No CrossRef data available.
Published online by Cambridge University Press: 26 September 2025
Let  $\Gamma$ be a Schottky subgroup of
$\Gamma$ be a Schottky subgroup of  $\mathrm{SL}_2(\mathbb{Z})$ and let
$\mathrm{SL}_2(\mathbb{Z})$ and let  $X=\Gamma \backslash {\mathbb{H}}^2$ be the associated hyperbolic surface. We consider the family of Hecke congruence coverings of
$X=\Gamma \backslash {\mathbb{H}}^2$ be the associated hyperbolic surface. We consider the family of Hecke congruence coverings of  $X$, which we denote as usual by
$X$, which we denote as usual by  $ X_0(q) = \Gamma _0(q)\backslash {\mathbb{H}}^2$. Conditional on the Lindelöf Hypothesis for quadratic L-functions, we establish a uniform and explicit spectral gap for the Laplacian on
$ X_0(q) = \Gamma _0(q)\backslash {\mathbb{H}}^2$. Conditional on the Lindelöf Hypothesis for quadratic L-functions, we establish a uniform and explicit spectral gap for the Laplacian on  $ X_0(q)$ for “almost” all prime levels
$ X_0(q)$ for “almost” all prime levels  $q$. Assuming the generalized Riemann hypothesis for quadratic
$q$. Assuming the generalized Riemann hypothesis for quadratic  $L$-functions, we obtain an even larger spectral gap.
$L$-functions, we obtain an even larger spectral gap.
 $\frac {3}{16}$
 theorem and affine sieve, Acta Math. 207(2) (2011), 255–290, MR2892611.10.1007/s11511-012-0070-xCrossRefGoogle Scholar
$\frac {3}{16}$
 theorem and affine sieve, Acta Math. 207(2) (2011), 255–290, MR2892611.10.1007/s11511-012-0070-xCrossRefGoogle Scholar $\mathrm{SL}_2(\mathbb{Z})$
, Geom. Funct. Anal. 20(5) (2010), 1144–1174.10.1007/s00039-010-0093-4CrossRefGoogle Scholar
$\mathrm{SL}_2(\mathbb{Z})$
, Geom. Funct. Anal. 20(5) (2010), 1144–1174.10.1007/s00039-010-0093-4CrossRefGoogle Scholar $\mathrm{SL}(2,\mathbb{Z})$
, J. Eur. Math. Soc. (2025), published online first.CrossRefGoogle Scholar
$\mathrm{SL}(2,\mathbb{Z})$
, J. Eur. Math. Soc. (2025), published online first.CrossRefGoogle Scholar $\textrm {SL}_2(\mathbb{Z})$
, Israel J. Math. 127 (2002), 157–200, MR1900698.10.1007/BF02784530CrossRefGoogle Scholar
$\textrm {SL}_2(\mathbb{Z})$
, Israel J. Math. 127 (2002), 157–200, MR1900698.10.1007/BF02784530CrossRefGoogle Scholar $\Gamma _0(N)$
, Acta Arith. 56(1) (1990), 65–82.10.4064/aa-56-1-65-82CrossRefGoogle Scholar
$\Gamma _0(N)$
, Acta Arith. 56(1) (1990), 65–82.10.4064/aa-56-1-65-82CrossRefGoogle Scholar $ \mathrm{SL}_{2}(\mathbb{Z})$
, Israel J. Math. 213(1) (2000), 443–473.10.1007/s11856-016-1332-7CrossRefGoogle Scholar
$ \mathrm{SL}_{2}(\mathbb{Z})$
, Israel J. Math. 213(1) (2000), 443–473.10.1007/s11856-016-1332-7CrossRefGoogle Scholar $\mathrm{GL}_4$
 and the symmetric fourth of
$\mathrm{GL}_4$
 and the symmetric fourth of 
 $\mathrm{GL}_2$
, J. Am. Math. Soc. 16(1) (2003), 139–183.10.1090/S0894-0347-02-00410-1CrossRefGoogle Scholar
$\mathrm{GL}_2$
, J. Am. Math. Soc. 16(1) (2003), 139–183.10.1090/S0894-0347-02-00410-1CrossRefGoogle Scholar $\mathrm{GL}_2 \times \mathrm{GL}_3$
 and the symmetric cube for
$\mathrm{GL}_2 \times \mathrm{GL}_3$
 and the symmetric cube for 
 $\mathrm{GL}_2$
, Ann. Math. 155(3) (2002), 837–893, (2)10.2307/3062134CrossRefGoogle Scholar
$\mathrm{GL}_2$
, Ann. Math. 155(3) (2002), 837–893, (2)10.2307/3062134CrossRefGoogle Scholar ${\rm SL}_2(\Bbb {Z})$
, J. Amer. Math. Soc. 29(4) (2016), 1069–1115, MR3522610.10.1090/jams/849CrossRefGoogle Scholar
${\rm SL}_2(\Bbb {Z})$
, J. Amer. Math. Soc. 29(4) (2016), 1069–1115, MR3522610.10.1090/jams/849CrossRefGoogle Scholar