Given two arbitrary sequences   $({\lambda }_{j} )_{j\geq 1} $  and
 $({\lambda }_{j} )_{j\geq 1} $  and   $({\mu }_{j} )_{j\geq 1} $  of real numbers satisfying
 $({\mu }_{j} )_{j\geq 1} $  of real numbers satisfying   $$\begin{eqnarray*}\displaystyle \vert {\lambda }_{1} \vert \gt \vert {\mu }_{1} \vert \gt \vert {\lambda }_{2} \vert \gt \vert {\mu }_{2} \vert \gt \cdots \gt \vert {\lambda }_{j} \vert \gt \vert {\mu }_{j} \vert \rightarrow 0, &&\displaystyle\end{eqnarray*}$$
 $$\begin{eqnarray*}\displaystyle \vert {\lambda }_{1} \vert \gt \vert {\mu }_{1} \vert \gt \vert {\lambda }_{2} \vert \gt \vert {\mu }_{2} \vert \gt \cdots \gt \vert {\lambda }_{j} \vert \gt \vert {\mu }_{j} \vert \rightarrow 0, &&\displaystyle\end{eqnarray*}$$   we prove that there exists a unique sequence   $c= ({c}_{n} )_{n\in { \mathbb{Z} }_{+ } } $ , real valued, such that the Hankel operators
 $c= ({c}_{n} )_{n\in { \mathbb{Z} }_{+ } } $ , real valued, such that the Hankel operators   ${\Gamma }_{c} $  and
 ${\Gamma }_{c} $  and   ${\Gamma }_{\tilde {c} } $  of symbols
 ${\Gamma }_{\tilde {c} } $  of symbols   $c= ({c}_{n} )_{n\geq 0} $  and
 $c= ({c}_{n} )_{n\geq 0} $  and   $\tilde {c} = ({c}_{n+ 1} )_{n\geq 0} $ , respectively, are selfadjoint compact operators on
 $\tilde {c} = ({c}_{n+ 1} )_{n\geq 0} $ , respectively, are selfadjoint compact operators on   ${\ell }^{2} ({ \mathbb{Z} }_{+ } )$  and have the sequences
 ${\ell }^{2} ({ \mathbb{Z} }_{+ } )$  and have the sequences   $({\lambda }_{j} )_{j\geq 1} $  and
 $({\lambda }_{j} )_{j\geq 1} $  and   $({\mu }_{j} )_{j\geq 1} $ , respectively, as non-zero eigenvalues. Moreover, we give an explicit formula for
 $({\mu }_{j} )_{j\geq 1} $ , respectively, as non-zero eigenvalues. Moreover, we give an explicit formula for   $c$  and we describe the kernel of
 $c$  and we describe the kernel of   ${\Gamma }_{c} $  and of
 ${\Gamma }_{c} $  and of   ${\Gamma }_{\tilde {c} } $  in terms of the sequences
 ${\Gamma }_{\tilde {c} } $  in terms of the sequences   $({\lambda }_{j} )_{j\geq 1} $  and
 $({\lambda }_{j} )_{j\geq 1} $  and   $({\mu }_{j} )_{j\geq 1} $ . More generally, given two arbitrary sequences
 $({\mu }_{j} )_{j\geq 1} $ . More generally, given two arbitrary sequences   $({\rho }_{j} )_{j\geq 1} $  and
 $({\rho }_{j} )_{j\geq 1} $  and   $({\sigma }_{j} )_{j\geq 1} $  of positive numbers satisfying
 $({\sigma }_{j} )_{j\geq 1} $  of positive numbers satisfying   $$\begin{eqnarray*}\displaystyle {\rho }_{1} \gt {\sigma }_{1} \gt {\rho }_{2} \gt {\sigma }_{2} \gt \cdots \gt {\rho }_{j} \gt {\sigma }_{j} \rightarrow 0, &&\displaystyle\end{eqnarray*}$$
 $$\begin{eqnarray*}\displaystyle {\rho }_{1} \gt {\sigma }_{1} \gt {\rho }_{2} \gt {\sigma }_{2} \gt \cdots \gt {\rho }_{j} \gt {\sigma }_{j} \rightarrow 0, &&\displaystyle\end{eqnarray*}$$   we describe the set of sequences   $c= ({c}_{n} )_{n\in { \mathbb{Z} }_{+ } } $  of complex numbers such that the Hankel operators
 $c= ({c}_{n} )_{n\in { \mathbb{Z} }_{+ } } $  of complex numbers such that the Hankel operators   ${\Gamma }_{c} $  and
 ${\Gamma }_{c} $  and   ${\Gamma }_{\tilde {c} } $  are compact on
 ${\Gamma }_{\tilde {c} } $  are compact on   ${\ell }^{2} ({ \mathbb{Z} }_{+ } )$  and have sequences
 ${\ell }^{2} ({ \mathbb{Z} }_{+ } )$  and have sequences   $({\rho }_{j} )_{j\geq 1} $  and
 $({\rho }_{j} )_{j\geq 1} $  and   $({\sigma }_{j} )_{j\geq 1} $ , respectively, as non-zero singular values.
 $({\sigma }_{j} )_{j\geq 1} $ , respectively, as non-zero singular values.