Hostname: page-component-857557d7f7-fn92c Total loading time: 0 Render date: 2025-12-02T23:25:11.866Z Has data issue: false hasContentIssue false

Control and scaling of flow separation from a curved ramp using a pulsed jet

Published online by Cambridge University Press:  01 December 2025

Shengtai He*
Affiliation:
Centre for Turbulence Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
Yu Zhou*
Affiliation:
School of Mechanical Engineering & Mechanics, College of Engineering, Eastern Institute of Technology, Ningbo 315000, PR China Ningbo Key Laboratory of Advanced Manufacturing Simulation, Eastern Institute of Technology, Ningbo 315000, PR China
*
Corresponding authors: Yu Zhou, yuzhou@eitech.edu.cn; Shengtai He, heshengtai_fluid@163.com
Corresponding authors: Yu Zhou, yuzhou@eitech.edu.cn; Shengtai He, heshengtai_fluid@163.com

Abstract

An experimental study is performed to control flow separation from a two-dimensional curved ramp using a spanwise pulsed blowing slit jet placed near the separation point of the baseline flow. The momentum-thickness-based Reynolds number $ \textit{Re}_{\theta}$ is 5700. Four control parameters are investigated, including the velocity ratio $\overline{U_{J,c}^{*}}$, duty cycle dc, dimensionless excitation frequency $f_{e}^{{*}}$ and jet blowing angle $\alpha$. The control mechanisms are found to differ from small to large jet angle. Empirical scaling analysis for $\alpha \leq 55^{\circ}$ unveils that $\Delta \overline{C_{p,e}}=f_{1}(\overline{U_{J,c}^{*}}, { d}c, f_{e}^{*}, \alpha , Re_{\theta })$ may be reduced to $\Delta \overline{C_{p,e}}/\varPi (\tau )=f_{2}(\xi )$, where $f_{1}$ and $f_{2}$ are different functions, $\Delta \overline{C_{p,e}}$ is the variation in the pressure coefficient at the end of the ramp under control, $\varPi (\tau )$ is a function of dimensionless duration $\tau$ at which the jet is closed within one excitation period, $\Delta \overline{C_{p,e}}/\varPi (\tau )$ represents the control efficiency, and $\xi$ is a scaling factor that is physically the energy ratio per unit area of the blowing jet to the mainstream. This scaling law is also found to be valid for steady jet control. Several interesting inferences can be made from this scaling law, which provides important insight into the physics of flow separation control.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Asgari, E. & Tadjfar, M. 2016 Assessment of four inflow conditions on large-eddy simulation of a gently curved backward-facing step. J. Turbul. 18, 6186.10.1080/14685248.2016.1253845CrossRefGoogle Scholar
Asgari, E. & Tadjfar, M. 2019 Active control of flow over a rounded ramp by means of single and double adjacent rectangular synthetic jet actuators. Comput. Fluids 190, 98113.10.1016/j.compfluid.2019.06.010CrossRefGoogle Scholar
Asgari, E. & Tadjfar, M. 2022 Role of phase-difference between two adjacent rectangular synthetic jet actuators in active control of flow over a rounded ramp. Phys. Fluids 34, 025101.10.1063/5.0077401CrossRefGoogle Scholar
Bai, H.L., Zhou, Y., Zhang, W.G., Xu, S.J., Wang, Y. & Antonia, R.A. 2014 Active control of a turbulent boundary layer based on local surface perturbation. J. Fluid Mech. 750, 316354.10.1017/jfm.2014.261CrossRefGoogle Scholar
Barros, D., Ruiz, T., Borée, J. & Noack, B.R. 2014 Control of a three-dimensional blunt body wake using low and high frequency pulsed jets. Intern. J. Flow Control 6, 6174.Google Scholar
Barros, D., Borée, J., Noack, B.R., Spohn, A. & Ruiz, T. 2016 Bluff body drag manipulation using pulsed jets and coanda effect. J. Fluid Mech. 805, 422459.10.1017/jfm.2016.508CrossRefGoogle Scholar
Bentaleb, Y., Lardeau, S. & Leschziner, M.A. 2012 Large-eddy simulation of turbulent boundary layer separation from a rounded step. J. Turbul. 13, 128.10.1080/14685248.2011.637923CrossRefGoogle Scholar
Cheng, X.Q., Qiao, Z.X., Zhang, X., Quadrio, M. & Zhou, Y. 2021 Skin-friction reduction using periodic blowing through streamwise slits. J. Fluid Mech. 920, A24.10.1017/jfm.2021.311CrossRefGoogle Scholar
Chiatto, M., Luca de, L. & Grasso, F. 2021 Modal analysis of actively controlled flow past a backward facing ramp. Phys. Rev. Fluids 6, 064608.10.1103/PhysRevFluids.6.064608CrossRefGoogle Scholar
Dandois, J., Garnier, E. & Sagaut, P. 2007 Numerical simulation of active separation control by a synthetic jet. J. Fluid Mech. 574, 2558.CrossRefGoogle Scholar
Duriez, T., Aider, J.-L. & Wesfreid, J.E. 2008 Control of a separated flow over a smoothly contoured ramp using vortex generators. IUTAM Symposium on Flow Control and MEMS, vol. 7, pp. 437441.Google Scholar
Eaton, J.K. & Song, S. 2004 Flow structures of a separating, reattaching, and recovering boundary layer for a large range of Reynolds number. Exp. Fluids 36, 642653.10.1007/s00348-003-0762-2CrossRefGoogle Scholar
El-Askary, W.A. 2009 Turbulent boundary layer structure of flow over a smooth-curved ramp. Comput. Fluids 38, 17181730.10.1016/j.compfluid.2009.03.004CrossRefGoogle Scholar
El Sayed, M.Y., Semaan, R. & Radespiel, R. 2017 Open loop control on a coanda flap water tunnel model. AIAA Paper 2017-324710.2514/6.2017-3247CrossRefGoogle Scholar
Englar, R.J. 2000 Circulation control pneumatic aerodynamics: blown force and moment augmentation and modifications; past, present, and future. AIAA Paper 2000–254110.2514/6.2000-2541CrossRefGoogle Scholar
Fan, D. & Zhou, Y. 2022 Scaling and classification of a minijet-manipulated turbulent jet. Phys. Rev. Fluids 7, 074606.10.1103/PhysRevFluids.7.074606CrossRefGoogle Scholar
Gorton, S., Jenkins, L. & Anders, S. 2002 Flow control device evaluation for an internal flow with an adverse pressure gradient. AIAA Paper 2002–026610.2514/6.2002-266CrossRefGoogle Scholar
Greenblatt, D., Paschal, K.B., Yao, C.-S. & Harris, J. 2006 Experimental investigation of separation control part 2: zero mass-flux oscillatory blowing. AIAA J. 44, 28312845.10.2514/1.19324CrossRefGoogle Scholar
Guo, T., Zhong, S. & Craft, T. 2020 Control of laminar flow separation over a backward-facing rounded ramp with c-d riblets – the effects of riblet height, spacing and yaw angle. Int. J. Heat Fluid Fl. 85, 108629.10.1016/j.ijheatfluidflow.2020.108629CrossRefGoogle Scholar
Haffner, Y., Borée, J., Spohn, A. & Castelain, T. 2020 Unsteady coanda effect and drag reduction for a turbulent wake. J. Fluid Mech. 899, A36.10.1017/jfm.2020.494CrossRefGoogle Scholar
He, S., Zhang, K., Song, Y. & Zhou, Y. 2023 Control of flow separation from a curved ramp using a steady-blowing jet. Phys. Fluids 35, 045139.Google Scholar
Hlevca, D., Gilliéron, P. & Grasso, F. 2018 Experimental study of the active control applied to the flow past a backward facing ramp. Exp. Fluids 59, 39.10.1007/s00348-018-2497-0CrossRefGoogle Scholar
Jones, G.S., Viken, S.A., Washburn, A.E., Jenkins, L.N. & Cagle, C.M. 2002 An active flow circulation controlled flap concept for general aviation aircraft applications. AIAA Paper 2002–315710.2514/6.2002-3157CrossRefGoogle Scholar
Jones, A., Edstrand, A., Chandran, M., Wetzel, D., Liu, F. & Cattafesta, L. 2010 An experimental investigation of unsteady and steady circulation control for an elliptical airfoil. AIAA Paper 2010–34610.2514/6.2010-346CrossRefGoogle Scholar
Joseph, P., Amandolese, X., Edouard, C. & Aider, J.-L. 2013 Flow control using mems pulsed micro-jets on the ahmed body. Exp. Fluids 54, 1442.10.1007/s00348-012-1442-xCrossRefGoogle Scholar
Koklu, M. & Owens, L.R. 2017 Comparison of sweeping jet actuators with different flow-control techniques for flow-separation control. AIAA J. 55, 848860.10.2514/1.J055286CrossRefGoogle Scholar
Lardeau, S. & Leschziner, M.A. 2011 The interaction of round synthetic jets with a turbulent boundary layer separating from a rounded ramp. J. Fluid Mech. 683, 172211.10.1017/jfm.2011.258CrossRefGoogle Scholar
Leschziner, M.A. & Lardeau, S. 2011 Simulation of slot and round synthetic jets in the context of boundary-layer separation control. Philos. Trans. A Math. Phys. Eng. Sci. 369, 14951512.Google ScholarPubMed
Lewis, P.K., Tackett, M.W. & Mattson, C.A. 2014 Considering dynamic pareto frontiers in decision making. Optim. Eng. 15, 837854.10.1007/s11081-013-9238-2CrossRefGoogle Scholar
Li, Z., Zhang, D., Liu, Y., Wu, C. & Gao, N. 2020 Effect of periodic perturbations on the turbulence statistics in a backward-facing step flow. Phys. Fluids 32, 075116.10.1063/5.0015951CrossRefGoogle Scholar
Lim, H.D. & Lyu, Z. 2021 Observations of a sweeping jet actuator for flow separation control of a backward-facing ramp. Phys. Rev. Fluids 6, 043902.10.1103/PhysRevFluids.6.043902CrossRefGoogle Scholar
Liu, Y., Sankar, L.N., Englar, R.J., Ahuja, K.K. & Gaeta, R. 2004 Computational evaluation of the steady and pulsed jet effects on the performance of a circulation control wing section. AIAA Paper 2004–5610.2514/6.2004-56CrossRefGoogle Scholar
Ma, X. & Schröder, A. 2017 Analysis of flapping motion of reattaching shear layer behind a two-dimensional backward-facing step. Phys. Fluids 29, 115104.10.1063/1.4996622CrossRefGoogle Scholar
Neumann, J. & Wengle, H. 2004 Coherent structures in controlled separated flow over sharp-edged and rounded steps. J. Turbul. 5, 022.10.1088/1468-5248/5/1/022CrossRefGoogle Scholar
New, T.H., Lim, T.T. & Luo, S.C. 2006 Effects of jet velocity profiles on a round jet in cross-flow. Exp. Fluids 40, 859875.10.1007/s00348-006-0124-yCrossRefGoogle Scholar
Nishino, T., Hahn, S. & Shariff, K. 2010 Large-eddy simulations of a turbulent coanda jet on a circulation control airfoil. Phys. Fluids 22, 125105.10.1063/1.3526757CrossRefGoogle Scholar
Palumbo, A., Semeraro, O., Robinet, J.-C. & Luca de, L. 2022 Boundary layer transition induced by low-speed synthetic jets. Phys. Fluids 34, 124113.10.1063/5.0128798CrossRefGoogle Scholar
Park, H., Jeon, W.-P., Choi, H. & Yoo, J.Y. 2007 Mixing enhancement behind a backward-facing step using tabs. Phys. Fluids 19, 105103.10.1063/1.2781597CrossRefGoogle Scholar
Perumal, A.K. & Zhou, Y. 2018 Parametric study and scaling of jet manipulation using an unsteady minijet. J. Fluid Mech. 848, 592630.10.1017/jfm.2018.376CrossRefGoogle Scholar
Perumal, A.K., Wu, Z., Fan, D.W. & Zhou, Y. 2022 A hybrid artificial intelligence control of a turbulent jet: Reynolds number effect and scaling. J. Fluid Mech. 942, A47.10.1017/jfm.2022.341CrossRefGoogle Scholar
Pfingsten, K.C. & Radespiel, R. 2009 Experimental and numerical investigation of a circulation control airfoil. AIAA Paper 2009-53310.2514/6.2009-533CrossRefGoogle Scholar
Razzaghi, M.J.P., Masoumi, Y., Sani, S.M.R. & Huang, G. 2022 Controlling flow separation over a curved ramp using vortex generator microjets. Phys. Fluids 34, 115114.10.1063/5.0122831CrossRefGoogle Scholar
Rizzetta, D.P. & Visbal, M.R. 2010 Large-eddy simulation of plasma-based turbulent boundary-layer separation control. AIAA J. 48, 27932810.10.2514/1.J050014CrossRefGoogle Scholar
Sciacchitano, A., Wieneke, B. & Scarano, F. 2013 Piv uncertainty quantification by image matching. Meas. Sci. Technol. 24, 045302.10.1088/0957-0233/24/4/045302CrossRefGoogle Scholar
Selby, G.V., Lin, J.C. & Howard, F.G. 1992 Control of low-speed turbulent separated flow using jet vortex generators. Exp. Fluids 12, 394400.10.1007/BF00193886CrossRefGoogle Scholar
Sellers, W.L., Jones, G.S. & Moore, M.D. 2002 Flow control research at nasa langley in support of high-lift augmentation. AIAA Paper 2002-600610.2514/6.2002-6006CrossRefGoogle Scholar
Song, S., Degraa, D.B. & Eaton, J.K. 2000 Experimental study of a separating, reattaching, redeveloping flow over a smoothly contoured. Int. J. Heat Fluid Fl. 21, 512519.10.1016/S0142-727X(00)00039-4CrossRefGoogle Scholar
Song, S. & Eaton, J.K. 2002 The effects of wall roughness on the separated flow over a smoothly contoured ramp. Exp. Fluids 33, 3846.10.1007/s00348-002-0411-1CrossRefGoogle Scholar
Song, S. & Eaton, J.K. 2004 Reynolds number effects on a turbulent boundary layer with separation, reattachment, and recovery. Exp. Fluids 36, 246258.10.1007/s00348-003-0696-8CrossRefGoogle Scholar
Stella, F., Mazellier, N. & Kourta, A. 2017 Scaling of separated shear layers: an investigation of mass entrainment. J. Fluid Mech. 826, 851887.10.1017/jfm.2017.455CrossRefGoogle Scholar
Warsop, C. & Crowther, W.J. 2018 Fluidic flow control effectors for flight control. AIAA J. 56, 38083824.10.2514/1.J056787CrossRefGoogle Scholar
Wei, T., Schmidt, R. & McMurtry, P. 2005 Comment on the clauser chart method for determining the friction velocity. Exp. Fluids 38, 695699.10.1007/s00348-005-0934-3CrossRefGoogle Scholar
Wong, C., Hale, C., Chan, B. & Kontis, K. 2007 Experimental studies on steady and unsteady pneumatic trailing edge devices for subsonic flow applications. AIAA Paper 2007-142410.2514/6.2007-1424CrossRefGoogle Scholar
Xu, H.Y., Qiao, C.L., Yang, H.Q. & Ye, Z.Y. 2018 Active circulation control on the blunt trailing edge wind turbine airfoil. AIAA J. 56, 554570.10.2514/1.J056223CrossRefGoogle Scholar
Xu, K., Su, X., Bensow, R. & Krajnovic, S. 2022 Drag reduction of ship airflow using steady coanda effect. Ocean Eng. 266, 113051.10.1016/j.oceaneng.2022.113051CrossRefGoogle Scholar
Zhang, S. & Zhong, S. 2010 An experimental investigation of turbulent flow separation control by an array of synthetic jets. AIAA Paper 2010-458210.2514/6.2010-4582CrossRefGoogle Scholar
Zhang, S. & Zhong, S. 2011 Turbulent flow separation control over a two-dimensional ramp using synthetic jets. AIAA J. 49, 26372649.10.2514/1.J051046CrossRefGoogle Scholar
Zhang, B.F., Liu, K., Zhou, Y., To, S. & Tu, J.Y. 2018 Active drag reduction of a high-drag ahmed body based on steady blowing. J. Fluid Mech. 856, 351396.10.1017/jfm.2018.703CrossRefGoogle Scholar
Zhang, X., Wong, C.W., Cheng, X.Q. & Zhou, Y. 2022 Dependence of skin-friction reduction on the geometric parameters of blowing jet array. Phys. Fluids 34, 105125.10.1063/5.0101289CrossRefGoogle Scholar
Zhong, S. & Zhang, S. 2013 Further examination of the mechanism of round synthetic jets in delaying turbulent flow separation. Flow Turbul. Combust 91, 177208.10.1007/s10494-013-9469-5CrossRefGoogle Scholar