Hostname: page-component-857557d7f7-ksgrx Total loading time: 0 Render date: 2025-12-03T17:17:24.216Z Has data issue: false hasContentIssue false

Shaking into order: Q-tensor/kinetic theory of vibrated non-spherical grains in a confined geometry

Published online by Cambridge University Press:  02 December 2025

Diego Berzi*
Affiliation:
Department of Civil and Environmental Engineering, Politecnico di Milano , Milano 20133, Italy
Dalila Vescovi
Affiliation:
Department of Civil and Environmental Engineering, Politecnico di Milano , Milano 20133, Italy
Ben Nadler
Affiliation:
Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
*
Corresponding author: Diego Berzi, diego.berzi@polimi.it

Abstract

We join the theories that describe the orientation, treated as a tensor, of liquid crystals and the agitation of inelastic grains to obtain a mathematical model of non-spherical particles contained in a quasi-2D square box and driven into dissipative collisions through the vibration of two of the four flat walls, in the absence of gravity and mean flow. The particle agitation induces spatial inhomogeneities in the density and the isotropic–nematic transition to take place somewhere inside the box, if the particle shape is sufficiently far from spherical. We show quantitative agreement between the theory and discrete numerical simulations of ellipsoids of different length-to-diameter ratio. We need to fit two dimensionless parameters that were not previously available or determined in different configurations. These parameters, of order unity and weakly dependent on the shape of the particles, are indicative of the resistance to alignment distortion associated with entropic elasticity.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Amereh, M. & Nadler, B. 2022 A generalized model for dense axisymmetric grains flow with orientational diffusion. J. Fluid Mech. 936, 116.10.1017/jfm.2022.44CrossRefGoogle Scholar
Beris, A.N. & Edwards, B.J. 1994 Thermodynamics of Flowing Systems: with Internal Microstructure. Oxford University Press.10.1093/oso/9780195076943.001.0001CrossRefGoogle Scholar
Berzi, D. 2024 On granular flows : from kinetic theory to inertial rheology and nonlocal constitutive models. Phys. Rev. Fluids 9, 034304.10.1103/PhysRevFluids.9.034304CrossRefGoogle Scholar
Berzi, D., Buettner, K.E. & Curtis, J.S. 2022 Dense shearing flows of soft, frictional cylinders. Soft Matt. 18, 8088.10.1039/D1SM01395ECrossRefGoogle Scholar
Berzi, D., Thai-Quang, N., Guo, Y. & Curtis, J. 2016 Stresses and orientational order in shearing flows of granular liquid crystals. Phys. Rev. E 93, 040901.10.1103/PhysRevE.93.040901CrossRefGoogle ScholarPubMed
Berzi, D., Thai-Quang, N., Guo, Y. & Curtis, J. 2017 Collisional dissipation rate in shearing flows of granular liquid crystals. Phys. Rev. E 95, 050901.10.1103/PhysRevE.95.050901CrossRefGoogle ScholarPubMed
Bolhuis, P. & Frenkel, D. 1997 Tracing the phase boundaries of hard spherocylinders. J. Chem. Phys. 106, 666687.10.1063/1.473404CrossRefGoogle Scholar
Börzsönyi, T., Szabó, B., Törös, G., Wegner, S., Török, J., Somfai, E., Bien, T. & StannariusR. 2012 a Orientational order and alignment of elongated particles induced by shear. Phys. Rev. Lett. 108, 228302.10.1103/PhysRevLett.108.228302CrossRefGoogle ScholarPubMed
Börzsönyi, T., Szabó, B., Wegner, S., Harth, K., Török, J., Somfai, E., Bien, T. & StannariusR. 2012b Shear-induced alignment and dynamics of elongated granular particles. Phys. Rev. E - Statistical, Nonlinear, Soft Matt. Phys. 86, 18.Google ScholarPubMed
Buettner, K.E., Guo, Y. & Curtis, J.S. 2017 Using the discrete element method to develop collisional dissipation rate models that incorporate particle shape. AIChE J. 63, 53845395.10.1002/aic.15933CrossRefGoogle Scholar
Buettner, K.E., Guo, Y. & Curtis, J.S. 2020 Development of a collisional dissipation rate model for frictional cylinders. Powder Technol. 365, 8391.10.1016/j.powtec.2019.01.068CrossRefGoogle Scholar
Carnahan, N.F. & Starling, K.E. 1969 Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51, 635636.10.1063/1.1672048CrossRefGoogle Scholar
De Gennes, P.-G. & Prost, J. 1993 The Physics of Liquid Crystals. Oxford University Press.10.1093/oso/9780198520245.001.0001CrossRefGoogle Scholar
Ericksen, J.L. 1961 Conservation laws for liquid crystals. Trans. Soc. Rheol. 5, 2334.10.1122/1.548883CrossRefGoogle Scholar
Fournier, J.B. & Galatola, P. 2005 Modeling planar degenerate wetting and anchoring in nematic liquid crystals. Europhys. Lett. 72, 403409.10.1209/epl/i2005-10253-5CrossRefGoogle Scholar
Frenkel, D. & Mulder, B.M. 1985 The hard ellipsoid-of-revolution fluid i. monte carlo simulations. Mol. Phys. 55, 11711192.10.1080/00268978500101971CrossRefGoogle Scholar
Frenkel, D., Mulder, B.M. & McTague, J.P. 1984 Phase diagram of a system of hard ellipsoids. Phys. Rev. Lett. 52, 287290.10.1103/PhysRevLett.52.287CrossRefGoogle Scholar
Garzó, V. & Dufty, J.W. 1999 Dense fluid transport for inelastic hard spheres. Phys. Rev. E 59, 58955911.10.1103/PhysRevE.59.5895CrossRefGoogle ScholarPubMed
MiDi, G.D.R. 2004 On dense granular flows. Eur. Phys. J. E, Soft Matt. 14, 341365.10.1140/epje/i2003-10153-0CrossRefGoogle Scholar
Guo, Y. & Curtis, J.S. 2015 Discrete element method simulations for complex granular flows. Annu. Rev. Fluid Mech. 47, 2146.10.1146/annurev-fluid-010814-014644CrossRefGoogle Scholar
Guo, Y., Wassgren, C., Hancock, B., Ketterhagen, W. & Curtis, J. 2013 Granular shear flows of flat disks and elongated rods without and with friction. Phys. Fluids 25, 063304.10.1063/1.4812386CrossRefGoogle Scholar
Guo, Y., Wassgren, C., Ketterhagen, W., Hancock, B., James, B. & Curtis, J. 2012 A numerical study of granular shear flows of rod-like particles using the discrete element method. J. Fluid Mech. 713, 126.10.1017/jfm.2012.423CrossRefGoogle Scholar
Harth, K., Trittel, T., Wegner, S. & Stannarius, R. 2018 Free cooling of a granular gas of rodlike particles in microgravity. Phys. Rev. Lett. 120, 214301.10.1103/PhysRevLett.120.214301CrossRefGoogle ScholarPubMed
Heymans, S. & Schilling, T. 2017 Elastic properties of the nematic phase in hard ellipsoids of short aspect ratio. Phys. Rev. E 96, 022708.10.1103/PhysRevE.96.022708CrossRefGoogle ScholarPubMed
Hidalgo, R.C., Szabó, B., Gillemot, K., Börzsönyi, T. & Weinhart, T. 2018 Rheological response of nonspherical granular flows down an incline. Phys. Rev. Fluids 3, 115.10.1103/PhysRevFluids.3.074301CrossRefGoogle Scholar
Jeffery, G.B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. Ser. A 102, 161179.Google Scholar
Jenkins, J.T. 1978 Flows of nematic liquid crystals. Annu. Rev. Fluid Mech. 10, 197219.10.1146/annurev.fl.10.010178.001213CrossRefGoogle Scholar
Jenkins, J.T. 2007 Dense inclined flows of inelastic spheres. Granul. Matt. 10, 4752.10.1007/s10035-007-0057-zCrossRefGoogle Scholar
Jenkins, J.T. & Savage, S.B. 1983 A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J. Fluid Mech. 130, 187202.10.1017/S0022112083001044CrossRefGoogle Scholar
Kramer, L. & Pesch, W. 1995 Convection instabilities in nematic liquid crystals. Annu. Rev. Fluid Mech. 27, 515541.10.1146/annurev.fl.27.010195.002503CrossRefGoogle Scholar
Leslie, F.M. 1968 Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28, 265283.10.1007/BF00251810CrossRefGoogle Scholar
Liu, Y. & Wang, W. 2016 On the initial boundary value problem of a Navier–Stokes/ $q$ -tensor model for liquid crystals. Discrete Continuous Dyn. Syst. - B 23, 38793899.10.3934/dcdsb.2018115CrossRefGoogle Scholar
Lun, C.K.K. 1991 Kinetic theory for granular flow of dense, slightly inelastic, slightly rough spheres. J. Fluid Mech. 233, 539559.10.1017/S0022112091000599CrossRefGoogle Scholar
Mottram, N.J. & Newton, C.J.P. 2014 Introduction to Q-tensor theory. arXiv: 1409.3542.Google Scholar
Nadler, B. 2021 Anisotropic inertia rheology of ellipsoidal grains. Granul. Matt. 23, 16.10.1007/s10035-020-01072-4CrossRefGoogle Scholar
Nadler, B., Guillard, F. & Einav, I. 2018 Kinematic model of transient shape-induced anisotropy in dense granular flow. Phys. Rev. Lett. 120, 198003.10.1103/PhysRevLett.120.198003CrossRefGoogle ScholarPubMed
Nagy, D.B., Claudin, P., Börzsönyi, T. & Somfai, E. 2017 Rheology of dense granular flows for elongated particles. Phys. Rev. E 96, 062903.10.1103/PhysRevE.96.062903CrossRefGoogle ScholarPubMed
Nagy, D.B., Claudin, P., Börzsönyi, T. & Somfai, E. 2020 Flow and rheology of frictional elongated grains. New J. Phys. 22, 073008.10.1088/1367-2630/ab91feCrossRefGoogle Scholar
Odriozola, G. 2012 Revisiting the phase diagram of hard ellipsoids. J. Chem. Phys. 136, 134505.10.1063/1.3699331CrossRefGoogle ScholarPubMed
Onsager, L. 1949 The effects of shape on the interaction of colloidal particles. Annal. NY Acad. Sci. 51, 627659.10.1111/j.1749-6632.1949.tb27296.xCrossRefGoogle Scholar
Podlozhnyuk, A., Pirker, S. & Kloss, C. 2017 Efficient implementation of superquadric particles in discrete element method within an open-source framework. Comput. Particle Mech. 4, 101118.10.1007/s40571-016-0131-6CrossRefGoogle Scholar
Pol, A., Artoni, R. & Richard, P. 2023 Unified scaling law for wall friction in laterally confined flows of shape anisotropic particles. Phys. Rev. Fluids 8, 084302.10.1103/PhysRevFluids.8.084302CrossRefGoogle Scholar
Pol, A., Artoni, R., Richard, P., Nunes Da Conceição, P.R. & Gabrieli, F. 2022 Kinematics and shear-induced alignment in confined granular flows of elongated particles. New J. Phys. 24, 073018.10.1088/1367-2630/ac7d6dCrossRefGoogle Scholar
Poniewierski, A. & Hoiyst, R. 1988 Nematic alignment at a solid substrate: the model of hard spherocylinders near a hard wall. Phys. Rev. A 38, 37213737.10.1103/PhysRevA.38.3721CrossRefGoogle Scholar
Richman, M.W. 1988 Boundary conditions based upon a modified Maxwellian velocity distribution for flows of identical, smooth, nearly elastic spheres. Acta Mechanica 75, 227240.10.1007/BF01174637CrossRefGoogle Scholar
Simões, M., Palangana, A.J., Steudel, A., Kimura, N.M. & Gómez, S.L. 2008 Thermal diffusivity and the conformal transformation on nematic liquid crystals. Phys. Rev. E 77, 041709.10.1103/PhysRevE.77.041709CrossRefGoogle ScholarPubMed
Soto, R. 2004 Granular systems on a vibrating wall: the kinetic boundary condition. Phys. Rev. E - Statistical Phys., Plasmas, Fluids, Related Interdisciplinary Topics 69, 061305.10.1103/PhysRevE.69.061305CrossRefGoogle ScholarPubMed
Szabó, B., Török, J., Somfai, E., Wegner, S., Stannarius, R., Böse, A., Rose, G., Angenstein, F. & Börzsönyi, T. 2014 Evolution of shear zones in granular materials. Phys. Rev. E 90, 032205.10.1103/PhysRevE.90.032205CrossRefGoogle ScholarPubMed
Vega, C. 1997 Virial coefficients and equation of state of hard ellipsoids. Mol. Phys. 92, 651666.10.1080/002689797169934CrossRefGoogle Scholar
Vega, C., Lago, S. & Garzon, B. 1994 Linear hard sphere models virial coefficients and equation of state. Mol. Phys. 82, 12331247.10.1080/00268979400100874CrossRefGoogle Scholar
Vescovi, D., de Wijn, A.S., Cross, G.L.W. & Berzi, D. 2024 a Extended kinetic theory applied to pressure-controlled shear flows of frictionless spheres between rigid, bumpy planes. Soft Matt. 20, 87028715.10.1039/D4SM00831FCrossRefGoogle ScholarPubMed
Vescovi, D., Nadler, B. & Berzi, D. 2024 b Simple generalization of kinetic theory for granular flows of nonspherical, oriented particles. Phys. Rev. Fluids 9, L012301.10.1103/PhysRevFluids.9.L012301CrossRefGoogle Scholar
Wegner, S., Börzsönyi, T., Bien, T., Rose, G. & Stannarius, R. 2012 Alignment and dynamics of elongated cylinders under shear. Soft Matt. 8, 10950.10.1039/c2sm26452hCrossRefGoogle Scholar
Weinhart, T., et al. 2019 Fast, flexible particle simulations — an introduction to MercuryDPM. Comput. Phys. Commun. 249, 107129.10.1016/j.cpc.2019.107129CrossRefGoogle Scholar
Xu, X. 2022 Recent analytic development of the dynamic Q-tensor theory for nematic liquid crystals. Electronic Res. Archive 30, 22202246.10.3934/era.2022113CrossRefGoogle Scholar
Yang, J., Guo, Y., Buettner, K.E. & Curtis, J.S. 2019 Dem investigation of shear flows of binary mixtures of non-spherical particles. Chem. Engng Sci. 202, 383391.10.1016/j.ces.2019.03.027CrossRefGoogle Scholar