Hostname: page-component-65b85459fc-bczq6 Total loading time: 0 Render date: 2025-10-20T04:50:29.715Z Has data issue: false hasContentIssue false

ON IDEALS RELATED TO LAVER AND MILLER TREES

Part of: Set theory

Published online by Cambridge University Press:  28 August 2025

ALEKSANDER CIEŚLAK*
Affiliation:
FACULTY OF PURE AND APPLIED MATHEMATICS WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY WYBRZEŻE STANISŁAWA WYSPIAŃSKIEGO 27 50-370 WROCŁAW POLAND
ARTURO MARTÍNEZ-CELIS
Affiliation:
INSTYTUT MATEMATYCZNY UNIWERSYTET WROCŁAWSKI PL. GRUNWALDZKI 2 50-384 WROCŁAW POLAND E-mail: arturo.martinez-celis@math.uni.wroc.pl

Abstract

In this work, we consider the ideals $m^0(\mathcal {I})$ and $\ell ^0(\mathcal {I})$, ideals generated by the $\mathcal {I}$-positive Miller trees and $\mathcal {I}$-positive Laver trees, respectively. We investigate in which cases these ideals have cofinality larger than $\mathfrak {c}$ and we calculate some cardinal invariants closely related to these ideals.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

Blass, A. and Saharon, S., Near coherence of filters. III. A simplified consistency proof . Notre Dame Journal of Formal Logic, vol. 30 (1989), no. 4, pp. 530538. http://doi.org/10.1305/ndjfl/1093635236Google Scholar
Bartoszyński, T. and Judah, H., Set Theory: On the Structure of the Real Line, A K Peters, Ltd., Wellesley, 1995. xii+546Google Scholar
Brendle, J., Khomskii, Y., and Wohofsky, W., Cofinalities of Marczewski-like ideals . Colloquium Mathematicum, vol. 150 (2017), no. 2, pp. 269279.Google Scholar
Blass, A., Combinatorial cardinal characteristics of the continuum. Version: 2010 , Handbook of Set Theory (M. Foreman and A. Kanamori, editors), vols. 1, 2, 3, Springer, Dordrecht, 2010, pp. 395489. http://doi.org/10.1007/978-1-4020-5764-9_7.Google Scholar
Brendle, J., Mutual generics and perfect free subsets. Acta Mathematica Hungarica, vol. 82 (1999), nos. 1–2, pp. 143161.Google Scholar
Brendle, J. and Shelah, S., Ultrafilters on $\omega$ —Their ideals and their cardinal characteristics . Transactions of the American Mathematical Society, vol. 351 (1999), no. 7, pp. 26432674.Google Scholar
Dečo, M. and Repický, M., Strongly dominating sets of reals . Archive for Mathematical Logic, vol. 52 (2013), nos. 7–8, pp. 827846.Google Scholar
Goldstern, M., Repický, M., Shelah, S., and Spinas, O., On tree ideals . Proceedings of the American Mathematical Society, vol. 123 (1995), no. 5, pp. 15731581.Google Scholar
Hernández-Hernández, F. and Hrušák, M., Cardinal invariants of analytic $P$ -ideals . Canadian Journal of Mathematics, vol. 59 (2007), no. 3, pp. 575595.Google Scholar
Hrušák, M., Combinatorics of filters and ideals. Version: 2011 , Set Theory and its Applications (L. Babinkostova, A. E. Caicedo, S. Geshke and M. Scheepers, editors), American Mathematical Society, Providence, 2011, pp. 2969. http://doi.org/10.1090/conm/533/10503 Google Scholar
Hrušák, M., Katětov order on Borel ideals . Archive for Mathematical Logic, vol. 56 (2017), nos. 7–8, pp. 831847.Google Scholar
Jech, T., Set Theory, The Third Millennium Edition, 2002, Springer, Berlin, 2002.Google Scholar
Judah, H., Miller, A. W., and Shelah, S., Sacks forcing, Laver forcing, and Martin’s axiom . Archive for Mathematical Logic, vol. 31 (1992), no. 3, pp. 145161.Google Scholar
Kechris, A. S., On a notion of smallness for subsets of the Baire space . Transactions of the American Mathematical Society, vol. 229 (1977), pp. 191207.Google Scholar
Khomskii, Y. and Laguzzi, G., Full-splitting Miller trees and infinitely often equal reals . Annals of Pure and Applied Logic, vol. 168 (2017), no. 8, 14911506.Google Scholar
Miller, A. W., Rational perfect set forcing. Version: 1984 . Axiomatic Set Theory (Boulder, Colorado, 1983) (J. E. Baumgartner, D. A. Martin and S. Shelah, editors), American Mathematical Society, Providence, 1984, pp. 143159. http://doi.org/10.1090/conm/031/763899 Google Scholar
Miller, A. W., Hechler and Laver trees, preprint, 2012Google Scholar
Newelski, L. and Rosł anowski, A., The ideal determined by the unsymmetric game . Proceedings of the American Mathematical Society, vol. 117 (1993), no. 3, pp. 823831.Google Scholar
Repický, M., Cofinality of the Laver ideal . Archive for Mathematical Logic, vol. 55 (2016), nos. 7–8, pp. 10251036.Google Scholar
Sacks, G. E., Forcing with perfect closed sets , Axiomatic Set Theory (Proceedings of Symposia in Pure Mathematics, Vol. XIII, Part I, University of California, Los Angeles, California, 1967, Bd. XIII, Part I (D. S. Scott, editor), American Mathematical Society, Providence, 1971, pp. 331355.Google Scholar
Spinas, O., Generic trees . The Journal of Symbolic Logic, vol. 60 (1995), no. 3, pp. 705726.Google Scholar
Shelah, S. and Spinas, O., Different cofinalities of tree ideals . Annals of Pure and Applied Logic, vol. 174 (2023), no. 8, Article no. 103290, 18 pp.Google Scholar
Sabok, M. and Zapletal, J., Forcing properties of ideals of closed sets . The Journal of Symbolic Logic, vol. 76 (2011), no. 3, pp. 10751095.Google Scholar
Szpilrajn, E., Sur une classe de fonctions de M. Sierpiński et la classe correspondante d’ensembles . Fundamenta Mathematicae, vol. 24 (1935), pp. 1734.Google Scholar
Talagrand, M., Compacts de fonctions mesurables et filtres non mesurables . Studia Mathematica, vol. 67 (1980), no. 1, pp. 1343.Google Scholar
Todorčević, S., Analytic gaps . Fundamenta Mathematicae, vol. 150 (1996), no. 1, pp. 5566.Google Scholar
Zapletal, J., Forcing Idealized, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2008, vi+314.Google Scholar