.ejc.2018.11.003CrossRefGoogle Scholar
Bienvenu, P.-Y. and , T.H.. Linear and quadratic uniformity of the Möbius function over $\mathbb{F}_{q}[t]$ . Mathematika 65 (2019), 505529.10.1112/S0025579319000032CrossRefGoogle Scholar
Bienvenu, P.-Y., González-Sánchez, D. and Martínez, Á.D.. A note on the bilinear Bogolyubov theorem: transverse and bilinear sets. Proc. Amer. Math. Soc. 148 (2020), 2331.10.1090/proc/14658CrossRefGoogle Scholar
Bogolioùboff, N.. Sur quelques propriétés arithmétiques des presque-périodes. Ann. Chaire Phys. Math. Kiev 4 (1939), 185205.Google Scholar
Gowers, W.T. and Milićević, L.. A bilinear version of Bogolyubov’s theorem. Proc. Amer. Math. Soc. 148 (2020), 46954704.10.1090/proc/15129CrossRefGoogle Scholar
Gowers, W.T. and Milićević, L.. A quantitative inverse theorem for the $\mathsf{U}^4$ norm over finite fields. Preprint: ArXiv:1712.00241 (2017).Google Scholar
Gowers, W.T. and Milićević, L.. An inverse theorem for Freiman multi-homomorphisms. Preprint: ArXiv:2002.11667 (2020).Google Scholar
Hosseini, K. and Lovett, S.. A bilinear Bogolyubov-Ruzsa lemma with poly-logarithmic bounds. Discrete Anal., paper no. 10 (2019), 114.Google Scholar
Milićević, L.. Approximate quadratic varieties. Preprint: ArXiv:2308.12881 (2023).Google Scholar