Hostname: page-component-7dd5485656-s6l46 Total loading time: 0 Render date: 2025-10-26T16:59:51.825Z Has data issue: false hasContentIssue false

Normality-based analysis of multiscale velocity gradients and energy transfer in direct and large-eddy simulations of isotropic turbulence

Published online by Cambridge University Press:  23 October 2025

Rahul Arun*
Affiliation:
Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
Mostafa Kamal
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA
Tim Colonius
Affiliation:
Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA 91125, USA
Perry L. Johnson
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA
*
Corresponding author: Rahul Arun, rarun@caltech.edu

Abstract

Symmetry-based analyses of multiscale velocity gradients highlight that strain self-amplification (SS) and vortex stretching (VS) drive forward energy transfer in turbulent flows. By contrast, a strain–vorticity covariance mechanism produces backscatter that contributes to the bottleneck effect in the subinertial range of the energy cascade. We extend these analyses by using a normality-based decomposition of filtered velocity gradients in forced isotropic turbulence to distinguish contributions from normal straining, pure shearing and rigid rotation at a given scale. Our analysis of direct numerical simulation (DNS) data illuminates the importance of shear layers in the inertial range and (especially) the subinertial range of the cascade. Shear layers contribute significantly to SS and VS and play a dominant role in the backscatter mechanism responsible for the bottleneck effect. Our concurrent analysis of large-eddy simulation (LES) data characterizes how different closure models affect the flow structure and energy transfer throughout the resolved scales. We thoroughly demonstrate that the multiscale flow features produced by a mixed model closely resemble those in a filtered DNS, whereas the features produced by an eddy viscosity model resemble those in an unfiltered DNS at a lower Reynolds number. This analysis helps explain how small-scale shear layers, whose imprint is mitigated upon filtering, amplify the artificial bottleneck effect produced by the eddy viscosity model in the inertial range of the cascade. Altogether, the present results provide a refined interpretation of the flow structures and mechanisms underlying the energy cascade and insight for designing and evaluating LES closure models.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alexakis, A. & Chibbaro, S. 2022 Local fluxes in magnetohydrodynamic turbulence. J. Plasma Phys. 88 (5), 905880515.10.1017/S0022377822001064CrossRefGoogle Scholar
Aluie, H. 2017 Coarse-grained incompressible magnetohydrodynamics: analyzing the turbulent cascades. New J. Phys. 19 (2), 025008.10.1088/1367-2630/aa5d2fCrossRefGoogle Scholar
Aluie, H., Hecht, M. & Vallis, G.K. 2018 Mapping the energy cascade in the North Atlantic Ocean: the coarse-graining approach. J. Phys. Oceanogr. 48 (2), 225244.10.1175/JPO-D-17-0100.1CrossRefGoogle Scholar
Arun, R. & Colonius, T. 2024 a Velocity gradient analysis of a head-on vortex ring collision. J. Fluid Mech. 982, A16.10.1017/jfm.2024.90CrossRefGoogle Scholar
Arun, R. & Colonius, T. 2024 b Velocity gradient partitioning in turbulent flows. J. Fluid Mech. 1000, R5.10.1017/jfm.2024.1021CrossRefGoogle Scholar
Ballouz, J.G. & Ouellette, N.T. 2018 Tensor geometry in the turbulent cascade. J. Fluid Mech. 835, 10481064.10.1017/jfm.2017.802CrossRefGoogle Scholar
Beaumard, P., Buxton, O.R.H. & Keylock, C.J. 2019 The importance of non-normal contributions to velocity gradient tensor dynamics for spatially developing, inhomogeneous, turbulent flows. J. Turbul. 20 (9), 577598.10.1080/14685248.2019.1685095CrossRefGoogle Scholar
Betchov, R. 1956 An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech. 1 (5), 497504.10.1017/S0022112056000317CrossRefGoogle Scholar
Bilbao-Ludena, J.C. & Papadakis, G. 2025 Non-normality and small-scale statistics in a three-dimensional, separated shear flow. J. Fluid Mech. 1010, A41.10.1017/jfm.2025.309CrossRefGoogle Scholar
Borue, V. & Orszag, S.A. 1998 Local energy flux and subgrid-scale statistics in three-dimensional turbulence. J. Fluid Mech. 366, 131.10.1017/S0022112097008306CrossRefGoogle Scholar
Capocci, D., Johnson, P.L., Oughton, S., Biferale, L. & Linkmann, M. 2025 Energy flux decomposition in magnetohydrodynamic turbulence. J. Plasma Phys. 91 (1), E11.10.1017/S0022377824000898CrossRefGoogle Scholar
Carbone, M. & Bragg, A.D. 2020 Is vortex stretching the main cause of the turbulent energy cascade? J. Fluid Mech. 883, R2.10.1017/jfm.2019.923CrossRefGoogle Scholar
Cardesa, J.I., Vela-Martín, A. & Jiménez, J. 2017 The turbulent cascade in five dimensions. Science 357 (6353), 782784.10.1126/science.aan7933CrossRefGoogle ScholarPubMed
Chen, S., Ecke, R.E., Eyink, G.L., Rivera, M., Wan, M. & Xiao, Z. 2006 Physical mechanism of the two-dimensional inverse energy cascade. Phys. Rev. Lett. 96 (8), 084502.10.1103/PhysRevLett.96.084502CrossRefGoogle ScholarPubMed
Chong, M.S., Perry, A.E. & Cantwell, B.J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids A 2 (5), 765777.10.1063/1.857730CrossRefGoogle Scholar
Clark, R.A., Ferziger, J.H. & Reynolds, W.C. 1979 Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91 (1), 116.10.1017/S002211207900001XCrossRefGoogle Scholar
Das, R. & Girimaji, S.S. 2020 Revisiting turbulence small-scale behavior using velocity gradient triple decomposition. New J. Phys. 22 (6), 063015.10.1088/1367-2630/ab8ab2CrossRefGoogle Scholar
Dong, S., Huang, Y., Yuan, X. & Lozano-Durán, A. 2020 The coherent structure of the kinetic energy transfer in shear turbulence. J. Fluid Mech. 892, A22.10.1017/jfm.2020.195CrossRefGoogle Scholar
Donzis, D.A. & Sreenivasan, K.R. 2010 The bottleneck effect and the Kolmogorov constant in isotropic turbulence. J. Fluid Mech. 657, 171188.10.1017/S0022112010001400CrossRefGoogle Scholar
Elsinga, G.E., Ishihara, T., Goudar, M.V., da Silva, C.B. & Hunt, J.C.R. 2017 The scaling of straining motions in homogeneous isotropic turbulence. J. Fluid Mech. 829, 3164.10.1017/jfm.2017.538CrossRefGoogle Scholar
Elsinga, G.E. & Marusic, I. 2010 Universal aspects of small-scale motions in turbulence. J. Fluid Mech. 662, 514539.10.1017/S0022112010003381CrossRefGoogle Scholar
Enoki, R., Watanabe, T. & Nagata, K. 2023 Statistical properties of shear and nonshear velocity components in isotropic turbulence and turbulent jets. Phys. Rev. Fluids 8 (10), 104602.10.1103/PhysRevFluids.8.104602CrossRefGoogle Scholar
Eyink, G.L. 1995 Local energy flux and the refined similarity hypothesis. J. Stat. Phys. 78, 335351.10.1007/BF02183352CrossRefGoogle Scholar
Eyink, G.L. & Aluie, H. 2009 Localness of energy cascade in hydrodynamic turbulence. I. Smooth coarse graining. Phys. Fluids 21 (11), 115107.10.1063/1.3266883CrossRefGoogle Scholar
Falkovich, G. 1994 Bottleneck phenomenon in developed turbulence. Phys. Fluids 6 (4), 14111414.10.1063/1.868255CrossRefGoogle Scholar
Fathali, M. & Khoei, S. 2024 Spectral energy transfer analysis of a forced homogeneous isotropic turbulence using triple decomposition of velocity gradient tensor. J. Turbul. 25 (1–3), 125143.10.1080/14685248.2024.2332318CrossRefGoogle Scholar
Fiscaletti, D., Buxton, O.R.H. & Attili, A. 2021 Internal layers in turbulent free-shear flows. Phys. Rev. Fluids 6 (3), 034612.10.1103/PhysRevFluids.6.034612CrossRefGoogle Scholar
Frisch, U., Kurien, S., Pandit, R., Pauls, W., Ray, S.S., Wirth, A. & Zhu, J.-Z. 2008 Hyperviscosity, Galerkin truncation, and bottlenecks in turbulence. Phys. Rev. Lett. 101 (14), 144501.10.1103/PhysRevLett.101.144501CrossRefGoogle ScholarPubMed
Gao, Y. & Liu, C. 2018 Rortex and comparison with eigenvalue-based vortex identification criteria. Phys. Fluids 30 (8), 085107.10.1063/1.5040112CrossRefGoogle Scholar
Ghira, A.A., Elsinga, G.E. & da Silva, C.B. 2022 Characteristics of the intense vorticity structures in isotropic turbulence at high Reynolds numbers. Phys. Rev. Fluids 7 (10), 104605.10.1103/PhysRevFluids.7.104605CrossRefGoogle Scholar
Hunt, J.C.R., Wray, A.A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Proceedings of the 1988 Summer Program, pp. 193208. Center for Turbulence Research.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.10.1017/S0022112095000462CrossRefGoogle Scholar
Jiménez, J., Wray, A.A., Saffman, P.G. & Rogallo, R.S. 1993 The structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255, 6590.10.1017/S0022112093002393CrossRefGoogle Scholar
Johnson, P.L. 2020 Energy transfer from large to small scales in turbulence by multiscale nonlinear strain and vorticity interactions. Phys. Rev. Lett. 124 (10), 104501.10.1103/PhysRevLett.124.104501CrossRefGoogle ScholarPubMed
Johnson, P.L. 2021 On the role of vorticity stretching and strain self-amplification in the turbulence energy cascade. J. Fluid Mech. 922, A3.10.1017/jfm.2021.490CrossRefGoogle Scholar
Johnson, P.L. 2022 A physics-inspired alternative to spatial filtering for large-eddy simulations of turbulent flows. J. Fluid Mech. 934, A30.10.1017/jfm.2021.1150CrossRefGoogle Scholar
Johnson, P.L. & Wilczek, M. 2024 Multiscale velocity gradients in turbulence. Annu. Rev. Fluid Mech. 56, 463490.10.1146/annurev-fluid-121021-031431CrossRefGoogle Scholar
Kamal, M. & Johnson, P.L. 2024 Artificial bottleneck effect in large eddy simulations. Phys. Rev. Fluids 9 (8), 084605.10.1103/PhysRevFluids.9.084605CrossRefGoogle Scholar
Keylock, C.J. 2018 The Schur decomposition of the velocity gradient tensor for turbulent flows. J. Fluid Mech. 848, 876905.10.1017/jfm.2018.344CrossRefGoogle Scholar
Keylock, C.J. 2019 Turbulence at the Lee bound: maximally non-normal vortex filaments and the decay of a local dissipation rate. J. Fluid Mech. 881, 283312.10.1017/jfm.2019.779CrossRefGoogle Scholar
Keylock, C.J. 2025 The role of normal and non-normal contributions to enstrophy production in the near-wall region of a turbulent channel flow. J. Fluid Mech. 1006, A3.10.1017/jfm.2024.1221CrossRefGoogle Scholar
Kolář, V. 2004 2D velocity-field analysis using triple decomposition of motion. In Proceedings of the 15th Australasian Fluid Mechanics Conference, pp. AFMC00017. The University of Sydney.Google Scholar
Kolář, V. 2007 Vortex identification: new requirements and limitations. Intl J. Heat Fluid Flow 28 (4), 638652.10.1016/j.ijheatfluidflow.2007.03.004CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30 (4), 301305. reprinted in Proc. R. Soc. Lond. A 434, 9–13.Google Scholar
Kolmogorov, A.N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13 (1), 8285.10.1017/S0022112062000518CrossRefGoogle Scholar
Kraichnan, R.H. 1976 Eddy viscosity in two and three dimensions. J. Atmos. Sci. 33 (8), 15211536.10.1175/1520-0469(1976)033<1521:EVITAT>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Kronborg, J. & Hoffman, J. 2023 The triple decomposition of the velocity gradient tensor as a standardized real Schur form. Phys. Fluids 35 (3), 031703.10.1063/5.0138180CrossRefGoogle Scholar
Kurien, S., Taylor, M.A. & Matsumoto, T. 2004 Cascade time scales for energy and helicity in homogeneous isotropic turbulence. Phys. Rev. E 69 (6), 066313.10.1103/PhysRevE.69.066313CrossRefGoogle ScholarPubMed
Leonard, A. 1975 Energy cascade in large-eddy simulations of turbulent fluid flows. In Turbulent Diffusion in Environmental Pollution (ed. F.N. Frenkiel & R.E. Munn), Advances in Geophysics, vol. 18, pp. 237248. Elsevier. Google Scholar
Liu, C., Gao, Y., Dong, X., Wang, Y., Liu, J., Zhang, Y., Cai, X. & Gui, N. 2019 Third generation of vortex identification methods: Omega and Liutex/Rortex based systems. J. Hydrodyn. 31 (2), 205223.10.1007/s42241-019-0022-4CrossRefGoogle Scholar
Liu, C., Gao, Y., Tian, S. & Dong, X. 2018 Rortex—a new vortex vector definition and vorticity tensor and vector decompositions. Phys. Fluids 30 (3), 035103.10.1063/1.5023001CrossRefGoogle Scholar
Meneveau, C. 2011 Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annu. Rev. Fluid Mech. 43, 219245.10.1146/annurev-fluid-122109-160708CrossRefGoogle Scholar
Meneveau, C. & Katz, J. 2000 Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32, 132.10.1146/annurev.fluid.32.1.1CrossRefGoogle Scholar
Misra, A. & Pullin, D.I. 1997 A vortex-based subgrid stress model for large-eddy simulation. Phys. Fluids 9 (8), 24432454.10.1063/1.869361CrossRefGoogle Scholar
Nagata, R., Watanabe, T., Nagata, K. & da Silva, C.B. 2020 Triple decomposition of velocity gradient tensor in homogeneous isotropic turbulence. Comput. Fluids 198, 104389.10.1016/j.compfluid.2019.104389CrossRefGoogle Scholar
Oboukhov, A.M. 1962 Some specific features of atmospheric tubulence. J. Fluid Mech. 13 (1), 7781.10.1017/S0022112062000506CrossRefGoogle Scholar
Park, D. & Lozano-Durán, A. 2025 The coherent structure of the energy cascade in isotropic turbulence. Sci. Rep. 15, 14.10.1038/s41598-024-80698-3CrossRefGoogle ScholarPubMed
Patterson, G.S. & Orszag, S.A. 1971 Spectral calculations of isotropic turbulence: efficient removal of aliasing interactions. Phys. Fluids 14 (11), 25382541.10.1063/1.1693365CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Shen, W., Yao, J. & Yang, Y. 2024 Designing turbulence with entangled vortices. Proc. Natl Acad. Sci. USA 121 (35), e2405351121.10.1073/pnas.2405351121CrossRefGoogle ScholarPubMed
Sreenivasan, K.R. & Antonia, R.A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29, 435472.10.1146/annurev.fluid.29.1.435CrossRefGoogle Scholar
Storer, B.A., Buzzicotti, M., Khatri, H., Griffies, S.M. & Aluie, H. 2023 Global cascade of kinetic energy in the ocean and the atmospheric imprint. Sci. Adv. 9 (51), eadi7420.10.1126/sciadv.adi7420CrossRefGoogle ScholarPubMed
Verma, M.K. & Donzis, D. 2007 Energy transfer and bottleneck effect in turbulence. J. Phys. A 40 (16), 44014412.Google Scholar
Wang, J., Wan, M., Chen, S. & Chen, S. 2018 Kinetic energy transfer in compressible isotropic turbulence. J. Fluid Mech. 841, 581613.10.1017/jfm.2018.23CrossRefGoogle Scholar
Watanabe, T., Mori, T., Ishizawa, K. & Nagata, K. 2024 Scale dependence of local shearing motion in decaying turbulence generated by multiple-jet interaction. J. Fluid Mech. 997, A14.10.1017/jfm.2024.727CrossRefGoogle Scholar
Watanabe, T. & Nagata, K. 2023 The response of small-scale shear layers to perturbations in turbulence. J. Fluid Mech. 963, A31.10.1017/jfm.2023.316CrossRefGoogle Scholar
Watanabe, T., Tanaka, K. & Nagata, K. 2020 Characteristics of shearing motions in incompressible isotropic turbulence. Phys. Rev. Fluids 5 (7), 072601.10.1103/PhysRevFluids.5.072601CrossRefGoogle Scholar
Xiao, Z., Wan, M., Chen, S. & Eyink, G.L. 2009 Physical mechanism of the inverse energy cascade of two-dimensional turbulence: a numerical investigation. J. Fluid Mech. 619, 144.10.1017/S0022112008004266CrossRefGoogle Scholar
Yao, H., Schnaubelt, M., Szalay, A.S., Zaki, T.A. & Meneveau, C. 2024 Comparing local energy cascade rates in isotropic turbulence using structure–function and filtering formulations. J. Fluid Mech. 980, A42.10.1017/jfm.2023.1066CrossRefGoogle Scholar