Hostname: page-component-65b85459fc-tjtgf Total loading time: 0 Render date: 2025-10-18T04:36:57.158Z Has data issue: false hasContentIssue false

The energetics of mixing in continuous gravity currents

Published online by Cambridge University Press:  16 October 2025

Mohamad Harrouk*
Affiliation:
Université de Lorraine, CNRS, LEMTA, Nancy F-54000, France
Rabah Mehaddi
Affiliation:
Université de Lorraine, CNRS, LEMTA, Nancy F-54000, France
Boris Arcen
Affiliation:
Université de Lorraine, CNRS, LEMTA, Nancy F-54000, France
Yvan Dossmann
Affiliation:
Université de Lorraine, CNRS, LEMTA, Nancy F-54000, France ENSL, CNRS, Laboratoire de Physique, Lyon F-69342, France
*
Corresponding author: Mohamad Harrouk, mohamad.harrouk@univ-lorraine.fr

Abstract

We investigate the energetics of mixing induced by a continuously supplied dense current (density $\rho _0$) propagating beneath a lighter ambient fluid (density $\rho _a$) along a horizontal rigid boundary within a rectangular domain. The flow fields are computed using direct numerical simulations (DNS) performed with the Nek5000 spectral element solver. Mixing is quantified through the temporal evolution of the background potential energy, which exhibits a linear increase over time. This linear trend enables the definition of a dimensionless mixing parameter $\gamma$, representing the rate of background potential energy growth. The value of $\gamma$ depends on the initial density contrast for a fixed volumetric discharge at the source, characterised by the dimensionless source Froude number. The results reveal a non-monotonic dependence of $\gamma$ on the source Froude number, highlighting a complex interaction between flow forcing and mixing efficiency. We find that, under the assumption of uniform mixing along the current’s length, a fraction $\gamma /2$ of the total supplied energy is invested in mixing along a horizontal distance equal to the height of the inlet.

Information

Type
JFM Rapids
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Agrawal, T., Ramesh, B., Zimmerman, S.J., Philip, J. & Klewicki, J.C. 2021 Probing the high mixing efficiency events in a lock-exchange flow through simultaneous velocity and temperature measurements. Phys. Fluids 33 (1).10.1063/5.0033463CrossRefGoogle Scholar
Bonometti, T. & Balachandar, S. 2008 Effect of Schmidt number on the structure and propagation of density currents. Theor. Comp. Fluid Dyn. 22 (5), 341361.10.1007/s00162-008-0085-2CrossRefGoogle Scholar
Britter, R.E. & Linden, P.F. 1980 The motion of the front of a gravity current travelling down an incline. J. Fluid Mech. 99 (3), 531543.CrossRefGoogle Scholar
Caulfield, C.P. 2020 Open questions in turbulent stratified mixing: do we even know what we do not know? Phys. Rev. Fluids 5 (11.10.1103/PhysRevFluids.5.110518CrossRefGoogle Scholar
Caulfield, C.P. & Peltier, W.R. 2000 The anatomy of the mixing transition in homogeneous and stratified free shear layers. J. Fluid Mech. 413, 147.10.1017/S0022112000008284CrossRefGoogle Scholar
Dallimore, C.J., Imberger, J. & Ishikawa, T. 2001 Entrainment and turbulence in saline underflow in lake ogawara. J. Hydraul. Engng. 127 (11), 937948.10.1061/(ASCE)0733-9429(2001)127:11(937)CrossRefGoogle Scholar
Ellison, T.H. & Turner, J.S. 1959 Turbulent entrainment in stratified flows. J. Fluid Mech. 6 (03), 423.10.1017/S0022112059000738CrossRefGoogle Scholar
Fragoso, A.T., Patterson, M.D. & Wettlaufer, J.S. 2013 Mixing in gravity currents. J. Fluid Mech. 734.CrossRefGoogle Scholar
Frantz, R.A.S., Deskos, G., Laizet, S. & Silvestrini, J.H. 2021 High-fidelity simulations of gravity currents using a high-order finite-difference spectral vanishing viscosity approach. Comput. Fluids 221, 104902.CrossRefGoogle Scholar
Haddad, S., Vaux, S., Varrall, K. & Vauquelin, O. 2022 Theoretical model of continuous inertial gravity currents including a jump condition. Phys. Rev. Fluids 7 (8), 084802.10.1103/PhysRevFluids.7.084802CrossRefGoogle Scholar
Hogg, A.J., Nasr-Azadani, M.M., Ungarish, M. & Meiburg, E. 2016 Sustained gravity currents in a channel. J. Fluid Mech. 798, 109122.10.1017/jfm.2016.343CrossRefGoogle Scholar
Hughes, G.O. & Linden, P.F. 2016 Mixing efficiency in run-down gravity currents. J. Fluid Mech. 809, 691704.10.1017/jfm.2016.696CrossRefGoogle Scholar
Huppert, H.E. 2006 Gravity currents: a personal perspective. J. Fluid Mech. 554, 299322.10.1017/S002211200600930XCrossRefGoogle Scholar
Ilıcak, M. 2014 Energetics and mixing efficiency of lock-exchange flow. Ocean Model. 83, 110.10.1016/j.ocemod.2014.08.003CrossRefGoogle Scholar
Ivey, G.N. & Imberger, J. 1991 On the nature of turbulence in a stratified fluid. Part I: the energetics of mixing. J. Phys. Oceanogr. 21 (5), 650658.2.0.CO;2>CrossRefGoogle Scholar
Linden, P.F. 1979 Mixing in stratified fluids. Geophys. Astrophys. Fluid Dyn. 13 (1), 323.10.1080/03091927908243758CrossRefGoogle Scholar
Lorenz, E.N. 1955 Available potential energy and the maintenance of the general circulation. Tellus A: Dyn. Meteorol. Oceanography 7 (2), 157167.10.3402/tellusa.v7i2.8796CrossRefGoogle Scholar
Micard, D., Dossmann, Y., Gostiaux, L. & Venaille, A. 2016 Mixing efficiency in a lock exchange experiment, VIIIth International Symposium on Stratified Flows, vol. 8.Google Scholar
Miller, S.T.K., Keim, B.D., Talbot, R.W. & Mao, H. 2003 Sea breeze: structure, forecasting, and impacts. Rev. Geophys. 41 (3).10.1029/2003RG000124CrossRefGoogle Scholar
Mukherjee, P. & Balasubramanian, S. 2020 Energetics and mixing efficiency of lock-exchange gravity currents using simultaneous velocity and density fields. Phys. Rev. Fluids 5 (6).CrossRefGoogle Scholar
Mukherjee, P. & Balasubramanian, S. 2021 Diapycnal mixing efficiency in lock-exchange gravity currents. Phys. Rev. Fluids 6 (1).10.1103/PhysRevFluids.6.013801CrossRefGoogle Scholar
Odier, P., Chen, J. & Ecke, R.E. 2014 Entrainment and mixing in a laboratory model of oceanic overflow. J. Fluid Mech. 746, 498535.10.1017/jfm.2014.104CrossRefGoogle Scholar
Osborn, T.R. 1980 Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr. 10 (1), 8389.10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Ottolenghi, L., Adduce, C., Inghilesi, R., Armenio, V. & Roman, F. 2016 Entrainment and mixing in unsteady gravity currents. J. Hydraul. Res. 54 (5).10.1080/00221686.2016.1174961CrossRefGoogle Scholar
Park, Y.-G., Whitehead, J.A. & Gnanadeskian, A. 1994 Turbulent mixing in stratified fluids: layer formation and energetics. J. Fluid Mech. 279, 279311.10.1017/S0022112094003915CrossRefGoogle Scholar
Peltier, W.R. & Caulfield, C.P. 2003 Mixing efficiency in stratified shear flows. Annu. Rev. Fluid Mech. 35 (1), 135167.10.1146/annurev.fluid.35.101101.161144CrossRefGoogle Scholar
Phillips, O.M. 1972 Turbulence in a strongly stratified fluid – is it unstable? Deep Sea Res. Oceanographic Abstracts 19 (1), 7981.10.1016/0011-7471(72)90074-5CrossRefGoogle Scholar
Posmentier, E.S. 1977 The generation of salinity finestructure by vertical diffusion. J. Phys. Oceanogr. 7 (2), 298300.2.0.CO;2>CrossRefGoogle Scholar
Prastowo, T., Griffiths, R.W., Hughes, G.O. & Hogg, A.M. 2008 Mixing efficiency in controlled exchange flows. J. Fluid Mech. 600, 235244.10.1017/S0022112008000554CrossRefGoogle Scholar
Princevac, M., Fernando, H.J.S. & Whiteman, C.D. 2005 Turbulent entrainment into natural gravity-driven flows. J. Fluid Mech. 533.10.1017/S0022112005004441CrossRefGoogle Scholar
van Reeuwijk, M., Holzner, M., Caulfield, C.P. 2019 Mixing and entrainment are suppressed in inclined gravity currents. J. Fluid Mech. 873.CrossRefGoogle Scholar
Salinas, J.S., Zúñiga, S., Cantero, M.I., Shringarpure, M., Fedele, J., Hoyal, D. & Balachandar, S. 2022 Slope dependence of self-similar structure and entrainment in gravity currents. J. Fluid Mech. 934.10.1017/jfm.2022.1CrossRefGoogle Scholar
Sher, D. & Woods, A.W. 2017 Mixing in continuous gravity currents. J. Fluid Mech. 818.10.1017/jfm.2017.168CrossRefGoogle Scholar
Shringarpure, M., Lee, H., Ungarish, M. & Balachandar, S. 2013 Front conditions of high-re gravity currents produced by constant and time-dependent influx: an analytical and numerical study. Eur. J. Mechanics-B/Fluids 41, 109122.10.1016/j.euromechflu.2013.04.004CrossRefGoogle Scholar
Stashchuk, N. & Hutter, K. 2003 Modelling the gravity current flowing from the bosphorus to the black sea. Geophys. Astro. Fluid 97 (1), 124.10.1080/0309192031000072508CrossRefGoogle Scholar
Strang, E.J. & Fernando, H.J.S. 2001 Entrainment and mixing in stratified shear flows. J. Fluid Mech. 428, 349386.10.1017/S0022112000002706CrossRefGoogle Scholar
Winters, K.B., Lombard, P.N., Riley, J.J. & D’Asaro, E.A. 1995 Available potential energy and mixing in density-stratified fluids. J. Fluid Mech. 289, 115128.10.1017/S002211209500125XCrossRefGoogle Scholar