Hostname: page-component-857557d7f7-h6shg Total loading time: 0 Render date: 2025-12-06T10:05:33.810Z Has data issue: false hasContentIssue false

Steady advection–diffusion in polygonal microfluidic mixers

Published online by Cambridge University Press:  04 December 2025

Etienne Boulais
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
Aniket Udepurkar
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
Cedric Devos
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
Martin Z. Bazant
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
Allan S. Myerson
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
Richard D. Braatz*
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
*
Corresponding author: Richard D. Braatz, braatz@mit.edu

Abstract

We present theoretical models for flow and diffusion in microfluidic polygonal mixers of arbitrary shapes. Combining work based on Boussinesq coordinates with modern methods for the calculation of the Schwarz–Christoffel transform, we present an integrated method that yields analytical solutions for both flow and concentration profiles everywhere in microfluidic mixers with arbitrary numbers of inlets. We illustrate how the problem can be reduced to a sequence of conformal maps to a known domain, where the advection–diffusion problem can be readily solved, and map back the solution to the geometry of interest. We use the method to model a number of previously published microfluidic mixer geometries, used in lipid nanoparticle synthesis, among others. The method is also applicable to other problems described by planar transport equations in polygonal domains, for instance, in groundwater flows or electrokinetics.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aref, H. 1984 Stirring by chaotic advection. J. Fluid Mech. 143, 121.10.1017/S0022112084001233CrossRefGoogle Scholar
Atencia, J. & Beebe, D.J. 2005 Controlled microfluidic interfaces. Nature 437 (7059), 648655.10.1038/nature04163CrossRefGoogle ScholarPubMed
Batchelor, G.K. 2000 An Introduction to Fluid Dynamics. Cambridge University Press.10.1017/CBO9780511800955CrossRefGoogle Scholar
Bazant, M.Z. 2004 Conformal mapping of some non-harmonic functions in transport theory. Proc. R. Soc. Lond. Ser. A: Math., Phys. Engng Sci. 460(2045), 14331452.10.1098/rspa.2003.1218CrossRefGoogle Scholar
Bazant, M.Z. & Moffatt, H.K. 2005 Exact solutions of the Navier–Stokes equations having steady vortex structures. J. Fluid Mech. 541, 5564.10.1017/S0022112005006130CrossRefGoogle Scholar
Boulais, E. & Gervais, T. 2020 Two-dimensional convection–diffusion in multipolar flows with applications in microfluidics and groundwater flow. Phys. Fluids 32 (12), 122001.10.1063/5.0029711CrossRefGoogle Scholar
Boulais, E. & Gervais, T. 2023 The 2D microfluidics cookbook – modeling convection and diffusion in plane flow devices. Lab Chip 23 (8), 19671980.10.1039/D2LC01033JCrossRefGoogle ScholarPubMed
Boussinesq, J. 1902 Sur le pouvoir refroidissant d’un courant liquide ou gazeux. J. Phys. Theor. Appl. 1 (1), 7175.10.1051/jphystap:01902001007101CrossRefGoogle Scholar
Boyadjian, O., Boulais, E. & Gervais, T. 2022 Microfluidic surface shields: control of flow and diffusion over sensitive surfaces. Phys. Rev. Appl. 17 (1), 014012.10.1103/PhysRevApplied.17.014012CrossRefGoogle Scholar
Brody, J.P. & Yager, P. 1997 Diffusion-based extraction in a microfabricated device. Sensors Actuators A: Phys. 58 (1), 1318.10.1016/S0924-4247(97)80219-1CrossRefGoogle Scholar
Buschmann, M.D., Carrasco, M.J., Alishetty, S., Paige, M., Alameh, M.G. & Weissman, D. 2021 Nanomaterial delivery systems for mRNA Vaccines. Vaccines 9 (1), 65.10.3390/vaccines9010065CrossRefGoogle ScholarPubMed
Chen, D., Liu, Z., Guo, L., Yang, L., Zhao, Y. & Yang, M. 2025 Controlled preparation of lipid nanoparticles in microreactors: Mixing time, morphology and mRNA delivery. Chem. Engng J. 505, 159318.10.1016/j.cej.2025.159318CrossRefGoogle Scholar
Choi, J., Margetis, D., Squires, T.M. & Bazant, M.Z. 2005 Steady advection–diffusion around finite absorbers in two-dimensional potential flows. J. Fluid Mech. 536, 155184.10.1017/S0022112005005008CrossRefGoogle Scholar
Cummings, L.M., Hohlov, Y.E., Howison, S.D. & Kornev, K. 1999 Two-dimensional solidification and melting in potential flows. J. Fluid Mech. 378, 118.10.1017/S0022112098003188CrossRefGoogle Scholar
Davis, P.J. & Rabinowitz, P. 2007 Methods of Numerical Integration. Courier Corporation.Google Scholar
Devos, C. 2024 Impinging jet mixers: a review of their mixing characteristics, performance considerations, and applications. AIChE J. 71, e18595.10.1002/aic.18595CrossRefGoogle Scholar
Dias, F., Elcrat, A.R. & Trefethen, L.N. 1987 Ideal jet flow in two dimensions. J. Fluid Mech. 185, 275288.10.1017/S0022112087003173CrossRefGoogle Scholar
Driscoll, T.A. 2002 Schwarz–Christoffel Mapping. Cambridge University Press.10.1017/CBO9780511546808CrossRefGoogle Scholar
Eames, I. & Bush, J.W.M. 1999 Longitudinal dispersion by bodies fixed in a potential flow. Proc. R. Soc. Lond. Ser. A: Mathe., Phys. Engng Sci. 455 (1990), 36653686.10.1098/rspa.1999.0471CrossRefGoogle Scholar
Elcrat, A.R. & Trefethen, L.N. 1986 Classical free-streamline flow over a polygonal obstacle. J. Comput. Appl. Maths 14 (1–2), 251265.10.1016/0377-0427(86)90142-1CrossRefGoogle Scholar
Fani, A., Camarri, S. & Salvetti, M.V. 2013 Investigation of the steady engulfment regime in a three-dimensional T-mixer. Phys. Fluids 25 (6), 064102.10.1063/1.4809591CrossRefGoogle Scholar
Floryan, J.M. 1985 Conformal-mapping-based coordinate generation method for channel flows. J. Comput. Phys. 58 (2), 229245.10.1016/0021-9991(85)90178-0CrossRefGoogle Scholar
Floryan, J.M. & Zemach, C. 1988 Quadrature rules for singular integrals with application to Schwarz–Christoffel mappings. J. Comput. Phys. 75 (1), 1530.10.1016/0021-9991(88)90096-4CrossRefGoogle Scholar
Gobby, D., Angeli, P. & Gavriilidis, A. 2001 Mixing characteristics of T-type microfluidic mixers. J. Micromech. Microengng 11 (2), 126.10.1088/0960-1317/11/2/307CrossRefGoogle Scholar
Gökçe, O., Castonguay, S., Temiz, Y., Gervais, T. & Delamarche, E. 2019 Self-coalescing flows in microfluidics for pulse-shaped delivery of reagents. Nature 574 (7777), 228232.10.1038/s41586-019-1635-zCrossRefGoogle ScholarPubMed
Golub, G.H. & Welsch, J.H. 1969 Calculation of Gauss quadrature rules. Maths Comput. 23 (106), 221230.10.1090/S0025-5718-69-99647-1CrossRefGoogle Scholar
Gooseff, M.N., Benson, D.A., Briggs, M.A., Weaver, M., Wollheim, W., PetersonB. & Hopkinson, C.S. 2011 Residence time distributions in surface transient storage zones in streams: estimation via signal deconvolution. Water Resour. Res. 47 (5), W05509.10.1029/2010WR009959CrossRefGoogle Scholar
Goyette, P.-A., Boulais, É., Normandeau, F., Laberge, G., Juncker, D. & Gervais, T. 2019 Microfluidic multipoles theory and applications. Nat. Commun. 10 (1), 1781.10.1038/s41467-019-09740-7CrossRefGoogle ScholarPubMed
Gu, Z., Huo, P., Xu, B., Su, M., Bazant, M.Z. & Deng, D. 2022 Electrokinetics in two-dimensional complicated geometries: conformal mapping and experimental comparison. Phys. Rev. Fluids 7 (3), 033701.10.1103/PhysRevFluids.7.033701CrossRefGoogle Scholar
Haitjema, H.M. 1995 On the residence time distribution in idealized groundwatersheds. J. Hydrol. 172 (1–4), 127146.10.1016/0022-1694(95)02732-5CrossRefGoogle Scholar
Hatch, A., Kamholz, A.E., Hawkins, K.R., Munson, M.S., Schilling, E.A., WeiglB.H. & Yager, P. 2001 A rapid diffusion immunoassay in a T-sensor. Nat. Biotechnol. 19 (5), 461465.10.1038/88135CrossRefGoogle Scholar
Haward, S.J., Oliveira, M.S.N., Alves, M.A. & McKinley, G.H. 2012 Optimized cross-slot flow geometry for microfluidic extensional rheometry. Phys. Rev. Lett. 109 (12), 128301.10.1103/PhysRevLett.109.128301CrossRefGoogle Scholar
Houseworth, J.E. 1984 Shear dispersion and residence time for Laminar flow in capillary tubes. J. Fluid Mech. 142, 289308.10.1017/S0022112084001117CrossRefGoogle Scholar
Hunt, J.C.R. 1973 A theory of turbulent flow round two-dimensional bluff bodies. J. Fluid Mech. 61 (4), 625706.10.1017/S0022112073000893CrossRefGoogle Scholar
Hunt, J.C.R. & Mulhearn, P.J. 1973 Turbulent dispersion from sources near two-dimensional obstacles. J. Fluid Mech. 61 (2), 245274.10.1017/S0022112073000698CrossRefGoogle Scholar
Jahn, A., Vreeland, W.N., DeVoe, D.L., Locascio, L.E. & Gaitan, M. 2007 Microfluidic directed formation of liposomes of controlled size. Langmuir 23 (11), 62896293.10.1021/la070051aCrossRefGoogle ScholarPubMed
Kamholz, A.E., Weigl, B.H., Finlayson, B.A. & Yager, P. 1999 Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Anal. Chem. 71 (23), 53405347.10.1021/ac990504jCrossRefGoogle Scholar
Kimura, N., Maeki, M., Sato, Y., Note, Y., Ishida, A., Tani, H., Harashima, H. & Tokeshi, M. 2018 Development of the iLiNP device: fine tuning the lipid nanoparticle size within 10 nm for drug delivery. ACS Omega 3 (5), 50445051.10.1021/acsomega.8b00341CrossRefGoogle Scholar
Knight, J.B., Vishwanath, A., Brody, J.P. & Austin, R.H. 1998 Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys. Rev. Lett. 80 (17), 3863.10.1103/PhysRevLett.80.3863CrossRefGoogle Scholar
Koplik, J., Redner, S. & Hinch, E.J. 1994 Tracer dispersion in planar multipole flows. Phys. Rev. E 50 (6), 4650.10.1103/PhysRevE.50.4650CrossRefGoogle ScholarPubMed
Krzysztoń, R., Salem, B., Lee, D.J., Schwake, G., Wagner, E. & Rädler, J.O. 2017 Microfluidic self-assembly of folate-targeted monomolecular siRNA-lipid nanoparticles. Nanoscale 9 (22), 74427453.10.1039/C7NR01593CCrossRefGoogle ScholarPubMed
Lamb, H. 1924 Hydrodynamics. Cambridge University Press.Google Scholar
Lasic, D.D., Joannic, R., Keller, B.C., Frederik, P.M. & Auvray, L. 2001 Spontaneous vesiculation. Adv. Colloid Interface 89, 337349.10.1016/S0001-8686(00)00067-1CrossRefGoogle ScholarPubMed
Lee, J.S., Dylla-Spears, R., Teclemariam, N.P. & Muller, S.J. 2007 Microfluidic four-roll mill for all flow types. Appl. Phys. Lett. 90 (7), 074103.10.1063/1.2472528CrossRefGoogle Scholar
Leng, J., Egelhaaf, S.U. & Cates, M.E. 2003 Kinetics of the micelle-to-vesicle transition: aqueous Lecithin-bile salt mixtures. Biophys. J. 85 (3), 16241646.10.1016/S0006-3495(03)74593-7CrossRefGoogle ScholarPubMed
Levenspiel, O. 1998 Chemical Reaction Engineering. 3rd edn. John Wiley & Sons.Google Scholar
Marshall, D.E. & Rohde, S. 2007 Convergence of a variant of the zipper algorithm for conformal mapping. SIAM J. Numer. Anal. 45 (6), 25772609.10.1137/060659119CrossRefGoogle Scholar
Martinez, A.W., Phillips, S.T., Butte, M.J. & Whitesides, G.M. 2007 Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angewandte Chemie 119 (8), 13401342.10.1002/ange.200603817CrossRefGoogle Scholar
McKee, K.I. 2024 Magnetohydrodynamic flow control in Hele–Shaw cells. J. Fluid Mech. 993, A11.10.1017/jfm.2024.618CrossRefGoogle Scholar
Mengeaud, V., Josserand, J. & Girault, H.H. 2002 Mixing processes in a zigzag microchannel: finite element simulations and optical study. Anal. Chem. 74 (16), 42794286.10.1021/ac025642eCrossRefGoogle Scholar
Menikoff, R. & Zemach, C. 1980 Methods for numerical conformal mapping. J. Comput. Phys. 36 (3), 366410.10.1016/0021-9991(80)90166-7CrossRefGoogle Scholar
Metcalfe, G., Lester, D., Ord, A., Kulkarni, P., Rudman, M., Trefry, M., Hobbs, B., Regenaur-Lieb, K. & Morris, J. 2010 An experimental and theoretical study of the mixing characteristics of a periodically reoriented irrotational flow. Phil. Trans. R. Soc. A: Math., Phys. Engng Sci. 368 (1918), 21472162.10.1098/rsta.2010.0037CrossRefGoogle ScholarPubMed
Milne-Thomson, L.M. 1943 Theoretical Hydrodynamics. Courier Corporation.Google Scholar
Müller, R.H. & Clegg, D.L. 1949 Automatic paper chromatography. Anal. Chem. 21 (9), 11231125.10.1021/ac60033a032CrossRefGoogle Scholar
Ottino, J.M. 1989 The Kinematics of Mixing: Stretching, Chaos, and Transport. vol. 3. UK: Cambridge University Press.Google Scholar
Ottino, J.M. & Wiggins, S. 2004 Introduction: mixing in microfluidics. Phil. Trans. R. Soc. Lond. Ser. A: Math., Phys. Engng Sci. 362 (1818), 923935.10.1098/rsta.2003.1355CrossRefGoogle ScholarPubMed
Laramy, O’.B., et al. 2023 Process robustness in lipid nanoparticle production: a comparison of microfluidic and turbulent jet mixing. Mol. Pharm. 20 (8), 42854296.10.1021/acs.molpharmaceut.3c00390CrossRefGoogle Scholar
Park, H.Y., Qiu, X., Rhoades, E., Korlach, J., Kwok, L.W., Zipfel, W.R., Webb, W.W. & Pollack, L. 2006 Achieving uniform mixing in a microfluidic device: hydrodynamic focusing prior to mixing. Anal. Chem. 78 (13), 44654473.10.1021/ac060572nCrossRefGoogle Scholar
Pearson, C.E. 1957 On the finite strip problem. Q. Appl. Maths 15 (2), 203208.10.1090/qam/93689CrossRefGoogle Scholar
Peeters, D. & Huyskens, P. 1993 Endothermicity or exothermicity of water/alcohol mixtures. J. Mol. Struct. 300, 539550.10.1016/0022-2860(93)87046-CCrossRefGoogle Scholar
Petersen, D.M.S., Chaudhary, N., Arral, M.L., Weiss, R.M. & Whitehead, K.A. 2023 The mixing method used to formulate lipid nanoparticles affects mrna delivery efficacy and organ tropism. Eur. J. Pharm. Biopharm. 192, 126135.10.1016/j.ejpb.2023.10.006CrossRefGoogle Scholar
Powell, M.J.D. 1968 A Fortran subroutine for solving systems of nonlinear algebraic equations. Tech. Rep.Atomic Energy Research Establishment, Harwell, England (United Kingdom).Google Scholar
Rycroft, C.H. & Bazant, M.Z. 2016 Asymmetric collapse by dissolution or melting in a uniform flow. Proc. R. Soc. A: Math., Phys. Engng Sci. 472 (2185), 20150531.10.1098/rspa.2015.0531CrossRefGoogle ScholarPubMed
Saad, W.S. & Prud’homme, R.K. 2016 Principles of nanoparticle formation by flash nanoprecipitation. Nano Today 11 (2), 212227.10.1016/j.nantod.2016.04.006CrossRefGoogle Scholar
Schneider, T.M., Mandre, S. & Brenner, M.P. 2011 Algorithm for a microfluidic assembly line. Phys. Rev. Lett. 106 (9), 094503.10.1103/PhysRevLett.106.094503CrossRefGoogle ScholarPubMed
Seeger, A. 1953 I. Diffusion problems associated with the growth of crystals from dilute solution. Lond., Edin., Dublin Phil. Mag. J. Sci. 44 (348), 113.10.1080/14786440108520269CrossRefGoogle Scholar
Smith, E.A. 1996 Pressure and velocity of air during drying and storage of cereal grains. Transport Porous Med. 23, 197218.10.1007/BF00178126CrossRefGoogle Scholar
Stephenson, K. 2005 Introduction to Circle Packing: The Theory of Discrete Analytic Functions. Cambridge University Press.Google Scholar
Strack, O.D.L. 1988 Groundwater Mechanics. Prentice-Hall, Inc.Google Scholar
Stroock, A.D., Dertinger, S.K.W., Ajdari, A., Mezic, I., Stone, H.A. & Whitesides, G.M. 2002 Chaotic mixer for microchannels. Science 295 (5555), 647651.10.1126/science.1066238CrossRefGoogle ScholarPubMed
van Swaay, D. & deMello, A. 2013 Microfluidic methods for forming liposomes. Lab Chip 13 (5), 752767.10.1039/c2lc41121kCrossRefGoogle Scholar
Szego, G. 1939 Orthogonal Polynomials. American Mathematical Society.Google Scholar
Tanyeri, M., Johnson-Chavarria, E.M. & Schroeder, C.M. 2010 Hydrodynamic trap for single particles and cells. Appl. Phys. Lett. 96 (22), 224101.10.1063/1.3431664CrossRefGoogle ScholarPubMed
Thompson, J.F., Warsi, Z.U.A. & Wayne Mastin, C. 1982 Boundary-fitted coordinate systems for numerical solution of partial differential equations—A review. J. Comput. Phys. 47 (1), 1108.10.1016/0021-9991(82)90066-3CrossRefGoogle Scholar
Trefethen, L.N. 1980 Numerical computation of the schwarz–Christoffel transformation. SIAM J. Scientifi Statist. Comput. 1 (1), 82102.10.1137/0901004CrossRefGoogle Scholar
Vigolo, D., Radl, S. & Stone, H.A. 2014 Unexpected trapping of particles at a T junction. Proc. Natl Acad. Sci. 111 (13), 47704775.10.1073/pnas.1321585111CrossRefGoogle ScholarPubMed
Weigl, B.H. & Yager, P. 1999 Microfluidic diffusion-based separation and detection. Science 283 (5400), 346347.10.1126/science.283.5400.346CrossRefGoogle Scholar
Werner, T.M. & Kadlec, R.H. 2000 Wetland residence time distribution modeling. Ecol. Engng 15 (1–2), 7790.10.1016/S0925-8574(99)00036-1CrossRefGoogle Scholar
Zouache, M.A., Eames, I. & Luthert, P.J. 2015 Blood flow in the choriocapillaris. J. Fluid Mech. 774, 3766.10.1017/jfm.2015.243CrossRefGoogle Scholar