Hostname: page-component-857557d7f7-ktsnh Total loading time: 0 Render date: 2025-12-03T17:18:09.497Z Has data issue: false hasContentIssue false

Enhancing temperature transformations with improved mean velocity scalings in canonical compressible wall-bounded turbulent flows

Published online by Cambridge University Press:  03 December 2025

Xuke Zhu
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems and Department of Engineering Mechanics, Zhejiang University , Hangzhou 310027, PR China
Yubin Song
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems and Department of Engineering Mechanics, Zhejiang University , Hangzhou 310027, PR China
Xiaoshuo Yang
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems and Department of Engineering Mechanics, Zhejiang University , Hangzhou 310027, PR China
Yongchao Ji
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems and Department of Engineering Mechanics, Zhejiang University , Hangzhou 310027, PR China
Zhenhua Xia*
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems and Department of Engineering Mechanics, Zhejiang University , Hangzhou 310027, PR China
*
Corresponding author: Zhenhua Xia, xiazh1006@163.com

Abstract

Compressibility transformations have received considerable attention for extending well-established incompressible wall models to high-speed flows. While encouraging progress has been made in mean velocity scalings, research on temperature transformations has lagged behind. In this study, we rigorously derive a general framework for both velocity and temperature transformations directly from the compressible Reynolds-averaged Navier–Stokes (RANS) equations and their ‘incompressible’ counterparts, elucidating how these transformations guide the development of compressible algebraic RANS models in the inner layer. The introduction of the mixed Prandtl number further links the mean momentum and energy transport, facilitating the formulation of novel temperature transformations through integration with arbitrary mean velocity scalings, thereby unifying existing transformation methods while providing a systematic approach for further improvement. A detailed evaluation using direct numerical simulation databases of canonical compressible wall-bounded turbulent flows (CWBTFs) demonstrates that temperature transformations based on the Griffin–Fu–Moin and our recently proposed velocity scalings exhibit superior accuracy and robustness across a wide range of Reynolds and Mach numbers, as well as varying wall thermal boundary conditions. We also perform a preliminary investigation into the applicability of the proposed integral mean temperature–velocity relation and inverse temperature transformations for near-wall temperature modelling in cold-wall boundary layer flows, where discontinuities caused by non-monotonic temperature distributions are effectively avoided. Although the omission of higher-order terms in deriving the total heat flux equation enables closed-form wall modelling, it remains a key limitation to the model’s accuracy at the current stage. Future work may therefore need to address this issue to achieve further advances. These findings enhance the physical understanding of mean momentum and energy transport in canonical CWBTFs, and offer promising prospects for advancing near-wall temperature modelling within RANS and wall-modelled large eddy simulation frameworks.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abe, H., Kawamura, H. & Matsuo, Y. 2004 Surface heat-flux fluctuations in a turbulent channel flow up to ${\textit{Re}}_{\tau}=1020$ with ${\textit{Pr}}=0.025$ and 0.71. Intl J. Heat Fluid Flow 25 (3), 404419.10.1016/j.ijheatfluidflow.2004.02.010CrossRefGoogle Scholar
Alcántara-Ávila, F., Hoyas, S. & Pérez-Quiles, M.J. 2018 DNS of thermal channel flow up to ${\textit{Re}}_{\tau}=2000$ for medium to low Prandtl numbers. Intl J. Heat Mass Transfer 127, 349361.10.1016/j.ijheatmasstransfer.2018.06.149CrossRefGoogle Scholar
Alcántara-Ávila, F., Hoyas, S. & Pérez-Quiles, M.J. 2021 Direct numerical simulation of thermal channel flow for ${\textit{Re}}_{\tau}=5000$ and ${\textit{Pr}} = 0.71$ . J. Fluid Mech. 916, A29.10.1017/jfm.2021.231CrossRefGoogle Scholar
Bai, T.Y., Griffin, K.P. & Fu, L. 2022 Compressible velocity transformations for various noncanonical wall-bounded turbulent flows. AIAA J. 60 (7), 43254337.10.2514/1.J061554CrossRefGoogle Scholar
Bradshaw, P. 1994 Turbulence: the chief outstanding difficulty of our subject. Exp. Fluids 16 (3), 203216.10.1007/BF00206540CrossRefGoogle Scholar
Bradshaw, P. & Huang, G.P. 1995 The law of the wall in turbulent flow. Proc. R. Soc. Lond. A 451 (1941), 165188.Google Scholar
Busemann, A. 1931 Handbuch der Experimentalphysik, vol. 4. Geest und Portig.Google Scholar
Cebeci, T. & Smith, A.M.O. 1974 Analysis of Turbulent Boundary Layers. Academic Press.Google Scholar
Chen, P.E.S., Huang, G.P., Shi, Y.P., Yang, X.I.A. & Lv, Y. 2022 a A unified temperature transformation for high-Mach-number flows above adiabatic and isothermal walls. J. Fluid Mech. 951, A38.10.1017/jfm.2022.860CrossRefGoogle Scholar
Chen, P.E.S., Lv, Y., Xu, H.H.H.A., Shi, Y.P. & Yang, X.I.A. 2022 b LES wall modeling for heat transfer at high speeds. Phys. Rev. Fluids 7 (1), 014608.10.1103/PhysRevFluids.7.014608CrossRefGoogle Scholar
Chen, X. & She, Z.S. 2016 Analytic prediction for planar turbulent boundary layers. Sci. Chin. Phys. Mech. Astron. 59 (11), 114711.10.1007/s11433-016-0288-8CrossRefGoogle Scholar
Chen, X.L., Cheng, C., Fu, L. & Gan, J.P. 2023 Linear response analysis of supersonic turbulent channel flows with a large parameter space. J. Fluid Mech. 962, A7.10.1017/jfm.2023.244CrossRefGoogle Scholar
Chen, X.L., Gan, J.P. & Fu, L. 2024 An improved Baldwin–Lomax algebraic wall model for high-speed canonical turbulent boundary layers using established scalings. J. Fluid Mech. 987, A7.10.1017/jfm.2024.383CrossRefGoogle Scholar
Chen, X.L., Gan, J.P. & Fu, L. 2025 The mean temperature-velocity relation and a new temperature wall model for compressible laminar and turbulent flows. J. Fluid Mech. 1009, A39.10.1017/jfm.2025.312CrossRefGoogle Scholar
Cheng, C., Chen, X.L., Zhu, W.K., Shyy, W. & Fu, L. 2024 Progress in physical modeling of compressible wall-bounded turbulent flows. Acta Mechanica Sin. 40 (1), 323663.10.1007/s10409-024-23663-xCrossRefGoogle Scholar
Cheng, C. & Fu, L. 2024 a Mean temperature scalings in compressible wall turbulence. Phys. Rev. Fluids 9 (5), 054610.10.1103/PhysRevFluids.9.054610CrossRefGoogle Scholar
Cheng, C. & Fu, L. 2024 b A Reynolds analogy model for compressible wall turbulence. J. Fluid Mech. 999, A20.10.1017/jfm.2024.981CrossRefGoogle Scholar
Cogo, M., Baù, U., Chinappi, M., Bernardini, M. & Picano, F. 2023 Assessment of heat transfer and Mach number effects on high-speed turbulent boundary layers. J. Fluid Mech. 974, A10.10.1017/jfm.2023.791CrossRefGoogle Scholar
Cogo, M., Chinappi, M., Bernardini, M. & Picano, F. 2024 Compressibility and wall-cooling effects on high-speed turbulent boundary layers. Mater. Res. Proc. 42, 1417.10.21741/9781644903193-4CrossRefGoogle Scholar
Crocco, L. 1932 Sulla trasmissione del calore da una lamina piana a un fluido scorrente ad alta velocita. L’Aerotecnica 12, 181197.Google Scholar
Van Driest, E.R. 1951 Turbulent boundary layer in compressible fluids. J. Aeronaut. Sci. 18 (3), 145160.10.2514/8.1895CrossRefGoogle Scholar
Duan, L. & Martin, M.P. 2011 Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy. J. Fluid Mech. 684, 2559.10.1017/jfm.2011.252CrossRefGoogle Scholar
Gatski, T.B. & Bonnet, J.P. 2009 Compressibility, Turbulence and High Speed Flow. Elsevier.Google Scholar
Gerolymos, G.A. & Vallet, I. 2023 Scaling of pressure fluctuations in compressible turbulent plane channel flow. J. Fluid Mech. 958, A19.10.1017/jfm.2023.42CrossRefGoogle Scholar
Gerolymos, G.A. & Vallet, I. 2024 a Compressible turbulent plane channel DNS datasets. Data Brief 55, 110737.10.1016/j.dib.2024.110737CrossRefGoogle ScholarPubMed
Gerolymos, G.A. & Vallet, I. 2024 b Total and static temperature statistics in compressible turbulent plane channel flow. J. Fluid Mech. 978, A25.10.1017/jfm.2023.1034CrossRefGoogle Scholar
Gibis, T., Sciacovelli, L., Kloker, M. & Wenzel, C. 2024 Heat-transfer effects in compressible turbulent boundary layers – a regime diagram. J. Fluid Mech. 995, A14.10.1017/jfm.2024.622CrossRefGoogle Scholar
Griffin, K.P., Fu, L. & Moin, P. 2021 a General method for determining the boundary layer thickness in nonequilibrium flows. Phys. Rev. Fluids 6 (2), 024608.10.1103/PhysRevFluids.6.024608CrossRefGoogle Scholar
Griffin, K.P., Fu, L. & Moin, P. 2021 b Velocity transformation for compressible wall-bounded turbulent flows with and without heat transfer. Proc. Natl. Acad. Sci. USA 118 (34), e2111144118.10.1073/pnas.2111144118CrossRefGoogle ScholarPubMed
Griffin, K.P., Fu, L. & Moin, P. 2023 Near-wall model for compressible turbulent boundary layers based on an inverse velocity transformation. J. Fluid Mech. 970, A36.10.1017/jfm.2023.627CrossRefGoogle Scholar
Hasan, A.M., Costa, P., Larsson, J., Pirozzoli, S. & Pecnik, R. 2025 a Intrinsic compressibility effects in near-wall turbulence. J. Fluid Mech. 1006, A14.10.1017/jfm.2024.1238CrossRefGoogle Scholar
Hasan, A.M., Elias, A.J., Menter, F. & Pecnik, R. 2025 b Variable-property and intrinsic compressibility corrections for turbulence models using near-wall scaling theories. J. Fluid Mech. 1019, A8.10.1017/jfm.2025.10572CrossRefGoogle Scholar
Hasan, A.M., Larsson, J., Pirozzoli, S. & Pecnik, R. 2023 Incorporating intrinsic compressibility effects in velocity transformations for wall-bounded turbulent flows. Phys. Rev. Fluids 8 (11), L112601.10.1103/PhysRevFluids.8.L112601CrossRefGoogle Scholar
Hasan, A.M., Larsson, J., Pirozzoli, S. & Pecnik, R. 2024 Estimating mean profiles and fluxes in high-speed turbulent boundary layers using inner/outer-layer scalings. AIAA J. 62 (2), 848853.10.2514/1.J063335CrossRefGoogle Scholar
Hendrickson, T.R., Subbareddy, P. & Candler, G.V. 2022 Improving eddy viscosity based turbulence models for high speed, cold wall flows. In AIAA SCITECH 2022 Forum. AIAA.10.2514/6.2022-0589CrossRefGoogle Scholar
Hendrickson, T.R., Subbareddy, P., Candler, G.V. & Macdonald, R.L. 2023 Applying compressible transformations to wall modeled LES of cold wall flat plate boundary layers. In AIAA SCITECH 2023 Forum . AIAA.10.2514/6.2023-2635CrossRefGoogle Scholar
Huang, P.G., Bradshaw, P. & Coakley, T.J. 1993 Skin friction and velocity profile family for compressible turbulent boundary layers. AIAA J. 31 (9), 16001604.10.2514/3.11820CrossRefGoogle Scholar
Huang, P.G. & Coleman, G.N. 1994 Van Driest transformation and compressible wall-bounded flows. AIAA J. 32 (10), 21102113.10.2514/3.12259CrossRefGoogle Scholar
Huang, P.G., Coleman, G.N. & Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185218.10.1017/S0022112095004599CrossRefGoogle Scholar
Huang, P.G., Coleman, G.N., Spalart, P.R. & Yang, X.I.A. 2023 Velocity and temperature scalings leading to compressible laws of the wall. J. Fluid Mech. 977, A49.10.1017/jfm.2023.1013CrossRefGoogle Scholar
Johnson, D.A. & King, L.S. 1985 A mathematically simple turbulence closure model for attached and separated turbulent boundary layers. AIAA J. 23 (11), 16841692.10.2514/3.9152CrossRefGoogle Scholar
Kader, B.A. 1981 Temperature and concentration profiles in fully turbulent boundary layers. Intl J. Heat Mass Transfer 24 (9), 15411544.10.1016/0017-9310(81)90220-9CrossRefGoogle Scholar
Kader, B.A. 1991 Heat and mass transfer in pressure-gradient boundary layers. Intl J. Heat Mass Transfer 34 (11), 28372857.10.1016/0017-9310(91)90245-ACrossRefGoogle Scholar
von Kármán, T. 1930 Mechanische ähnlichkeit und turbulenz. Nachr. Ges. Wiss. Göttingen Math. Physik. Klasse 5868.Google Scholar
Kasagi, N., Tomita, Y. & Kuroda, A. 1992 Direct numerical simulation of passive scalar field in a turbulent channel flow. J. Heat Transfer 114 (3), 598606.10.1115/1.2911323CrossRefGoogle Scholar
Kays, W.M. 1994 Turbulent Prandtl number. Where are we? ASME J. Heat Transfer 116 (2), 284295.10.1115/1.2911398CrossRefGoogle Scholar
Kays, W.M. & Crawford, M.E. 1993 Convective Heat and Mass Transfer, 3rd edn. McGraw-Hill.Google Scholar
Kumar, V. & Larsson, J. 2022 Modular method for estimation of velocity and temperature profiles in high-speed boundary layers. AIAA J. 60 (9), 51655172.10.2514/1.J061735CrossRefGoogle Scholar
Lee, H., Helm, C., Martín, P.M. & Williams, O.J. 2023 Compressible boundary layer velocity transformation based on a generalized form of the total stress. Phys. Rev. Fluids 8 (7), 074604.10.1103/PhysRevFluids.8.074604CrossRefGoogle Scholar
Lee, M. & Moser, R.D. 2015 Direct numerical simulation of turbulent channel flow up to ${\textit{Re}}_\tau \approx 5200$ . J. Fluid Mech. 774, 395415.10.1017/jfm.2015.268CrossRefGoogle Scholar
Li, B.L., Gao, Z.X., Mo, F. & Jiang, C.W. 2025 a Improved wall function method for hypersonic reacting turbulent boundary layers. AIAA J. 63 (1), 5571.10.2514/1.J064306CrossRefGoogle Scholar
Li, Q.Y., Chen, Y.K., Xiao, D.D., Mao, X.R. & Yao, J. 2025 b Characterization of the quiescent momentum and thermal cores in compressible turbulent channel flows. Phys. Rev. Fluids 10 (6), 064612.10.1103/vbc3-swzhCrossRefGoogle Scholar
Lusher, D.J. & Coleman, G.N. 2022 Numerical study of compressible wall-bounded turbulence – the effect of thermal wall conditions on the turbulent Prandtl number in the low-supersonic regime. Intl J. Comput. Fluid Dyn. 36 (9), 797815.10.1080/10618562.2023.2189247CrossRefGoogle Scholar
Lyons, S.L., Hanratty, T.J. & McLaughlin, J.B. 1991 Direct numerical simulation of passive heat transfer in a turbulent channel flow. Intl J. Heat Mass Transfer 34 (4–5), 11491161.10.1016/0017-9310(91)90024-9CrossRefGoogle Scholar
Modesti, D. & Pirozzoli, S. 2016 Reynolds and Mach number effects in compressible turbulent channel flow. Intl J. Heat Fluid Flow 59, 3349.10.1016/j.ijheatfluidflow.2016.01.007CrossRefGoogle Scholar
Modesti, D. & Pirozzoli, S. 2024 Friction and heat transfer in forced air convection with variable physical properties. J. Fluid Mech. 1001, A27.10.1017/jfm.2024.1098CrossRefGoogle Scholar
Morkovin, M.V. 1962 Effects of compressibility on turbulent flows. In The Mechanics of Turbulence, pp. 367380. CNRS.Google Scholar
Nagib, H.M. & Chauhan, K.A. 2008 Variations of von Kármán coefficient in canonical flows. Phys. Fluids 20 (10), 101518.10.1063/1.3006423CrossRefGoogle Scholar
Nichols, R.H. & Nelson, C.C. 2004 Wall function boundary conditions including heat transfer and compressibility. AIAA J. 42 (6), 11071114.10.2514/1.3539CrossRefGoogle Scholar
Patel, A., Boersma, B.J. & Pecnik, R. 2016 The influence of near-wall density and viscosity gradients on turbulence in channel flows. J. Fluid Mech. 809, 793820.10.1017/jfm.2016.689CrossRefGoogle Scholar
Patel, A., Boersma, B.J. & Pecnik, R. 2017 Scalar statistics in variable property turbulent channel flows. Phys. Rev. Fluids 2 (8), 084604.10.1103/PhysRevFluids.2.084604CrossRefGoogle Scholar
Pirozzoli, S. 2023 a An explicit representation for mean profiles and fluxes in forced passive scalar convection. J. Fluid Mech. 968, R1.10.1017/jfm.2023.591CrossRefGoogle Scholar
Pirozzoli, S. 2023 b Prandtl number effects on passive scalars in turbulent pipe flow. J. Fluid Mech. 965, A7.10.1017/jfm.2023.387CrossRefGoogle Scholar
Pirozzoli, S., Bernardini, M. & Orlandi, P. 2016 Passive scalars in turbulent channel flow at high Reynolds number. J. Fluid Mech. 788, 614639.10.1017/jfm.2015.711CrossRefGoogle Scholar
Pirozzoli, S. & Modesti, D. 2024 Mean temperature profiles in turbulent internal flows. Intl J. Heat Fluid Flow 109, 109544.10.1016/j.ijheatfluidflow.2024.109544CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Prandtl, L. 1932 Zur turbulenten Strömung in Rohren und längs Platten. Ergeb. Aerodyn. Versuchanstalt 4, 1829.Google Scholar
Raje, P., Parish, E., Hickey, J.P., Cinnella, P. & Duraisamy, K. 2025 Recent developments and research needs in turbulence modeling of hypersonic flows. Phys. Fluids 37 (3), 031304.10.1063/5.0253703CrossRefGoogle Scholar
Smits, A.J. & Dussauge, J.P. 2006 Turbulent Shear Layers in Supersonic Flow, 2nd edn. American Institute of Physics.Google Scholar
Song, Y.B., Zhang, P. & Xia, Z.H. 2023 Predicting mean profiles in compressible turbulent channel and pipe flows. Phys. Rev. Fluids 8 (3), 034604.10.1103/PhysRevFluids.8.034604CrossRefGoogle Scholar
Sun, C.C. & Childs, M.E. 1973 A modified wall wake velocity profile for turbulent compressible boundary layers. J. Aircraft 10 (6), 381383.10.2514/3.44376CrossRefGoogle Scholar
Trettel, A. & Larsson, J. 2016 Mean velocity scaling for compressible wall turbulence with heat transfer. Phys. Fluids 28 (2), 026102.10.1063/1.4942022CrossRefGoogle Scholar
Volpiani, P.S., Iyer, P.S., Pirozzoli, S. & Larsson, J. 2020 Data-driven compressibility transformation for turbulent wall layers. Phys. Rev. Fluids 5 (5), 052602.10.1103/PhysRevFluids.5.052602CrossRefGoogle Scholar
Walz, A. 1969 Boundary Layers of Flow and Temperature. MIT Press.Google Scholar
Wan, T., Zhao, P.H., Liu, J.M., Wang, C.Z. & Lei, M.Z. 2020 Mean velocity and temperature scaling for near-wall turbulence with heat transfer at supercritical pressure. Phys. Fluids 32 (5), 055103.10.1063/5.0002855CrossRefGoogle Scholar
Wu, B., Bi, W.T., Hussain, F. & She, Z.S. 2017 On the invariant mean velocity profile for compressible turbulent boundary layers. J. Turbul. 18 (2), 186202.10.1080/14685248.2016.1269911CrossRefGoogle Scholar
Yang, X.I.A. & Abkar, M. 2018 A hierarchical random additive model for passive scalars in wall-bounded flows at high Reynolds numbers. J. Fluid Mech. 842, 354380.10.1017/jfm.2018.139CrossRefGoogle ScholarPubMed
Yang, X.I.A. & Lv, Y. 2018 A semi-locally scaled eddy viscosity formulation for LES wall models and flows at high speeds. Theor. Comput. Fluid Dyn. 32 (5), 617627.10.1007/s00162-018-0471-3CrossRefGoogle Scholar
Yao, J. & Hussain, F. 2020 Turbulence statistics and coherent structures in compressible channel flow. Phys. Rev. Fluids 5 (8), 084603.10.1103/PhysRevFluids.5.084603CrossRefGoogle Scholar
Younes, K. 2021 Velocity scaling of high-speed turbulent boundary layer flows with wall heat transfer. Master’s thesis, University of Waterloo, Waterloo, Canada.Google Scholar
Younes, K. & Hickey, J.P. 2023 Mean velocity scaling of high-speed turbulent flows under nonadiabatic wall conditions. AIAA J. 61 (4), 15321539.10.2514/1.J062547CrossRefGoogle Scholar
Yu, M., Xu, C.X. & Pirozzoli, S. 2019 Genuine compressibility effects in wall-bounded turbulence. Phys. Rev. Fluids 4 (12), 123402.10.1103/PhysRevFluids.4.123402CrossRefGoogle Scholar
Zhang, C., Duan, L. & Choudhari, M.M. 2018 Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers. AIAA J. 56 (11), 42974311.10.2514/1.J057296CrossRefGoogle Scholar
Zhang, P., Song, Y.B. & Xia, Z.H. 2023 Compressibility effect in compressible turbulent channel flows (in Chinese). Sci. Sin. Phys. Mech. Astron. 53, 244711.Google Scholar
Zhang, P., Song, Y.B. & Xia, Z.H. 2024 Direct numerical simulations of compressible turbulent channel flows with asymmetric thermal walls. J. Fluid Mech. 984, A37.10.1017/jfm.2024.226CrossRefGoogle Scholar
Zhang, P. & Xia, Z.H. 2020 Contribution of viscous stress work to wall heat flux in compressible turbulent channel flows. Phys. Rev. E 102 (4), 043107.10.1103/PhysRevE.102.043107CrossRefGoogle ScholarPubMed
Zhang, Y.S., Bi, W.T., Hussain, F., Li, X.L. & She, Z.S. 2012 Mach-number-invariant mean-velocity profile of compressible turbulent boundary layers. Phys. Rev. Lett. 109 (5), 054502.10.1103/PhysRevLett.109.054502CrossRefGoogle ScholarPubMed
Zhang, Y.S., Bi, W.T., Hussain, F. & She, Z.S. 2014 A generalized Reynolds analogy for compressible wall-bounded turbulent flows. J. Fluid Mech. 739, 392420.10.1017/jfm.2013.620CrossRefGoogle Scholar
Zhu, X.K., Song, Y.B., Yang, X.S. & Xia, Z.H. 2024 Velocity transformation for compressible wall-bounded turbulence – an approach through the mixing length hypothesis. Sci. Chin. Phys. Mech. Astron. 67 (9), 294711.10.1007/s11433-024-2420-5CrossRefGoogle Scholar
Zhu, X.K., Song, Y.B., Zhang, P., Yang, X.S., Ji, Y.C. & Xia, Z.H. 2025 a Influences of streamwise driving forces on turbulent statistics in direct numerical simulations of compressible turbulent channel flows. Phys. Rev. Fluids 10 (6), 064616.10.1103/yd61-f3wyCrossRefGoogle Scholar
Zhu, X.K., Zhang, P., Yang, X.S., Ji, Y.C. & Xia, Z.H. 2025 b A unified framework for mean temperature analysis in compressible turbulent channel flows. J. Fluid Mech. 1012, R2.10.1017/jfm.2025.10173CrossRefGoogle Scholar