Hostname: page-component-68c7f8b79f-xmwfq Total loading time: 0 Render date: 2025-12-19T16:35:20.840Z Has data issue: true hasContentIssue true

A Robust Navigation Technique for Integration in the Guidance and Control of an Uninhabited Surface Vehicle

Published online by Cambridge University Press:  03 March 2015

A. Annamalai
Affiliation:
(School of Marine Science and Engineering, Plymouth University, Plymouth, UK)
A. Motwani*
Affiliation:
(School of Marine Science and Engineering, Plymouth University, Plymouth, UK)
S.K. Sharma
Affiliation:
(School of Marine Science and Engineering, Plymouth University, Plymouth, UK)
R. Sutton
Affiliation:
(School of Marine Science and Engineering, Plymouth University, Plymouth, UK)
P. Culverhouse
Affiliation:
(School of Computing and Mathematics, Plymouth University, Plymouth, UK)
C. Yang
Affiliation:
(School of Computing and Mathematics, Plymouth University, Plymouth, UK)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper proposes the novel use of a weighted Interval Kalman Filter (wIKF) in a robust navigational approach for integration with the guidance and control systems of an uninhabited surface vehicle named Springer. The waypoint tracking capability of this technique is compared with that of one that uses a conventional Kalman Filter (KF) navigational design, when the model of the sensing equipment used by the filter is incorrect. In this case, the KF fails to predict correctly the vehicle's heading, which consequently impacts negatively on the performance of its integrated navigation, guidance and control (NGC). However, the use of a wIKF technique that is immune to this kind of erroneous modelling endows the integrated NGC system with better accuracy and efficiency in completing a mission.

Information

Type
Research Article
Copyright
Copyright © The Royal Institute of Navigation 2015 

References

REFERENCES

Allgower, F., Glielmo, L., Guardiola, C. and Kolmanovsky, I. (2010). Automotive model predictive control. Springer-Verlag, Berlin.Google Scholar
Alves, J., Oliveira, P., Oliveira, R., Pascoal, A., Rufino, M., Sebastiao, L. and Silvestre, C. (2006). Vehicle and mission control of the Delfim autonomous surface craft. Proceedings of 14th Mediterranean Conference on Control Automation, Ancona, Italy.Google Scholar
Annamalai, A.S.K. (2014). An adaptive autopilot design for an uninhabited surface vehicle. PhD thesis, Plymouth University, Plymouth, UK.Google Scholar
Annamalai, A.S.K. (2012). A review of model predictive control and closed loop system identification for design of an autopilot for uninhabited surface vehicles. Springer Technical Report: MIDAS.SMSE.2012.TR.005, 2012.Google Scholar
Annamalai, A.S.K. and Motwani, A. (2013). A comparison between LQG and MPC autopilots for inclusion in a navigation, guidance and control system. Springer Technical Report, MIDAS SMSE.2013.TR.006. Plymouth University, Plymouth, UK.Google Scholar
Ashrafiuon, H., Muske, K.R., McNinch, L.C. and Soltran, RA. (2008). Sliding-mode tracking control of surface vessels. IEEE Transactions on Industrial Electronics, 55(11), 40044012.Google Scholar
Caccia, M., Bibuli, M., Bono, R. and Bruzzone, G. (2008). Basic navigation, guidance and control of an Unmanned Surface Vehicle. Journal of Autonomous Robots, 25(4), 349365.Google Scholar
Caccia, M., Bibuli, M., Bono, R., Bruzzone, G.A., Bruzzone, G.I. and Spirandelli, E. (2007). Unmanned surface vehicle for coastal and protected waters applications: The Charlie project. Marine Technology Society Journal, 41(2), 6271.Google Scholar
Chen, G., Wang, J. and Shieh, L.S. (1997). Interval Kalman Filtering. IEEE Transactions on Aerospace and Electronic Systems 33(1), 250258.CrossRefGoogle Scholar
Chui, C.K. and Chen, G. (2008). Kalman Filtering with Real-Time Applications, 4th ed. Springer, New York.Google Scholar
Elkaim, G.H. and Kelbley, R. (2006). Measurement based H infinity controller synthesis for an autonomous surface vehicle. Proceedings of 19th International Technical Meeting of the Satellite Division of the Institute of Navigation. Fort Worth, USA.Google Scholar
He, X.F. and Vik, B. (1999). Use of Extended Interval Kalman Filter on Integrated GPS/INS System. Proceedings of the 12th International Technical Meeting of the Satellite Division of The Institute of Navigation, Nashville, TN.Google Scholar
Healey, A.J. and Lienard, D. (1993) Multivariable sliding model control for autonomous diving and steering of unmanned underwater vehicles. IEEE Journal of Oceanic Engineering, 18(3), 327–33.CrossRefGoogle Scholar
Li, Z. and Sun, J. (2012). Disturbance compensating model predictive control with application to ship heading control. IEEE Trans on Control Systems Technology, 20(1), 257265.Google Scholar
Liu, J., Allen, R. and Yi, H. (2011). Ship motion stabilizing control using a combination of model predictive control and an adaptive input disturbance predictor. Proc IMechE Part I: Journal of Systems and Control Engineering, 225(5), 591602.Google Scholar
Maciejowski, J.M. (2002). Predictive control with constraints. Prentice Hall Inc., London.Google Scholar
Majohr, J., Buch, T. and Korte, C. (2000). Navigation and automatic control of the measuring dolphin (MessinTM). Proc of 5th IFAC Conference on Manoeuvering and Control of Marine Craft, Aalborg, Denmark.Google Scholar
Motwani, A., Sharma, S.K., Sutton, R. and Culverhouse, P. (2013a). Application of artificial neural networks to weighted interval Kalman filtering. Proc IMechE Part I: Journal of Systems and Control Engineering, 228(5), pp 267277.Google Scholar
Motwani, A., Sharma, S.K., Sutton, R. and Culverhouse, P. (2013b). Interval Kalman filtering in navigation system design for an uninhabited surface vehicle. Journal of Navigation, 66(5), 639652.Google Scholar
Naeem, W., Sutton, R. and Chudley, J. (2006). Modelling and control of an unmanned surface vehicle for environmental monitoring. UKACC International Control Conference, Glasgow, Scotland.Google Scholar
Naeem, W., Sutton, R., Chudley, J., Dalgleish, FR. and Tetlow, S. (2005). An online genetic algorithm based model predictive control autopilot design with experimental verification. International Journal of Control, 78(14/20), 10761090.Google Scholar
Naeem, W., Xu, T., Sutton, R. and Tiano, A. (2008). The Design of a Navigation, Guidance, and Control System for an Unmanned Surface Vehicle for Environmental Monitoring. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 222(2), 6780.Google Scholar
Oh, S.R. and Sun, J. (2005). Path following of under actuated marine surface vessels using line-of-sight based model predictive control. Ocean Engineering, 37(2–3), 289295.CrossRefGoogle Scholar
Park, S., Kim, J., Lee, W. and Jang, C. (2005). A study on the fuzzy controller for an unmanned surface vessel designed for sea probes. Proceedings of International Conference on Control, Automation and Systems. Kintex, Korea.Google Scholar
Perez, T. (2005). Ship motion: Course keeping and roll stabilisation using rudder and fins. Springer-Verlag, London.Google Scholar
Qiaomei, S., Guang, R., Jin, Y. and Xiaowei, Q. (2011). Autopilot design for unmanned surface vehicle tracking control. Proc of 3rd International Conference on Measuring Technology and Mechatronics Automation, Shanghai, China.Google Scholar
Rawlings, J.B., and Mayne, D.Q. (2009). Model predictive control: Theory and design. Nob Hill Publishing, Madison.Google Scholar
Rump, S. (1999). INTLAB - INTerval LABoratory. Kluwer Academic Publishers.CrossRefGoogle Scholar
Sutton, R., Sharma, S. and Xu, T. (2011). Adaptive navigation systems for an unmanned surface vehicle. Proc IMarEST - Part A: Journal of Marine Engineering and Technology, 10(3), 320.Google Scholar
Tiano, A., Zirilli, A., Cuneo, M. and Pagnan, S. (2005). Multisensor Data Fusion Applied to Marine Integrated Navigation Systems. Proceedings of the IMechE Part M: Journal of Engineering for the Maritime Environment, 219(3), 121130.Google Scholar
Tiano, A., Zirilli, A. and Pizzocchero, F. (2001). Application of interval and fuzzy techniques to integrated navigation systems. Joint 9th IFSA World Congress and 20th NAFIPS International Conference: proceedings, Vancouver, British Columbia, Canada.Google Scholar
Wang, L. (2009). Model predictive control system design and implementation using MATLAB. Springer-Verlag, Berlin.Google Scholar
Xu, T. (2007). An intelligent navigation system for an unmanned surface vehicle. PhD thesis, Plymouth University, UK.Google Scholar
Yan, RJ., Pang, S., Sun, HB. and Pang, YJ. (2010). Development and missions of unmanned surface vehicle. Journal of Marine Science and Application, 9(4), 451457.Google Scholar
Zhang, P., Gu, J., Milios, E.E. and Huynh, P. (2005). Navigation with IMU/GPS/Digital Compass with Unscented Kalman Filter. Proceedings of the IEEE International Conference on Mechatronics and Automation, Ontario, Canada.CrossRefGoogle Scholar