Hostname: page-component-857557d7f7-ktsnh Total loading time: 0 Render date: 2025-12-03T17:17:47.603Z Has data issue: false hasContentIssue false

Analytical equations for mean wall-normal velocity and momentum integral in compressible boundary-layer flows

Published online by Cambridge University Press:  01 December 2025

Tie Wei*
Affiliation:
Department of Mechanical Engineering, New Mexico Tech, Socorro, NM 87801, USA
Zhaorui Li
Affiliation:
Department of Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA
Alessandro Ceci
Affiliation:
Dipartimento di Ingegneria Meccanica e Aerospaziale, Universitá di Roma `La Sapienza’, Via Eudossiana 18, Roma 00184, Italy
Sergio Pirozzoli
Affiliation:
Dipartimento di Ingegneria Meccanica e Aerospaziale, Universitá di Roma `La Sapienza’, Via Eudossiana 18, Roma 00184, Italy
*
Corresponding author: Tie Wei, tie.wei@nmt.edu

Abstract

Analytical expressions for the mean wall-normal velocity and wall shear stress in compressible boundary layers are derived by integrating the mean continuity and momentum equations. In the constant-density limit, the momentum integral formulation recovers the classical Kármán–Pohlhausen equation for incompressible boundary-layer flows. In compressible regimes, particularly under strong pressure gradients, streamwise density gradients are shown to play a crucial role in shaping boundary-layer dynamics. The derived analytical equations are validated against high-fidelity direct numerical simulation data, demonstrating both accuracy and robustness. Furthermore, the analytical equations offer insights into the physical mechanisms of compressible boundary layers, particularly the influence of density gradients. The effect of compressibility on the wall-normal velocity is explicitly demonstrated, highlighting the distinct behaviour of compressible boundary layers compared with incompressible flows. Finally, an analytical expression for the skin-friction coefficient is developed, revealing its close connection to the mean wall-normal velocity at the boundary-layer edge.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bernardini, M., Modesti, D., Salvadore, F. & Pirozzoli, S. 2021 STREAmS: a high-fidelity accelerated solver for direct numerical simulation of compressible turbulent flows. Comput. Phys. Commun. 263, 107906.CrossRefGoogle Scholar
Bertram, M.H. 1968 Compressible turbulent boundary layers. Tech. Rep.. NASA SP-216.Google Scholar
Ceci, A., Palumbo, A., Larsson, J. & Pirozzoli, S. 2022 Numerical tripping of high-speed turbulent boundary layers. Theor. Comput. Fluid Dyn. 36 (6), 865886.10.1007/s00162-022-00623-0CrossRefGoogle Scholar
Ceci, A., Palumbo, A., Larsson, J. & Pirozzoli, S. 2023 On low-frequency unsteadiness in swept shock wave–boundary layer interactions. J. Fluid Mech. 956 (R1), 111.10.1017/jfm.2023.2CrossRefGoogle Scholar
Gruschwitz, E. 1931 Die Turbulente Reibungsschicht in Ebener Strömung Bei Druckabfall Und Druckanstiegs. Springer.10.1007/978-3-662-41363-0CrossRefGoogle Scholar
Huang, P.G., Coleman, G.N. & Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185218.10.1017/S0022112095004599CrossRefGoogle Scholar
von Kármán, T.V. 1921 Über laminare und turbulente Reibung. ZAMM - J. Appl. Maths Mech. / Z. Angew. Math. Mech. 1 (4), 233252.10.1002/zamm.19210010401CrossRefGoogle Scholar
Piponniau, S., Dussauge, J.-P., Debieve, J.-F. & Dupont, P. 2009 A simple model for low-frequency unsteadiness in shock-induced separation. J. Fluid Mech. 629, 87108.CrossRefGoogle Scholar
Pirozzoli, S. & Bernardini, M. 2011 Direct numerical simulation database for impinging shock wave/turbulent boundary-layer interaction. AIAA J. 49 (6), 13071312.10.2514/1.J050901CrossRefGoogle Scholar
Pirozzoli, S. & Colonius, T. 2013 Generalized characteristic relaxation boundary conditions for unsteady compressible flow simulations. J. Comput. Phys. 248, 109126.10.1016/j.jcp.2013.04.021CrossRefGoogle Scholar
Pohlhausen, K. 1921 Zur näherungsweisen integration der differentialgleichung der iaminaren grenzschicht. ZAMM-J. Appl. Maths Mech. / Z. Angew. Math. Mech. 1 (4), 252290.CrossRefGoogle Scholar
Salvadore, F. et al. 2025 STREAmS-2.1: Supersonic turbulent accelerated Navier–Stokes solver version 2.1. Comput. Phys. Commun. 314 (1), 109652.CrossRefGoogle Scholar
Schlichting, H. 1979 Boundary-Layer Theory. McGraw-Hill, Inc.Google Scholar
Schlichting, H. & Gersten, K. 2016 Boundary-Layer Theory. Springer.Google Scholar
Wei, T. & Klewicki, J. 2016 Scaling properties of the mean wall-normal velocity in zero-pressure-gradient boundary layers. Phys. Rev. Fluids 1 (8), 082401.CrossRefGoogle Scholar
Wei, T. & Klewicki, J. 2023 Integral relation in zero-pressure-gradient boundary layer flows. Phys. Rev. Fluids 8 (124601), 110.10.1103/PhysRevFluids.8.124601CrossRefGoogle Scholar
Wei, T., Li, Z., Knopp, T. & Vinuesa, R. 2023 a The mean wall-normal velocity in turbulent-boundary-layer flows under pressure gradient. J. Fluid Mech. 975 (A27), 120.10.1017/jfm.2023.860CrossRefGoogle Scholar
Wei, T., Li, Z. & Wang, Y. 2023 b New formulations for the mean wall-normal velocity and Reynolds shear stress in a turbulent boundary layer under zero pressure gradient. J. Fluid Mech. 969 (A3), 115.10.1017/jfm.2023.541CrossRefGoogle Scholar
Wei, T., Li, Z. & Wang, Y. 2024 New momentum integral equation applicable to boundary layer flows under arbitrary pressure gradients. J. Fluid Mech. 984, A64.10.1017/jfm.2024.207CrossRefGoogle Scholar
Wei, T. & Livescu, D. 2021 Scaling of the mean transverse flow and Reynolds shear stress in turbulent plane jet. Phys. Fluids 33 (3), 035142.10.1063/5.0043953CrossRefGoogle Scholar
Wei, T., Livescu, D. & Liu, X. 2022 Scaling patch analysis of planar turbulent wake. Phys. Fluids 34 (065116), 17.Google Scholar
Wenzel, C., Gibis, T. & Kloker, M. 2022 About the influences of compressibility, heat transfer and pressure gradients in compressible turbulent boundary layers. J. Fluid Mech. 930, A1.CrossRefGoogle Scholar