Hostname: page-component-7dd5485656-frp75 Total loading time: 0 Render date: 2025-10-24T23:09:25.067Z Has data issue: false hasContentIssue false

EISENSTEIN COHOMOLOGY FOR ORTHOGONAL GROUPS AND THE SPECIAL VALUES OF L-FUNCTIONS FOR $\mathrm {GL}_1 \times \mathrm {O}(2n)$

Published online by Cambridge University Press:  28 July 2025

Chandrasheel Bhagwat*
Affiliation:
Indian Institute of Science Education and Research , Dr. Homi Bhabha Road, Pashan, Pune 411008, INDIA
A. Raghuram
Affiliation:
Department of Mathematics, Fordham University at Lincoln Center , New York, NY 10023, USA (araghuram@fordham.edu)

Abstract

For an even positive integer n, we study rank-one Eisenstein cohomology of the split orthogonal group $\mathrm {O}(2n+2)$ over a totally real number field $F.$ This is used to prove a rationality result for the ratios of successive critical values of degree-$2n$ Langlands L-functions associated to the group $\mathrm {GL}_1 \times \mathrm {O}(2n)$ over F. The case $n=2$ specializes to classical results of Shimura on the special values of Rankin–Selberg L-functions attached to a pair of Hilbert modular forms.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

In memory of Professor Günter Harder.

References

Arthur, J (2013) The Endoscopic Classification of Representations: Orthogonal and Symplectic Groups, vol. 61. American Mathematical Society Colloquium Publications. Providence, RI: American Mathematical Society.Google Scholar
Atobe, H and Gan, WT (2017) On the local Langlands correspondence and Arthur conjecture for even orthogonal groups. Representation Theory 21, 354415.CrossRefGoogle Scholar
Balasubramanyam, B and Raghuram, A (2017) Special values of adjoint L-functions and congruences for automorphic forms on GL(n) over a number field. Amer. J. Math. 139(3), 641679.CrossRefGoogle Scholar
Bernstein, IN and Zelevinskii, AV (1976) Representations of the group $\mathrm{GL}(\mathrm{n},\mathrm{F})$ , where $\mathrm{F}$ is a local non-Archimedean field. Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk, Translation in Russian mathematical Surveys 31(3), 570.Google Scholar
Bhagwat, C and Raghuram, A (2017) Special values of L-functions for orthogonal groups. C. R. Math. Acad. Sci. Paris 355(3), 263267.CrossRefGoogle Scholar
Borel, A (1979) Automorphic $\mathrm{L}$ -functions. In Automorphic Forms, Representations and $L$ -functions, vol XXXIII. Proc. Sympos. Pure Math. Providence, RI: Amer. Math. Soc., Part 2, 2761.Google Scholar
Borel, A and J-P, Serre (1973) Corners and arithmetic groups. Commen. Math. Helvetici 48, 436491.CrossRefGoogle Scholar
Borel, A and Wallach, N (2000) Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups. Providence, RI: American Mathematical Society.CrossRefGoogle Scholar
Casselman, W and Shahidi, F (1998) On irreducibility of standard modules for generic representations. Ann. Sci. École Norm. Sup. (4) 31(4) 561589.CrossRefGoogle Scholar
Chen, S-Y (2024) Period relations between the Betti–Whittaker periods for $GL(n)$ under duality. Int. Math. Res. Not. IMRN 2024(15), 1103211063.CrossRefGoogle Scholar
Clozel, L (1990) Motifs et formes automorphes: applications du principe de fonctorialité. In Automorphic Forms, Shimura Varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), vol. 10. Perspect. Math. Boston, MA: Academic Press, 77159.Google Scholar
Deligne, P (1979) Valeurs de fonctions $L$ et périodes d’intégrales (French), vol. XXXIII. With an appendix by N. Koblitz and Ogus, A.. Proc. Sympos. Pure Math., Providence, RI: Amer. Math. Soc., Part 2, 313346.Google Scholar
Deligne, P and Raghuram, A (2025) Motives, periods, and functoriality. Tunis. J. Math. 7(1), 131165.CrossRefGoogle Scholar
Ginzburg, D, Jiang, D and Soudry, D (2015) On CAP representations for even orthogonal groups I: A correspondence of unramified representations. Chin. Ann. Math. Ser. B 36(4), 485522.CrossRefGoogle Scholar
Harder, G (1987) Eisenstein cohomology of arithmetic groups. The case $\mathrm{GL}_2$ . Invent. Math. 89(1), 37118.CrossRefGoogle Scholar
Harder, G and Raghuram, A (2020) Eisenstein Cohomology for $\mathrm{GL}_N$ and the Special Values of Rankin–Selberg $L$ -functions, vol. 203. Annals of Math. Studies. Princeton, NJ: Princeton University Press.Google Scholar
Harish-Chandra, (1968) Automorphic Forms on Semi-simple Lie Groups, vol. 62. Lecture Notes in Mathematics, Springer-Verlag: Berlin-New York, x+138 pp.Google Scholar
Jacquet, H and Shalika, JA (1981) On Euler products and the classification of automorphic forms. II. Amer. J. Math. 103(4), 777815.CrossRefGoogle Scholar
Jacquet, H and Shalika, JA (1976) A non-vanishing theorem for zeta functions of $\mathrm{G}{\mathrm{L}}_{\mathrm{n}}$ , Invent. Math. 38, 116.CrossRefGoogle Scholar
Kim, H (2004) Automorphic L-functions. In Lectures on Automorphic L-functions, vol. 20. Fields Inst. Monogr. Providence, RI: Amer. Math. Soc., 97201.Google Scholar
Kim, W (2009) Square integrable representations and the standard module conjecture for general spin groups. Canad. J. Math. 61(3), 617640.CrossRefGoogle Scholar
Knapp, AW (1994) Local Langlands correspondence: the Archimedean case. In Motives vol. 55, Part 2. Proc. Sympos. Pure Math. Providence, RI: AMS, 393410.CrossRefGoogle Scholar
Kostant, B (1961) Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. Math. 74(2), 329387.CrossRefGoogle Scholar
Kutzko, PC (1977) Mackey’s theorem for nonunitary representations. Proc. Amer. Math. Soc. 64(1), 173175.Google Scholar
Mœglin, C and J-L, Waldspurger (1989) Le spectre résiduel de GL(n). (French) [The residual spectrum of GL(n)]. Ann. Sci. École Norm. Sup. (4) 22(4), 605674.CrossRefGoogle Scholar
Raghuram, A (2013) Comparison results for rertain periods of cusp forms on $\mathrm{GL}(2\mathrm{n})$ over a totally real number field. vol. 20. Ramanujan Math. Soc. Lect. Notes Ser. Mysore: Ramanujan Mathematical Society, 323334.Google Scholar
Raghuram, A (2016) Critical values of Rankin–Selberg $L$ -functions for $\mathrm{GL}_n\times \mathrm{GL}_{n-1}$ and the symmetric cube $L$ -functions for $\mathrm{GL}_2$ . Forum Math. 28(3), 457489.CrossRefGoogle Scholar
Raghuram, A (2023) An arithmetic property of intertwining operators for $p$ -adic groups. Canad. J. Math. 75(1), 83107.CrossRefGoogle Scholar
Raghuram, A (2025) Eisenstein Cohomology for $\mathrm{GL}_N$ and the special values of Rankin–Selberg $L$ -functions over a totally imaginary field. Forum of Math. Sigma 13(E86), 168.CrossRefGoogle Scholar
Raghuram, A and Sarnobat, M (2018) Cohomological representations and functorial transfer from classical groups. In Cohomology of Arithmetic Groups, vol. 245. Springer Proc. Math. Stat. Cham: Springer, 157176.CrossRefGoogle Scholar
Raghuram, A and Shahidi, F (2008) On certain period relations for cusp forms on ${\mathrm{GL}}_{\mathrm{n}}$ . Int. Math. Res. Not. 2008, doi:10.1093/imrn/rnn077.Google Scholar
Shahidi, F (1985) Local coefficients as Artin factors for real groups. Duke Math. J. 52(4), 9731007.CrossRefGoogle Scholar
Shahidi, F (2010) Eisenstein Series and Automorphic L-functions, vol. 58. American Mathematical Society Colloquium Publications. Providence, RI: American Mathematical Society.Google Scholar
Shimura, G (1977) On the periods of modular forms. Math. Ann. 229(3), 211221.CrossRefGoogle Scholar
Shimura, G (1978) The special values of the zeta functions associated with Hilbert modular forms. Duke Math. J. 45(3), 637679.CrossRefGoogle Scholar
Soudry, D (2005) On Langlands functoriality from classical groups to ${\mathrm{GL}}_{\mathrm{n}}$ . Automorphic forms. I. Astérisque 298, 335390.Google Scholar
Waldspurger, J-L (2003) La formule de Plancherel pour les groupes p-adiques (d’après Harish-Chandra). J. Inst. Math. Jussieu 2(2), 235333.CrossRefGoogle Scholar
Wallach, N (1988) Real Reductive Groups. I, vol. 132. Pure and Applied Mathematics. Boston, MA: Academic Press, Inc.Google Scholar