Hostname: page-component-65b85459fc-qsphb Total loading time: 0 Render date: 2025-10-17T20:54:15.685Z Has data issue: false hasContentIssue false

Effect of modulation on the onset of Rayleigh–Bénard convection in superposed fluid and porous layers

Published online by Cambridge University Press:  16 October 2025

Tanya Rastogi
Affiliation:
Department of Mathematics, Malaviya National Institute of Technology , Jaipur 302017, Rajasthan, India
Om P. Suthar*
Affiliation:
Department of Mathematics, Malaviya National Institute of Technology , Jaipur 302017, Rajasthan, India
*
Corresponding author: Om P. Suthar, ompsuthar.maths@mnit.ac.in

Abstract

The present article investigates the stability of Rayleigh–Bénard convection in a composite system consisting of a horizontal fluid layer overlying a fluid-saturated Darcy porous layer subjected to a time-periodic temperature distribution. The bottom surface is heated periodically with time, whereas a Biot number-dependent thermal boundary condition represents the heat transfer at the upper surface. The Beavers–Joseph–Saffman–Jones condition describes the ‘slip’ at the interface of the domains, and the Lions interface condition governs the normal force balance, incorporating a dynamic pressure term. The Chebyshev tau method and Fourier analysis are utilised to obtain linear instability bounds, which are compared with strong global and asymptotic limits derived from the nonlinear analysis using the energy method. Four deliberately chosen configurations of superposed fluid- and porous-layer systems are investigated. Two configurations validate the analysis through the limiting cases of the classical Darcy–Bénard and Rayleigh–Bénard systems obtained by setting the fluid-to-porous depth ratio $(\hat {d})$ to zero and infinity, respectively. The other two configurations involve layers with equal depths $(\hat {d} =1)$ and a shallow fluid layer overlying a porous layer $(\hat {d} \sim 0.1)$. For these cases, modulation substantially influences the onset of convection. In the last case, the linear theory points out that modulation parameters can control the dominant convective mode (fluid/porous). Furthermore, unlike the previously reported studies, the nonlinear stability bounds are found to be significantly lower than the linear instability bounds, indicating the possibility of subcritical instabilities in the presence of modulation. The region of subcritical instabilities increases with modulation amplitude.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Al-Zamily, A.M.J. 2017 Analysis of natural convection and entropy generation in a cavity filled with multi-layers of porous medium and nanofluid with a heat generation. Intl J. Heat Mass Transfer 106, 12181231.CrossRefGoogle Scholar
Allen, M.B., Behie, G.A. & Trangenstein, J.A. 2013 Multiphase Flow in Porous Media: Mechanics, Mathematics, and Numerics. Springer Science & Business Media.Google Scholar
Anjali, , Khan, A. & Bera, P. 2022 Stability of non-isothermal Poiseuille flow in a fluid overlying an anisotropic and inhomogeneous porous domain. J. Fluid Mech. 949, A44.10.1017/jfm.2022.783CrossRefGoogle Scholar
Bagchi, A. & Kulacki, F.A. 2014 Natural Convection in Superposed Fluid-Porous Layers. Springer.10.1007/978-1-4614-6576-8CrossRefGoogle Scholar
Baithalu, R., Mishra, S.R. & Ali Shah, N. 2023 Sensitivity analysis of various factors on the micropolar hybrid nanofluid flow with optimized heat transfer rate using response surface methodology: a statistical approach. Phys. Fluids 35 (10).10.1063/5.0171265CrossRefGoogle Scholar
Bansal, A. & Suthar, O.P. 2022 A study on the effect of temperature modulation on Darcy–Bénard convection using a local thermal non-equilibrium model. Phys. Fluids 34 (4), 044107.10.1063/5.0086020CrossRefGoogle Scholar
Bejan, A. 2013 Convection Heat Transfer, 4th edn. John wiley & sons.CrossRefGoogle Scholar
Bhadauria, B.S. 2002 Thermal modulation of Rayleigh–Benard convection. Z. Naturforsch. A J. Phys. Sci. 57a (9–10), 780786.Google Scholar
Bhadauria, B.S. 2008 Effect of temperature modulation on the onset of Darcy convection in a rotating porous medium. J. Porous Media 11 (4), 361375.10.1615/JPorMedia.v11.i4.30CrossRefGoogle Scholar
Bhattacharjee, J.K. 1987 Convection and Chaos in Fluids. World Scientific Publishing.CrossRefGoogle Scholar
Blest, D.C., Duffy, B.R., McKee, S. & Zulkifle, A.K. 1999 a Curing simulation of thermoset composites. Compos. A Appl. Sci. Manufactur. 30 (11), 12891309.10.1016/S1359-835X(99)00032-9CrossRefGoogle Scholar
Blest, D.C., McKee, S., Zulkifle, A.K. & Marshall, P. 1999 b Curing simulation by autoclave resin infusion. Compos. Sci. Technol. 59 (16), 22972313.10.1016/S0266-3538(99)00084-6CrossRefGoogle Scholar
Caltagirone, J.P. 1976 Stabilité d’une couche poreuse horizontale soumise a des conditions aux limites périodiques. Intl J. Heat Mass Transfer 19 (8), 815820.10.1016/0017-9310(76)90193-9CrossRefGoogle Scholar
Cardenas, M.B. 2015 Hyporheic zone hydrologic science: a historical account of its emergence and a prospectus. Water Resour. Res. 51 (5), 36013616.10.1002/2015WR017028CrossRefGoogle Scholar
Chandrasekhar, S. 2013 Hydrodynamic and Hydromagnetic Stability. Dover Publications.Google Scholar
Chen, F. & Chen, C.F. 1988 Onset of finger convection in a horizontal porous layer underlying a fluid layer. Trans. ASME J. Heat Transfer 110 (2), 403409.CrossRefGoogle Scholar
Chen, F. & Chen, C.F. 1989 Experimental investigation of convective stability in a superposed fluid and porous layer when heated from below. J. Fluid Mech. 207 (2), 311321.10.1017/S0022112089002594CrossRefGoogle Scholar
Chen, F. & Chen, C.F. 1992 Convection in superposed fluid and porous layers. J. Fluid Mech. 234, 97119.10.1017/S0022112092000715CrossRefGoogle Scholar
Chhuon, B. & Caltagirone, J.P. 1979 Stability of a horizontal porous layer with timewise periodic boundary conditions. J. Heat Transfer 101 (2), 244248.CrossRefGoogle Scholar
Christopher, T.W., Le Bars, M. & Smith, S.G.L. 2023 Linear and nonlinear stability of Rayleigh–Bénard convection with zero-mean modulated heat flux. J. Fluid Mech. 961, A1.10.1017/jfm.2023.138CrossRefGoogle Scholar
Davis, S.H. & Von Kerczek, C. 1973 A reformulation of energy stability theory. Arch. Ratl. Mech. Anal. 52, 112117.10.1007/BF00282321CrossRefGoogle Scholar
Dev, K. & Suthar, O.P. 2023 Global stability of Bénard–Marangoni convection in an anisotropic porous medium. Phys. Fluids 35 (10).10.1063/5.0172723CrossRefGoogle Scholar
Dev, K., Suthar, O.P. & Siddheshwar, P.G. 2024 Brinkman–Bénard convection in a box with temperature modulation. Phys. Fluids 36 (9)CrossRefGoogle Scholar
Discacciati, M. & Quarteroni, A. 2009 Navier–Stokes/Darcy coupling: modeling, analysis, and numerical approximation. Rev. Mat. Complut 22 (2), 315426.10.5209/rev_REMA.2009.v22.n2.16263CrossRefGoogle Scholar
Donnelly, R.J. 1964 Experiments on the stability of viscous flow between rotating cylinders III. Enhancement of stability by modulation. Proc. R. Soc. Lond. A 281 (1384), 130139.Google Scholar
Georgescu, A. & Palese, L. 2010 Stability Criteria for Fluid Flows. World Scientific.Google Scholar
Getling, A.V. 1998 Rayleigh–Bénard Convection: Structures and Dynamics. World Scientific.CrossRefGoogle Scholar
Habel, F., Mendoza, C. & Bagtzoglou, A.C. 2002 Solute transport in open channel flows and porous streambeds. Adv. Water Resour. 25 (4), 455469.10.1016/S0309-1708(01)00052-5CrossRefGoogle Scholar
Han, D., Wang, Q. & Wang, X. 2020 Dynamic transitions and bifurcations for thermal convection in the superposed free flow and porous media. Physica D: Nonlinear Phenom. 414, 132687.10.1016/j.physd.2020.132687CrossRefGoogle Scholar
Hazra, S., Kumar, K. & Mitra, S. 2020 Rayleigh–Bénard magnetoconvection with temperature modulation. Proc. R. Soc. Lond. A 476 (2242), 20200289.Google ScholarPubMed
Hill, A.A. & Carr, M. 2010 Sharp global nonlinear stability for a fluid overlying a highly porous material. Proc. R. Soc. Lond. A 466 (2113), 127140.Google Scholar
Hill, A.A. & Carr, M. 2013 a The influence of a fluid-porous interface on solar pond stability. Adv. Water Resour. 52, 16.10.1016/j.advwatres.2012.08.009CrossRefGoogle Scholar
Hill, A.A. & Carr, M. 2013 b Stabilising solar ponds by utilising porous materials. Adv. Water Resour. 60, 16.10.1016/j.advwatres.2013.07.005CrossRefGoogle Scholar
Hill, A.A. & Straughan, B. 2009 Global stability for thermal convection in a fluid overlying a highly porous material. Proc. R. Soc. Lond. A 465 (2101), 207217.Google Scholar
Hirata, S.C., Goyeau, B., Gobin, D., Carr, M. & Cotta, R.M. 2007 Linear stability of natural convection in superposed fluid and porous layers: influence of the interfacial modelling. Intl J. Heat Mass Transfer 50 (7–8), 13561367.10.1016/j.ijheatmasstransfer.2006.09.038CrossRefGoogle Scholar
Hirata, S.C., Goyeau, B., Gobin, D., Chandesris, M. & Jamet, D. 2009 Stability of natural convection in superposed fluid and porous layers: equivalence of the one-and two-domain approaches. Intl J. Heat Mass Transfer 52 (1–2), 533536.10.1016/j.ijheatmasstransfer.2008.07.045CrossRefGoogle Scholar
Homsy, G.M. 1974 Global stability of time-dependent flows. Part 2. Modulated fluid layers. J. Fluid Mech. 62 (2), 387403.CrossRefGoogle Scholar
Hull, J.R. 1980 Membrane stratified solar ponds. Solar Energy 25 (4), 317325.10.1016/0038-092X(80)90344-8CrossRefGoogle Scholar
Ingham, D.B. & Pop, I. 2002 Transport Phenomena in Porous Media II. Elsevier Science.Google Scholar
Joseph, D.D. 1966 Nonlinear stability of the Boussinesq equations by the method of energy. Arch. Rat. Mech. Anal. 22 (3), 163184.10.1007/BF00266474CrossRefGoogle Scholar
Joseph, D.D. 2013 Stability of Fluid Motions I. Springer Science & Business Media.Google Scholar
Joseph, D.D. & Shir, C.C. 1966 Subcritical convective instability. Part 1. Fluid layers. J. Fluid Mech. 26 (4), 753768.10.1017/S0022112066001502CrossRefGoogle Scholar
Kolchanova, E.A. & Kolchanov, N.V. 2021 The interaction of thermal vibrational and thermal gravitational mechanisms of convection onset in a fluid-porous layer. Microgravity Sci. Technol. 33, 115.10.1007/s12217-021-09895-3CrossRefGoogle Scholar
Le Bars, M. & Worster, M.G. 2006 Solidification of a binary alloy: finite-element, single-domain simulation and new benchmark solutions. J. Comput. Phys. 216 (1), 247263.CrossRefGoogle Scholar
McCurdy, M., Moore, N.J. & Wang, X. 2019 Convection in a coupled free flow-porous media system. SIAM J. Appl. Maths 79 (6), 23132339.10.1137/19M1238095CrossRefGoogle Scholar
McCurdy, M., Moore, N.J. & Wang, X. 2022 Predicting convection configurations in coupled fluid-porous systems. J. Fluid Mech. 953, A23.10.1017/jfm.2022.965CrossRefGoogle Scholar
McKay, G. 1998 Onset of buoyancy-driven convection in superposed reacting fluid and porous layers. J. Engng Maths 33, 3147.CrossRefGoogle Scholar
Nield, D.A. 1977 Onset of convection in a fluid layer overlying a layer of a porous medium. J. Fluid Mech. 81 (3), 513522.10.1017/S0022112077002195CrossRefGoogle Scholar
Nield, D.A. 2009 The Beavers–Joseph boundary condition and related matters: a historical and critical note. Transp. Porous Med. 78, 537540.10.1007/s11242-009-9344-yCrossRefGoogle Scholar
Nield, D.A. & Bejan, A. 2006 Convection in Porous Media. Springer.Google Scholar
Or, A.C. & Kelly, R.E. 2002 The effects of thermal modulation upon the onset of Marangoni–Bénard convection. J. Fluid Mech. 456, 161182.10.1017/S0022112001007510CrossRefGoogle Scholar
Payne, L.E. & Straughan, B. 1998 Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions. J. Math. Pures Appl. 77 (4), 317354.10.1016/S0021-7824(98)80102-5CrossRefGoogle Scholar
Prasad, V. 1991 Convective flow interaction and heat transfer between fluid and porous layers. In Convective Heat and Mass Transfer in Porous Media, pp. 563615. Springer.10.1007/978-94-011-3220-6_18CrossRefGoogle Scholar
Rosenblat, S. & Tanaka, G.A. 1971 Modulation of thermal convection instability. Phys. Fluids 14 (7), 13191322.10.1063/1.1693608CrossRefGoogle Scholar
Rudraiah, N. & Malashetty, M.S. 1990 Effect of modulation on the onset of convection in a sparsely packed porous layer. J. Heat Transfer 112 (3), 685689.10.1115/1.2910441CrossRefGoogle Scholar
Saravanan, S. & Meenasaranya, M. 2017 Nonlinear stability of modulated Horton–Rogers–Lapwood problem. Intl J. Engng Sci. 120, 7181.10.1016/j.ijengsci.2017.06.027CrossRefGoogle Scholar
Serrin, J. 1959 On the stability of viscous fluid motions. Arch. Rat. Mech. Anal. 3, 113.10.1007/BF00284160CrossRefGoogle Scholar
Straughan, B. 2001 Surface-tension-driven convection in a fluid overlying a porous layer. J. Comput. Phys. 170 (1), 320337.CrossRefGoogle Scholar
Straughan, B. 2002 Effect of property variation and modelling on convection in a fluid overlying a porous layer. Intl J. Numer. Anal. Meth. Geomech. 26 (1), 7597.CrossRefGoogle Scholar
Straughan, B. 2013 The Energy Method, Stability, and Nonlinear Convection. Springer Science & Business Media.Google Scholar
Sun, W.J. 1973 Convective instability in superposed porous layers and free layers. PhD thesis, University of Minnesota, Minneapolis, MN, USA.Google Scholar
Taslim, M.E. & Narusawa, U. 1989 Thermal stability of horizontally superposed porous and fluid layers. Trans. ASME J. Heat Transfer 111 (2), 357362.10.1115/1.3250685CrossRefGoogle Scholar
Venezian, G. 1969 Effect of modulation on the onset of thermal convection. J. Fluid Mech. 35 (2), 243254.10.1017/S0022112069001091CrossRefGoogle Scholar
Wells, A.J., Hitchen, J.R. & Parkinson, J.R.G. 2019 Mushy-layer growth and convection, with application to sea ice. Phil. Trans. R. Soc. Lond. A 377 (2146), 20180165.Google ScholarPubMed
Yih, C.S. & Li, C.H. 1972 Instability of unsteady flows or configurations. Part 2. Convective instability. J. Fluid Mech. 54 (1), 143152.10.1017/S0022112072000588CrossRefGoogle Scholar
Yin, C., Fu, C. & Tan, W. 2013 Stability of thermal convection in a fluid-porous system saturated with an Oldroyd-B fluid heated from below. Transp. Porous Med. 99 (2), 327347.10.1007/s11242-013-0188-0CrossRefGoogle Scholar