Hostname: page-component-857557d7f7-zntvd Total loading time: 0 Render date: 2025-12-03T17:18:07.514Z Has data issue: false hasContentIssue false

Instability triggered by mixed convection in a thin fluid layer

Published online by Cambridge University Press:  01 December 2025

Florian Rein*
Affiliation:
Aix Marseille Université, CNRS, Centrale Med, IRPHE, Marseille, France Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
Keaton J. Burns
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA
Stefan G. Llewellyn Smith
Affiliation:
Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA 92093, USA
William R. Young
Affiliation:
Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
Benjamin Favier
Affiliation:
Aix Marseille Université, CNRS, Centrale Med, IRPHE, Marseille, France
Michael Le Bars
Affiliation:
Aix Marseille Université, CNRS, Centrale Med, IRPHE, Marseille, France
*
Corresponding author: Florian Rein, florian.rein@protonmail.com

Abstract

We investigate the convective stability of a thin, infinite fluid layer with a rectangular cross-section, subject to imposed heat fluxes at the top and bottom and fixed temperature along the vertical sides. The instability threshold depends on the Prandtl number as well as the normalized flux difference ($f$) and decreases with the aspect ratio ($\epsilon$), following a $\epsilon f^{-1}$ power law. Using a three-dimensional (3-D) initial value and two-dimensional eigenvalue calculations, we identify a dominant 3-D mode characterized by two transverse standing waves attached to the domain edges. We characterize the dominant mode’s frequency and transverse wavenumber as functions of the Rayleigh number and aspect ratio. An analytical asymptotic solution for the base state in the bulk is obtained, valid over most of the domain and increasingly accurate for lower aspect ratios. A local stability analysis, based on the analytical base state, reveals oscillatory transverse instabilities consistent with the global instability characteristics. The source term for this most unstable mode appears to be interactions between vertical shear and horizontal temperature gradients.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Batchelor, G.K. 1954 Heat transfer by free convection across a closed cavity between vertical boundaries at different temperatures. Q. Appl. Maths 12, 209233.10.1090/qam/64563CrossRefGoogle Scholar
Bruyn, J., Bodenschatz, E., Morris, S., Trainoff, S., Hu, Y., Cannell, D. & Ahlers, G. 1996 Apparatus for the study of Rayleigh–Bénard convection in gases under pressure. Rev. Sci. Instrum. 67, 20432067.10.1063/1.1147511CrossRefGoogle Scholar
Burns, K.J., Vasil, G.M., Oishi, J.S., Lecoanet, D. & Brown, B.P. 2020 Dedalus: a flexible framework for numerical simulations with spectral methods. Phys. Rev. Res. 2, 023068.10.1103/PhysRevResearch.2.023068CrossRefGoogle Scholar
Busse, F.H. 1972 The oscillatory instability of convection rolls in a low Prandtl number fluid. J. Fluid Mech. 52, 97112.10.1017/S0022112072002988CrossRefGoogle Scholar
Busse, F.H. 1978 Non-linear properties of thermal convection. Rep. Prog. Phys. 41, 1929.10.1088/0034-4885/41/12/003CrossRefGoogle Scholar
Busse, F.H. & Clever, R.M. 1979 Instabilities of convection rolls in a fluid of moderate Prandtl number. J. Fluid Mech. 91, 319335.10.1017/S002211207900015XCrossRefGoogle Scholar
Caldwell, D.R. 1970 Non-linear effects in a Rayleigh–Bénard experiment. J. Fluid Mech. 42, 161175.10.1017/S0022112070001155CrossRefGoogle Scholar
Carénini, L., Fichot, F. & Seignour, N. 2018 Modelling issues related to molten pool behaviour in case of in-vessel retention strategy. Ann. Nucl. Energy 118, 363374.10.1016/j.anucene.2018.04.032CrossRefGoogle Scholar
Chandrasekhar, S. 1981 Hydrodynamic and Hydromagnetic Stability. Dover.Google Scholar
Chapman, C.J. & Proctor, M.R.E. 1980 Nonlinear Rayleigh–Bénard convection between poorly conducting boundaries. J. Fluid Mech. 101, 759782.10.1017/S0022112080001917CrossRefGoogle Scholar
Clever, R.M. & Busse, F.H. 1990 Convection at very low Prandtl numbers. Phys. Fluids A 2, 334339.10.1063/1.857783CrossRefGoogle Scholar
Cormack, D.E., Leal, L.G. & Imberger, J. 1974 Natural convection in a shallow cavity with differentially heated end walls. Part 1. Asymptotic theory. J. Fluid Mech. 65, 209229.10.1017/S0022112074001352CrossRefGoogle Scholar
Daniels, P.G., Blythe, P.A. & Simpkins, P.G. 1987 Onset of multicellular convection in a shallow laterally heated cavity. Proc. R. Soc. Lond. A 411, 327350.Google Scholar
Daniels, P.G. & Gargaro, R.J. 1993 Buoyancy effects in stably stratified horizontal boundary-layer flow. J. Fluid Mech. 250, 233251.10.1017/S0022112093001442CrossRefGoogle Scholar
Deville, M.O., Fischer, P.F. & Mund, E.H. 2002 High-Order Methods for Incompressible Fluid Flow. Cambridge University Press.10.1017/CBO9780511546792CrossRefGoogle Scholar
Dixit, G., Bukhari, S.F. & Patne, R. 2024 Linear dynamics of a thick liquid layer subjected to an oblique temperature gradient. J. Fluid Mech. 987, A32.10.1017/jfm.2024.409CrossRefGoogle Scholar
Fischer, P.F. 1997 An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 133, 84101.10.1006/jcph.1997.5651CrossRefGoogle Scholar
Ganzarolli, M. & Milanez, L.F. 1995 Natural convection in rectangular enclosures heated from below and symmetrically cooled from the sides. Intl J. Heat Mass Transfer 38, 10631073.10.1016/0017-9310(94)00217-JCrossRefGoogle Scholar
Gertsberg, V.L. & Sivashinsky, G.I. 1981 Large cells in nonlinear Rayleigh–Bénard convection. Prog. Theor. Phys. 66, 12191229.10.1143/PTP.66.1219CrossRefGoogle Scholar
Gill, A.E. 1966 The boundary-layer regime for convection in a rectangular cavity. J. Fluid Mech. 26, 515536.10.1017/S0022112066001368CrossRefGoogle Scholar
Golubitsky, M., Swift, J.W. & Knobloch, E. 1984 Symmetries and pattern selection in Rayleigh–Bénard convection. Phys. D 10, 249276.10.1016/0167-2789(84)90179-9CrossRefGoogle Scholar
Hart, J.E. 1983 Low Prandtl number convection between differentially heated end walls. Intl J. Heat Mass Transfer 26, 10691074.10.1016/S0017-9310(83)80131-8CrossRefGoogle Scholar
Krishnamurti, R. 1970 On the transition to turbulent convection. Part 1. The transition from two- to three-dimensional flow. J. Fluid Mech. 42, 295307.10.1017/S0022112070001271CrossRefGoogle Scholar
Le Guennic, C., Skrzypek, E., Skrzypek, M., Bigot, B., Peybernes, M. & Le Tellier, R. 2020 Synthesis of wp2.3 results on the metallic layer and new correlations. In Proceedings of International Seminar on In-Vessel Retention: Outcomes of IVMR Project Google Scholar
Meyer, A., Yoshikawa, H.N. & Mutabazi, I. 2015 Effect of the radial buoyancy on a circular Couette flow. Phys. Fluids A 27, 114104.10.1063/1.4935804CrossRefGoogle Scholar
Mutabazi, I. & Bahloul, A. 2002 Stability analysis of a vertical curved channel flow with a radial temperature gradient. Theor. Comput. Fluid Dyn. 16, 7990.10.1007/s00162-002-0069-6CrossRefGoogle Scholar
Oishi, J.S., Burns, K.J., Clark, S.E., Anders, E.H., Brown, B.P., Vasil, G.M. & Lecoanet, D. 2021 eigentools: a Python package for studying differential eigenvalue problems with an emphasis on robustness. J. Open Source Softw. 6, 3079.10.21105/joss.03079CrossRefGoogle Scholar
Ortiz-Pérez, A.S. & Dávalos-Orozco, L.A. 2014 Convection in a horizontal fluid layer under an inclined temperature gradient for Prandtl numbers Pr > 1. Intl J. Heat Mass Transfer 68, 444455.10.1016/j.ijheatmasstransfer.2013.09.065CrossRefGoogle Scholar
Ortiz-Pérez, A.S. & Dávalos-Orozco, L.A. 2015 Convection in a horizontal fluid layer under an inclined temperature gradient with a negative vertical Rayleigh number. Intl J. Heat Mass Transfer 90, 12141220.10.1016/j.ijheatmasstransfer.2015.07.057CrossRefGoogle Scholar
Patne, R. & Oron, A. 2022 Buoyancy instabilities in a liquid layer subjected to an oblique temperature gradient. J. Fluid Mech. 937, A11.10.1017/jfm.2022.110CrossRefGoogle Scholar
Pedlosky, J. 2013 Geophysical Fluid Dynamics. Springer.Google Scholar
Rein, F., Carénini, L., Fichot, F., Favier, B. & Le Bars, M. 2023 Interaction between forced and natural convection in a thin cylindrical fluid layer at low Prandtl number. J. Fluid Mech. 977, A26.10.1017/jfm.2023.922CrossRefGoogle Scholar
Rein, F., Carénini, L., Fichot, F., Favier, B. & Le Bars, M. 2025 Experimental study of the convection in a thin cylindrical gas layer with imposed bottom and top fluxes and imposed side temperature. J. Fluid Mech. 1006, A22.10.1017/jfm.2025.2CrossRefGoogle Scholar
Rein, F., Fichot, F., Carénini, L., Le Bars, M. & Favier, B. 2024 New correlations for focusing effect evaluation of the light metal layer in the lower head of a nuclear reactor in case of severe accident. Nucl. Engng Des. 428, 113540.10.1016/j.nucengdes.2024.113540CrossRefGoogle Scholar
Soward, A.M., Oruba, L. & Dormy, E. 2022 Bénard convection in a slowly rotating penny-shaped cylinder subject to constant heat flux boundary conditions. J. Fluid Mech. 951, A5.10.1017/jfm.2022.761CrossRefGoogle Scholar
Theofanous, T.G., Liu, C., Additon, S., Angelini, S., Kymäläinen, O. & Salmassi, T. 1997 In-vessel coolability and retention of a core melt. Nucl. Engng Des. 169, 148.10.1016/S0029-5493(97)00009-5CrossRefGoogle Scholar
Weber, J.E. 1978 On the stability of thermally driven shear flow heated from below. J. Fluid Mech. 87, 6584.10.1017/S0022112078002931CrossRefGoogle Scholar
Yoshikawa, H., Nagata, M. & Mutabazi, I. 2013 Instability of the vertical annular flow with a radial heating and rotating inner cylinder. Phys. Fluids A 25, 114104.10.1063/1.4829429CrossRefGoogle Scholar