1 Introduction
 Let p denote any prime number, let F be a finite extension of 
 $\mathbb {Q}_p$
 and let
$\mathbb {Q}_p$
 and let 
 $G_F$
 denote its absolute Galois group. Let L be a another finite extension of
$G_F$
 denote its absolute Galois group. Let L be a another finite extension of 
 $\mathbb {Q}_p$
 with ring of integers
$\mathbb {Q}_p$
 with ring of integers 
 $\mathcal {O}$
, uniformizer
$\mathcal {O}$
, uniformizer 
 $\varpi $
 and residue field
$\varpi $
 and residue field 
 $k=\mathcal {O}/\varpi $
. Fix a continuous representation
$k=\mathcal {O}/\varpi $
. Fix a continuous representation 
 $\overline {\rho }:G_F\rightarrow {\mathrm {GL}}_d(k)$
 and denote by
$\overline {\rho }:G_F\rightarrow {\mathrm {GL}}_d(k)$
 and denote by 
 $D^{\square }_{\overline {\rho }}: {\mathfrak A}_{\mathcal {O}}\rightarrow \mathrm {Sets}$
 the functor from the category
$D^{\square }_{\overline {\rho }}: {\mathfrak A}_{\mathcal {O}}\rightarrow \mathrm {Sets}$
 the functor from the category 
 ${\mathfrak A}_{\mathcal {O}}$
 of local Artinian
${\mathfrak A}_{\mathcal {O}}$
 of local Artinian 
 $\mathcal {O}$
-algebras with residue field k to the category of sets, such that for
$\mathcal {O}$
-algebras with residue field k to the category of sets, such that for 
 $(A,{\mathfrak m}_A)\in {\mathfrak A}_{\mathcal {O}}$
,
$(A,{\mathfrak m}_A)\in {\mathfrak A}_{\mathcal {O}}$
, 
 $D^{\square }_{\overline {\rho }}(A)$
 is the set of continuous representations
$D^{\square }_{\overline {\rho }}(A)$
 is the set of continuous representations 
 $\rho _A: G_F\rightarrow {\mathrm {GL}}_d(A)$
, such that
$\rho _A: G_F\rightarrow {\mathrm {GL}}_d(A)$
, such that 
 $\rho _A \ \pmod {{\mathfrak m}_A}=\overline {\rho }$
. The functor
$\rho _A \ \pmod {{\mathfrak m}_A}=\overline {\rho }$
. The functor 
 $D^{\square }_{\overline {\rho }}$
 of framed deformations of
$D^{\square }_{\overline {\rho }}$
 of framed deformations of 
 $\overline {\rho }$
 is pro-represented by a complete local Noetherian
$\overline {\rho }$
 is pro-represented by a complete local Noetherian 
 $\mathcal {O}$
-algebra
$\mathcal {O}$
-algebra 
 $R^{\square }_{\overline {\rho }}$
 (with residue field k).
$R^{\square }_{\overline {\rho }}$
 (with residue field k).
 Our first main result completely settles a folklore conjecture on ring-theoretic properties of 
 $R^{\square }_{\overline {\rho }}$
 that can be traced back to the foundational work of Mazur [Reference Mazur37, Section 1.10]:
$R^{\square }_{\overline {\rho }}$
 that can be traced back to the foundational work of Mazur [Reference Mazur37, Section 1.10]:
Theorem 1.1 (Corollary 3.38).
 The ring 
 $R^{\square }_{\overline {\rho }}$
 is a local complete intersection, flat over
$R^{\square }_{\overline {\rho }}$
 is a local complete intersection, flat over 
 $\mathcal {O}$
 and of relative dimension
$\mathcal {O}$
 and of relative dimension 
 $d^2+d^2[F:\mathbb {Q}_p]$
. In particular, every continuous representation
$d^2+d^2[F:\mathbb {Q}_p]$
. In particular, every continuous representation 
 $\overline {\rho }: G_F\rightarrow {\mathrm {GL}}_d(k)$
 has a lift to characteristic zero.
$\overline {\rho }: G_F\rightarrow {\mathrm {GL}}_d(k)$
 has a lift to characteristic zero.
 Obstruction theory provides a presentation 
 with r equal to the dimension of the tangent space and s equal to
 with r equal to the dimension of the tangent space and s equal to 
 $\dim H^2(G_F, {\mathrm {ad}}\overline {\rho })$
. The Euler–Poincaré characteristic formula from local class field theory gives
$\dim H^2(G_F, {\mathrm {ad}}\overline {\rho })$
. The Euler–Poincaré characteristic formula from local class field theory gives 
 $$\begin{align*}r-s=d^2+d^2[F:\mathbb{Q}_p]. \end{align*}$$
$$\begin{align*}r-s=d^2+d^2[F:\mathbb{Q}_p]. \end{align*}$$
Our theorem proves that 
 $\dim R^{\square }_{\overline {\rho }}/\varpi $
 is given by this cohomological quantity, the expected dimension in the spirit of the Dimension Conjecture of Gouvêa from [Reference Gouvêa27, Lecture 4]. Having the expected dimension implies that
$\dim R^{\square }_{\overline {\rho }}/\varpi $
 is given by this cohomological quantity, the expected dimension in the spirit of the Dimension Conjecture of Gouvêa from [Reference Gouvêa27, Lecture 4]. Having the expected dimension implies that 
 $\varpi ,f_1, \ldots , f_s$
 is a regular sequence and that
$\varpi ,f_1, \ldots , f_s$
 is a regular sequence and that 
 $R^{\square }_{\overline {\rho }}$
 is a local complete intersection. It also implies (see [Reference Galatius and Venkatesh26, Lemma 7.5]) that the derived deformation ring of
$R^{\square }_{\overline {\rho }}$
 is a local complete intersection. It also implies (see [Reference Galatius and Venkatesh26, Lemma 7.5]) that the derived deformation ring of 
 $\overline {\rho }$
 as introduced by Galatius and Venkatesh in [Reference Galatius and Venkatesh26] (see also [Reference Cai12]) is homotopy discrete, which means the derived deformation theory of
$\overline {\rho }$
 as introduced by Galatius and Venkatesh in [Reference Galatius and Venkatesh26] (see also [Reference Cai12]) is homotopy discrete, which means the derived deformation theory of 
 $\overline {\rho }$
 does not contain more information than the usual deformation theory of
$\overline {\rho }$
 does not contain more information than the usual deformation theory of 
 $\overline {\rho }$
. Theorem 1.1 is used in the forthcoming work of Matthew Emerton, Toby Gee and Xinwen Zhu on derived stacks of global Galois representations.
$\overline {\rho }$
. Theorem 1.1 is used in the forthcoming work of Matthew Emerton, Toby Gee and Xinwen Zhu on derived stacks of global Galois representations.
 Our second main result completely describes the connected components of the space 
 $ {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]$
 as envisioned in [Reference Böckle and Juschka8]. Let
$ {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]$
 as envisioned in [Reference Böckle and Juschka8]. Let 
 $\mu :=\mu _{p^{\infty }}(F)\subset F^{\times }$
 be the p-power torsion subgroup and suppose that L is sufficiently large. Let
$\mu :=\mu _{p^{\infty }}(F)\subset F^{\times }$
 be the p-power torsion subgroup and suppose that L is sufficiently large. Let 
 $R_{\det \overline {\rho }}$
 denote the universal deformation ring of the one-dimensional representation
$R_{\det \overline {\rho }}$
 denote the universal deformation ring of the one-dimensional representation 
 $\det \overline {\rho }$
.
$\det \overline {\rho }$
.
Theorem 1.2 (Corollaries 4.5, 4.15, 4.19, 4.21, Proposition 5.12).
 The natural map 
 $R_{\det \overline {\rho }}\to R^{\square }_{\overline {\rho }}$
, induced by sending a deformation of
$R_{\det \overline {\rho }}\to R^{\square }_{\overline {\rho }}$
, induced by sending a deformation of 
 $\overline {\rho }$
 to its determinant, is flat and induces a bijection of connected components
$\overline {\rho }$
 to its determinant, is flat and induces a bijection of connected components 
 $$ \begin{align} \pi_0({\mathrm{Spec}} R^{\square}_{\overline{\rho}}[1/p])\to \pi_0({\mathrm{Spec}} R_{\det\overline{\rho}}[1/p] ). \end{align} $$
$$ \begin{align} \pi_0({\mathrm{Spec}} R^{\square}_{\overline{\rho}}[1/p])\to \pi_0({\mathrm{Spec}} R_{\det\overline{\rho}}[1/p] ). \end{align} $$
 Labeling these components in a natural way by characters 
 $\chi :\mu \to \mathcal {O}^{\times }$
, the connected components of
$\chi :\mu \to \mathcal {O}^{\times }$
, the connected components of 
 $ {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p] $
 are in natural bijection with the irreducible components
$ {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p] $
 are in natural bijection with the irreducible components 
 $ {\mathrm {Spec}} R^{\square ,\chi }_{\overline {\rho }}$
 of
$ {\mathrm {Spec}} R^{\square ,\chi }_{\overline {\rho }}$
 of 
 $ {\mathrm {Spec}} R^{\square }_{\overline {\rho }}$
, and the rings
$ {\mathrm {Spec}} R^{\square }_{\overline {\rho }}$
, and the rings 
 $R^{\square ,\chi }_{\overline {\rho }}$
 and
$R^{\square ,\chi }_{\overline {\rho }}$
 and 
 $R^{\square ,\chi }_{\overline {\rho }}/\varpi $
 are normal domains and complete intersections.
$R^{\square ,\chi }_{\overline {\rho }}/\varpi $
 are normal domains and complete intersections.
As a consequence, we obtain the following useful Corollary.
Corollary 1.3 (Corollary 4.22).
 
 $R^{\square }_{\overline {\rho }}$
 is reduced and
$R^{\square }_{\overline {\rho }}$
 is reduced and 
 $R^{\square }_{\overline {\rho }}[1/p]$
 is normal.
$R^{\square }_{\overline {\rho }}[1/p]$
 is normal.
We would like to highlight the following result for the amusement of the reader.
Theorem 1.4 (Corollary 4.25).
 If 
 $\overline {\rho }$
 is absolutely irreducible, then
$\overline {\rho }$
 is absolutely irreducible, then 
 $R^{\square , \chi }_{\overline {\rho }}$
 and
$R^{\square , \chi }_{\overline {\rho }}$
 and 
 $R^{\square , \chi }_{\overline {\rho }}/\varpi $
 are factorial, except in the case
$R^{\square , \chi }_{\overline {\rho }}/\varpi $
 are factorial, except in the case 
 $d=2$
,
$d=2$
, 
 $F=\mathbb Q_3$
 and
$F=\mathbb Q_3$
 and 
 $\overline {\rho }\cong \overline {\rho }(1)$
.
$\overline {\rho }\cong \overline {\rho }(1)$
.
 Let 
 $\psi : G_F\rightarrow \mathcal {O}^{\times }$
 be a continuous character lifting
$\psi : G_F\rightarrow \mathcal {O}^{\times }$
 be a continuous character lifting 
 $\det \overline {\rho }$
. Let
$\det \overline {\rho }$
. Let 
 $R^{\square ,\psi }_{\overline {\rho }}$
 be the quotient of
$R^{\square ,\psi }_{\overline {\rho }}$
 be the quotient of 
 $R^{\square }_{\overline {\rho }}$
 parameterizing deformations with determinant equal to
$R^{\square }_{\overline {\rho }}$
 parameterizing deformations with determinant equal to 
 $\psi $
.
$\psi $
.
Theorem 1.5 (Corollary 5.4, Theorem 5.6).
 The rings 
 $R^{\square , \psi }_{\overline {\rho }}$
,
$R^{\square , \psi }_{\overline {\rho }}$
, 
 $R^{\square , \psi }_{\overline {\rho }}/\varpi $
 are normal domains and complete intersections of dimension
$R^{\square , \psi }_{\overline {\rho }}/\varpi $
 are normal domains and complete intersections of dimension 
 $\dim R^{\square }_{\overline {\rho }} - \dim R_{\det \overline {\rho }}+1$
 and
$\dim R^{\square }_{\overline {\rho }} - \dim R_{\det \overline {\rho }}+1$
 and 
 $\dim R^{\square }_{\overline {\rho }} - \dim R_{\det \overline {\rho }}$
, respectively. Moreover,
$\dim R^{\square }_{\overline {\rho }} - \dim R_{\det \overline {\rho }}$
, respectively. Moreover, 
 $R^{\square , \psi }_{\overline {\rho }}$
 is
$R^{\square , \psi }_{\overline {\rho }}$
 is 
 $\mathcal {O}$
-flat.
$\mathcal {O}$
-flat.
 Our work builds in an essential way on the work of GB–Juschka [Reference Böckle and Juschka9] on the special fibres of the deformation rings of pseudo-characters (i.e., pseudo-representations) of 
 $G_F$
. The paper [Reference Böckle and Juschka9] draws its inspiration from the work of Chenevier [Reference Chenevier16], who studied rigid analytic generic fibres of these rings. Our results in turn imply that the rigid analytic spaces appearing in [Reference Chenevier16] are normal (Corollaries 4.27, 5.10).
$G_F$
. The paper [Reference Böckle and Juschka9] draws its inspiration from the work of Chenevier [Reference Chenevier16], who studied rigid analytic generic fibres of these rings. Our results in turn imply that the rigid analytic spaces appearing in [Reference Chenevier16] are normal (Corollaries 4.27, 5.10).
 The knowledge of irreducible components of 
 $R^{\square }_{\overline {\rho }}$
 allows us to refine the existing results on the Zariski density of the locus with prescribed p-adic Hodge theoretic properties.
$R^{\square }_{\overline {\rho }}$
 allows us to refine the existing results on the Zariski density of the locus with prescribed p-adic Hodge theoretic properties.
Theorem 1.6 (Theorem 6.1).
 Suppose that p does not divide 
 $2d$
. Let
$2d$
. Let 
 $\Sigma $
 be a subset of the maximal spectrum of
$\Sigma $
 be a subset of the maximal spectrum of 
 $R^{\square }_{\overline {\rho }}[1/p]$
 parameterizing any of the following sets of lifts of
$R^{\square }_{\overline {\rho }}[1/p]$
 parameterizing any of the following sets of lifts of 
 $\overline {\rho }$
 to characteristic zero:
$\overline {\rho }$
 to characteristic zero: 
- 
(1) crystalline lifts with regular Hodge–Tate weights; 
- 
(2) potentially crystabelline lifts with fixed regular Hodge–Tate weights; 
- 
(3) potentially crystalline supercuspidal lifts with fixed regular Hodge–Tate weights. 
Then 
 $\Sigma $
 is Zariski dense in
$\Sigma $
 is Zariski dense in 
 $ {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]$
.
$ {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]$
.
 The assumption 
 $p\nmid 2d$
 enters via our use of the patched module
$p\nmid 2d$
 enters via our use of the patched module 
 $M_{\infty }$
 constructed in [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14]. The paper [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14] is applicable whenever
$M_{\infty }$
 constructed in [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14]. The paper [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14] is applicable whenever 
 $\overline {\rho }$
 has a potentially diagonalisable lift. It has been proved recently by Emerton–Gee [Reference Emerton and Gee24], using the Emerton–Gee stack, that this holds for all
$\overline {\rho }$
 has a potentially diagonalisable lift. It has been proved recently by Emerton–Gee [Reference Emerton and Gee24], using the Emerton–Gee stack, that this holds for all 
 $\overline {\rho }$
. The rest of our paper is independent of [Reference Emerton and Gee24]. We show that the action of
$\overline {\rho }$
. The rest of our paper is independent of [Reference Emerton and Gee24]. We show that the action of 
 $R^{\square }_{\overline {\rho }}$
 on
$R^{\square }_{\overline {\rho }}$
 on 
 $M_{\infty }$
 is faithful (Theorem 6.8), which allows us to deduce Theorem 1.6 from [Reference Emerton and Paškūnas25].
$M_{\infty }$
 is faithful (Theorem 6.8), which allows us to deduce Theorem 1.6 from [Reference Emerton and Paškūnas25].
 Partial results towards Theorem 1.1 and also towards the more recent question solved by Theorem 1.2 appear in many places (e.g., [Reference Babnik3], [Reference Böckle and Juschka8], [Reference Böckle6], [Reference Colmez, Dospinescu and Paškūnas20], [Reference Iyengar30], [Reference Nakamura40]) in special cases. However, these papers either compute with equations defining the rings or impose assumptions on 
 $\overline {\rho }$
 so that the deformation theory of
$\overline {\rho }$
 so that the deformation theory of 
 $\overline {\rho }$
 is essentially unobstructed, which leads to only one irreducible component. Although there is some overlap in ideas with [Reference Iyengar30], the argument in our paper is rather different as we do not compute with equations. We refer the reader to Section 6 for a more detailed discussion of the previous results on Zariski density of specific loci in
$\overline {\rho }$
 is essentially unobstructed, which leads to only one irreducible component. Although there is some overlap in ideas with [Reference Iyengar30], the argument in our paper is rather different as we do not compute with equations. We refer the reader to Section 6 for a more detailed discussion of the previous results on Zariski density of specific loci in 
 $ {\mathrm {Spec}} R^{\square }_{\overline {\rho }}$
 and to Remark 6.10 for a detailed explanation of the relation between Theorem 1.6 and our more recent results in [Reference Böckle, Iyengar and Paškūnas7].
$ {\mathrm {Spec}} R^{\square }_{\overline {\rho }}$
 and to Remark 6.10 for a detailed explanation of the relation between Theorem 1.6 and our more recent results in [Reference Böckle, Iyengar and Paškūnas7].
Remark 1.7. In the theorems above, we work with framed deformation rings. Our results also carry over to the versal deformation rings (which coincide with the universal deformation rings if 
 $\overline {\rho }$
 has only scalar endomorphisms) by exploiting the fact that framed deformation rings are formally smooth over versal deformation rings (see, for example, [Reference Iyengar30, Lemma 2.1]) and using [Reference Bruns and Herzog11, Theorem 2.3.6, Corollary 2.2.23 (a)].
$\overline {\rho }$
 has only scalar endomorphisms) by exploiting the fact that framed deformation rings are formally smooth over versal deformation rings (see, for example, [Reference Iyengar30, Lemma 2.1]) and using [Reference Bruns and Herzog11, Theorem 2.3.6, Corollary 2.2.23 (a)].
1.1 Complete intersection
 We now give an overview of the proof of Theorem 1.1. To do so, we introduce two further key players. The first are determinant laws, which we refer to as pseudo-characters throughout the paper, and their deformations. Let 
 $\overline {D}: k[G_F] \rightarrow k$
 be the pseudo-character attached to
$\overline {D}: k[G_F] \rightarrow k$
 be the pseudo-character attached to 
 $\overline {\rho }$
 as defined in [Reference Chenevier18]. Let
$\overline {\rho }$
 as defined in [Reference Chenevier18]. Let 
 $D^{\mathrm {ps}}: {\mathfrak A}_{\mathcal {O}}\rightarrow \mathrm {Sets}$
 be the functor mapping
$D^{\mathrm {ps}}: {\mathfrak A}_{\mathcal {O}}\rightarrow \mathrm {Sets}$
 be the functor mapping 
 $(A,{\mathfrak m}_A)\in {\mathfrak A}_{\mathcal {O}}$
 to the set
$(A,{\mathfrak m}_A)\in {\mathfrak A}_{\mathcal {O}}$
 to the set 
 $D^{\mathrm {ps}}(A)$
 of continuous A-valued d-dimensional pseudo-characters
$D^{\mathrm {ps}}(A)$
 of continuous A-valued d-dimensional pseudo-characters 
 $D:A[G_F]\to A$
 with
$D:A[G_F]\to A$
 with 
 $\overline {D}= D\ \pmod {{\mathfrak m}_A}$
. The functor
$\overline {D}= D\ \pmod {{\mathfrak m}_A}$
. The functor 
 $D^{\mathrm {ps}}$
 is pro-representable by a complete local Noetherian
$D^{\mathrm {ps}}$
 is pro-representable by a complete local Noetherian 
 $\mathcal {O}$
-algebra
$\mathcal {O}$
-algebra 
 $(R^{\mathrm {ps}}, {\mathfrak m}_{R^{\mathrm {ps}}})$
; see [Reference Chenevier18, Section 3.1]. The ring
$(R^{\mathrm {ps}}, {\mathfrak m}_{R^{\mathrm {ps}}})$
; see [Reference Chenevier18, Section 3.1]. The ring 
 $R^{\mathrm {ps}}$
 has been well understood in the recent work of GB–Juschka [Reference Böckle and Juschka9], who have determined the dimension of its special fibre and showed that the absolutely irreducible locus is dense in the special fibre. In particular, they show the following:
$R^{\mathrm {ps}}$
 has been well understood in the recent work of GB–Juschka [Reference Böckle and Juschka9], who have determined the dimension of its special fibre and showed that the absolutely irreducible locus is dense in the special fibre. In particular, they show the following:
Theorem 1.8 (GB–Juschka [Reference Böckle and Juschka9, Theorem 5.5.1(a)]).
 The ring 
 $R^{\mathrm {ps}}/\varpi $
 is equi-dimensional of dimension
$R^{\mathrm {ps}}/\varpi $
 is equi-dimensional of dimension 
 $1+d^2[F:\mathbb {Q}_p]$
.
$1+d^2[F:\mathbb {Q}_p]$
.
 Mapping a lifting of 
 $\overline {\rho }$
 to its associated pseudo-character induces a natural transformation
$\overline {\rho }$
 to its associated pseudo-character induces a natural transformation 
 $D^{\square }_{\overline {\rho }}\rightarrow D^{\mathrm {ps}}$
 and thus a map of local
$D^{\square }_{\overline {\rho }}\rightarrow D^{\mathrm {ps}}$
 and thus a map of local 
 $\mathcal {O}$
-algebras
$\mathcal {O}$
-algebras 
 $R^{\mathrm {ps}}\rightarrow R^{\square }_{\overline {\rho }}$
. Our basic idea is to study
$R^{\mathrm {ps}}\rightarrow R^{\square }_{\overline {\rho }}$
. Our basic idea is to study 
 $R^{\square }_{\overline {\rho }}$
 by studying the fibres of this map. Our initial observation was that the difference between the expected dimension of
$R^{\square }_{\overline {\rho }}$
 by studying the fibres of this map. Our initial observation was that the difference between the expected dimension of 
 $R^{\square }_{\overline {\rho }}/\varpi $
 and the dimension computed in Theorem 1.8 is
$R^{\square }_{\overline {\rho }}/\varpi $
 and the dimension computed in Theorem 1.8 is 
 $d^2-1$
, which is the dimension of
$d^2-1$
, which is the dimension of 
 $ {\mathrm {PGL}}_d$
. However, a fibre at a point corresponding to an absolutely irreducible pseudo-character can be shown to be isomorphic to
$ {\mathrm {PGL}}_d$
. However, a fibre at a point corresponding to an absolutely irreducible pseudo-character can be shown to be isomorphic to 
 $ {\mathrm {PGL}}_d$
. This led us naturally to study fibres at other points. In fact, it is technically more convenient to introduce an intermediate ring
$ {\mathrm {PGL}}_d$
. This led us naturally to study fibres at other points. In fact, it is technically more convenient to introduce an intermediate ring 
 $R^{\mathrm {ps}}\rightarrow A^{\mathrm {gen}}\rightarrow R^{\square }_{\overline {\rho }}$
, depending on
$R^{\mathrm {ps}}\rightarrow A^{\mathrm {gen}}\rightarrow R^{\square }_{\overline {\rho }}$
, depending on 
 $\overline {D}$
 and not on
$\overline {D}$
 and not on 
 $\overline {\rho }$
 itself, such that
$\overline {\rho }$
 itself, such that 
 $A^{\mathrm {gen}}$
 is of finite type over
$A^{\mathrm {gen}}$
 is of finite type over 
 $R^{\mathrm {ps}}$
 and
$R^{\mathrm {ps}}$
 and 
 $R^{\square }_{\overline {\rho }}$
 is a completion of
$R^{\square }_{\overline {\rho }}$
 is a completion of 
 $A^{\mathrm {gen}}$
 at a maximal ideal. This is our second key player.
$A^{\mathrm {gen}}$
 at a maximal ideal. This is our second key player.
 To describe 
 $A^{\mathrm {gen}}$
, let
$A^{\mathrm {gen}}$
, let 
 
 be the universal pseudo-character lifting 
 $\overline {D}$
 and let
$\overline {D}$
 and let 
 $\mathrm {CH}(D^u)$
 be the closed two-sided ideal of
$\mathrm {CH}(D^u)$
 be the closed two-sided ideal of 
 
defined in [Reference Chenevier18, Section 1.17], so that

is the largest quotient of
 
 for which the Cayley–Hamilton theorem for 
 $D^u$
 holds. Following [Reference Chenevier18, Section 1.17], we will call such algebras Cayley–Hamilton
$D^u$
 holds. Following [Reference Chenevier18, Section 1.17], we will call such algebras Cayley–Hamilton 
 $R^{\mathrm {ps}}$
-algebras of degree d. By [Reference Wang-Erickson50, Proposition 3.6], the ring E is a finitely generated
$R^{\mathrm {ps}}$
-algebras of degree d. By [Reference Wang-Erickson50, Proposition 3.6], the ring E is a finitely generated 
 $R^{\mathrm {ps}}$
-module. Now a construction of Procesi [Reference Procesi44] gives a commutative
$R^{\mathrm {ps}}$
-module. Now a construction of Procesi [Reference Procesi44] gives a commutative 
 $R^{\mathrm {ps}}$
-algebra
$R^{\mathrm {ps}}$
-algebra 
 $A^{\mathrm {gen}}$
 together with a homomorphism
$A^{\mathrm {gen}}$
 together with a homomorphism 
 $$\begin{align*}j: E\rightarrow M_d(A^{\mathrm{gen}}) \end{align*}$$
$$\begin{align*}j: E\rightarrow M_d(A^{\mathrm{gen}}) \end{align*}$$
of Cayley–Hamilton 
 $R^{\mathrm {ps}}$
-algebras satisfying the following universal property: if
$R^{\mathrm {ps}}$
-algebras satisfying the following universal property: if 
 $f: E\rightarrow M_d(B)$
 is a map of Cayley–Hamilton
$f: E\rightarrow M_d(B)$
 is a map of Cayley–Hamilton 
 $R^{\mathrm {ps}}$
-algebras for a commutative
$R^{\mathrm {ps}}$
-algebras for a commutative 
 $R^{\mathrm {ps}}$
-algebra B, then there is a unique map
$R^{\mathrm {ps}}$
-algebra B, then there is a unique map 
 $\tilde {f}: A^{\mathrm {gen}}\rightarrow B$
 of
$\tilde {f}: A^{\mathrm {gen}}\rightarrow B$
 of 
 $R^{\mathrm {ps}}$
-algebras such that
$R^{\mathrm {ps}}$
-algebras such that 
 $f= M_d(\tilde {f})\circ j$
. We give further details in Lemma 3.1 in the main text. The superscript gen in
$f= M_d(\tilde {f})\circ j$
. We give further details in Lemma 3.1 in the main text. The superscript gen in 
 $A^{\mathrm {gen}}$
 stands for generic matrices.
$A^{\mathrm {gen}}$
 stands for generic matrices.
 Since E is finitely generated as an 
 $R^{\mathrm {ps}}$
-module, the construction of Procesi shows that
$R^{\mathrm {ps}}$
-module, the construction of Procesi shows that 
 $A^{\mathrm {gen}}$
 is of finite type over
$A^{\mathrm {gen}}$
 is of finite type over 
 $R^{\mathrm {ps}}$
. Moreover, one has an algebraic action of
$R^{\mathrm {ps}}$
. Moreover, one has an algebraic action of 
 $ {\mathrm {GL}}_d$
 on
$ {\mathrm {GL}}_d$
 on 
 $X^{\mathrm {gen}}:= \operatorname {\mathrm {Spec}} A^{\mathrm {gen}}$
 which, for every
$X^{\mathrm {gen}}:= \operatorname {\mathrm {Spec}} A^{\mathrm {gen}}$
 which, for every 
 $R^{\mathrm {ps}}$
-algebra B and point
$R^{\mathrm {ps}}$
-algebra B and point 
 $f: E\rightarrow M_d(B)$
 in
$f: E\rightarrow M_d(B)$
 in 
 $X^{\mathrm {gen}}(B)$
, is simply given by conjugation of matrices. Wang-Erickson has studied the quotient stack
$X^{\mathrm {gen}}(B)$
, is simply given by conjugation of matrices. Wang-Erickson has studied the quotient stack 
 $[X^{\mathrm {gen}}/\operatorname {\mathrm {GL}}_d]$
 in his thesis [Reference Wang-Erickson49], [Reference Wang-Erickson50] and
$[X^{\mathrm {gen}}/\operatorname {\mathrm {GL}}_d]$
 in his thesis [Reference Wang-Erickson49], [Reference Wang-Erickson50] and 
 $X^{\mathrm {gen}}$
 is isomorphic to
$X^{\mathrm {gen}}$
 is isomorphic to 
 $\mathrm {Rep}^{\square }_{\overline {D}} = \mathrm {\operatorname {\mathrm {Rep}}}^{\square }_{E,D^u}$
 as defined in [Reference Wang-Erickson50, Theorem 3.8]. It is an important observation that to
$\mathrm {Rep}^{\square }_{\overline {D}} = \mathrm {\operatorname {\mathrm {Rep}}}^{\square }_{E,D^u}$
 as defined in [Reference Wang-Erickson50, Theorem 3.8]. It is an important observation that to 
 $\pi :X^{\mathrm {gen}}\to X^{\mathrm {ps}}:=\operatorname {\mathrm {Spec}} R^{\mathrm {ps}} $
 we can apply geometric invariant theory (GIT). As shown in [Reference Wang-Erickson50, Theorem 2.20], the induced morphism
$\pi :X^{\mathrm {gen}}\to X^{\mathrm {ps}}:=\operatorname {\mathrm {Spec}} R^{\mathrm {ps}} $
 we can apply geometric invariant theory (GIT). As shown in [Reference Wang-Erickson50, Theorem 2.20], the induced morphism 
 is an adequate homeomorphism in the sense of [Reference Alper1, Definition 3.3.1].
 is an adequate homeomorphism in the sense of [Reference Alper1, Definition 3.3.1].
 Our first important result on dimensions is for 
 $ \overline {X}^{\mathrm {gen}} :=\operatorname {\mathrm {Spec}} A^{\mathrm {gen}}/\varpi $
.
$ \overline {X}^{\mathrm {gen}} :=\operatorname {\mathrm {Spec}} A^{\mathrm {gen}}/\varpi $
.
Theorem 1.9 (Theorem 3.31, Lemma 3.23).
We have
 $$ \begin{align*}\dim X^{\mathrm{gen}}[1/p] \le \dim \overline{X}^{\mathrm{gen}} \le d^2+ d^2[F:\mathbb{Q}_p].\end{align*} $$
$$ \begin{align*}\dim X^{\mathrm{gen}}[1/p] \le \dim \overline{X}^{\mathrm{gen}} \le d^2+ d^2[F:\mathbb{Q}_p].\end{align*} $$
 To prove the second inequality of Theorem 1.9, we decompose the base of the finite type morphism 
 $\bar \pi : \overline {X}^{\mathrm {gen}}\to \overline {X}^{\mathrm {ps}}=\operatorname {\mathrm {Spec}} R^{\mathrm {ps}}/\varpi $
 as a finite union
$\bar \pi : \overline {X}^{\mathrm {gen}}\to \overline {X}^{\mathrm {ps}}=\operatorname {\mathrm {Spec}} R^{\mathrm {ps}}/\varpi $
 as a finite union 
 $\overline {X}^{\mathrm {ps}}=\bigcup _i U_i$
 of locally closed subschemes
$\overline {X}^{\mathrm {ps}}=\bigcup _i U_i$
 of locally closed subschemes 
 $U_i$
. The points of the
$U_i$
. The points of the 
 $U_i$
 correspond to semi-simple degree d representations of
$U_i$
 correspond to semi-simple degree d representations of 
 $G_F$
 with certain (degree) conditions on the irreducible constituents. The work [Reference Böckle and Juschka9] gives dimension estimates on the
$G_F$
 with certain (degree) conditions on the irreducible constituents. The work [Reference Böckle and Juschka9] gives dimension estimates on the 
 $U_i$
. We combine them with bounds on the dimensions of the fibres at the closed points of
$U_i$
. We combine them with bounds on the dimensions of the fibres at the closed points of 
 $U_i$
, obtained using GIT, and with results on
$U_i$
, obtained using GIT, and with results on 
 $\bar \pi ^{-1}(U_i)\to U_i$
 from commutative algebra. In Subsection 3.2, we analyze in detail the dimensions of the fibres of
$\bar \pi ^{-1}(U_i)\to U_i$
 from commutative algebra. In Subsection 3.2, we analyze in detail the dimensions of the fibres of 
 $\pi $
 at points y of
$\pi $
 at points y of 
 $X^{\mathrm {ps}}$
 valued either in finite fields containing k or local fields whose residue fields contain k. The analysis at such points suffices for all results in this paper. The commutative algebra results, used to analyze
$X^{\mathrm {ps}}$
 valued either in finite fields containing k or local fields whose residue fields contain k. The analysis at such points suffices for all results in this paper. The commutative algebra results, used to analyze 
 $\bar \pi ^{-1}(U_i)\to U_i$
 and to give the first inequality, are proved in Subsection 3.4. The key technical improvement, working with
$\bar \pi ^{-1}(U_i)\to U_i$
 and to give the first inequality, are proved in Subsection 3.4. The key technical improvement, working with 
 $X^{\mathrm {gen}}$
 instead of
$X^{\mathrm {gen}}$
 instead of 
 $\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}$
 directly, is that the fibres are of finite type over
$\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}$
 directly, is that the fibres are of finite type over 
 $\kappa (y)$
.
$\kappa (y)$
.
 We apply the bounds from Theorem 1.9 to the study of lifting rings of continuous residual representations 
 $\rho _x:G_F\to \operatorname {\mathrm {GL}}_d(\kappa (x))$
, where x is a point of
$\rho _x:G_F\to \operatorname {\mathrm {GL}}_d(\kappa (x))$
, where x is a point of 
 $X^{\mathrm {gen}}$
 whose residue field
$X^{\mathrm {gen}}$
 whose residue field 
 $\kappa (x)$
 is a finite or a local field. We distinguish three cases:
$\kappa (x)$
 is a finite or a local field. We distinguish three cases: 
- 
(1) If  $\kappa (x)$
 is a finite extension $\kappa (x)$
 is a finite extension $k'$
 of k, then we set $k'$
 of k, then we set $\Lambda $
 to be the ring of integers $\Lambda $
 to be the ring of integers $\mathcal {O}'$
 of the unramified extension $\mathcal {O}'$
 of the unramified extension $L'$
 of L with residue field $L'$
 of L with residue field $k'$
. $k'$
.
- 
(2) If  $\kappa (x)$
 is a finite extension of L, then we set $\kappa (x)$
 is a finite extension of L, then we set $\Lambda $
 to be $\Lambda $
 to be $\kappa (x)$
. $\kappa (x)$
.
- 
(3) If  $\kappa (x)$
 is a local field that contains k and if $\kappa (x)$
 is a local field that contains k and if $k'$
 denotes its residue field, then we take as $k'$
 denotes its residue field, then we take as $\Lambda $
 a Cohen ring of $\Lambda $
 a Cohen ring of $\kappa (x)$
 (with the natural topology) tensored over the Witt vector ring $\kappa (x)$
 (with the natural topology) tensored over the Witt vector ring $W(k')$
 with $W(k')$
 with $\mathcal {O}'$
. $\mathcal {O}'$
.
 Let 
 ${\mathfrak A}_{\Lambda }$
 be the category of local Artinian
${\mathfrak A}_{\Lambda }$
 be the category of local Artinian 
 $\Lambda $
-algebras
$\Lambda $
-algebras 
 $(A,{\mathfrak m}_A)$
 with residue field
$(A,{\mathfrak m}_A)$
 with residue field 
 $\kappa (x)$
. We equip the rings A with a natural topology, and we consider the functor
$\kappa (x)$
. We equip the rings A with a natural topology, and we consider the functor 
 $D^{\square }_{\rho _x}:{\mathfrak A}_{\Lambda }\to \mathrm {Sets}$
 such that
$D^{\square }_{\rho _x}:{\mathfrak A}_{\Lambda }\to \mathrm {Sets}$
 such that 
 $D^{\square }_{\rho _x}(A)$
 is the set of continuous group homomorphisms
$D^{\square }_{\rho _x}(A)$
 is the set of continuous group homomorphisms 
 $\rho : G_F\rightarrow \operatorname {\mathrm {GL}}_d(A)$
, such that
$\rho : G_F\rightarrow \operatorname {\mathrm {GL}}_d(A)$
, such that 
 $\rho \ \pmod {{\mathfrak m}_A}=\rho _x$
. In cases (1) and (2), such functors occur in the work of Mazur and Kisin, respectively. The formulation in case (3) appears to be new. In all cases, the functor
$\rho \ \pmod {{\mathfrak m}_A}=\rho _x$
. In cases (1) and (2), such functors occur in the work of Mazur and Kisin, respectively. The formulation in case (3) appears to be new. In all cases, the functor 
 $D^{\square }_{\rho _x}$
 is pro-represented by a complete local Noetherian
$D^{\square }_{\rho _x}$
 is pro-represented by a complete local Noetherian 
 $\Lambda $
-algebra
$\Lambda $
-algebra 
 $R^{\square }_{\rho _x}$
 with residue field
$R^{\square }_{\rho _x}$
 with residue field 
 $\kappa (x)$
. The arguments of Mazur and Kisin carry over to the case when
$\kappa (x)$
. The arguments of Mazur and Kisin carry over to the case when 
 $\kappa (x)$
 is a local field of characteristic p and yield a presentation
$\kappa (x)$
 is a local field of characteristic p and yield a presentation 

with 
 $r = \dim _{\kappa (x)} Z^1(G_F, \operatorname {\mathrm {ad}} \rho _x)$
 and
$r = \dim _{\kappa (x)} Z^1(G_F, \operatorname {\mathrm {ad}} \rho _x)$
 and 
 $s = \dim _{\kappa (x)} H^2(G_F, \operatorname {\mathrm {ad}} \rho _x)$
; here,
$s = \dim _{\kappa (x)} H^2(G_F, \operatorname {\mathrm {ad}} \rho _x)$
; here, 
 $\operatorname {\mathrm {ad}} \rho _x$
 is the adjoint representation of
$\operatorname {\mathrm {ad}} \rho _x$
 is the adjoint representation of 
 $G_F$
 on
$G_F$
 on 
 $\operatorname {\mathrm {End}}_{\kappa (x)}(\rho _x)$
 by conjugation. By a suitable version of Tate local duality results, one finds
$\operatorname {\mathrm {End}}_{\kappa (x)}(\rho _x)$
 by conjugation. By a suitable version of Tate local duality results, one finds 
 $r-s=d^2+d^2[F:\mathbb {Q}_p]$
. From this, Theorem 1.9 and some commutative algebra results that relate the completion of
$r-s=d^2+d^2[F:\mathbb {Q}_p]$
. From this, Theorem 1.9 and some commutative algebra results that relate the completion of 
 $A^{\mathrm {gen}}$
 at x to the ring
$A^{\mathrm {gen}}$
 at x to the ring 
 $R^{\square }_{\rho _x}$
, we deduce the following result.
$R^{\square }_{\rho _x}$
, we deduce the following result.
Corollary 1.10 (Corollaries 3.38 and 3.44).
For x as above, the following hold:
- 
(1)  $R^{\square }_{\rho _x}$
 is a flat $R^{\square }_{\rho _x}$
 is a flat $\Lambda $
-algebra of relative dimension $\Lambda $
-algebra of relative dimension $d^2+ d^2[F:\mathbb {Q}_p]$
 and is complete intersection; $d^2+ d^2[F:\mathbb {Q}_p]$
 and is complete intersection;
- 
(2) if  $\mathrm {char}(\kappa (x))=p$
, then $\mathrm {char}(\kappa (x))=p$
, then $R^{\square }_{\rho _x}/\varpi $
 is complete intersection of dimension $R^{\square }_{\rho _x}/\varpi $
 is complete intersection of dimension $d^2+ d^2[F:\mathbb {Q}_p]$
. $d^2+ d^2[F:\mathbb {Q}_p]$
.
 At first glance, one might expect that for closed points x of 
 $X^{\mathrm {gen}}$
, the residue field
$X^{\mathrm {gen}}$
, the residue field 
 $\kappa (x)$
 is always finite. However, as we show in Example 3.22,
$\kappa (x)$
 is always finite. However, as we show in Example 3.22, 
 $\kappa (x)$
 can also be a local field of characteristic
$\kappa (x)$
 can also be a local field of characteristic 
 $0$
 or p. In Subsection 3.5, we show that this exhausts all possibilities.
$0$
 or p. In Subsection 3.5, we show that this exhausts all possibilities.
 Corollary 1.10 gives us a handle on the completions of the local rings 
 $\mathcal {O}_{X^{\mathrm {gen}},x}$
 (resp.
$\mathcal {O}_{X^{\mathrm {gen}},x}$
 (resp. 
 $\mathcal {O}_{\overline {X}^{\mathrm {gen}}, x}$
) at closed points
$\mathcal {O}_{\overline {X}^{\mathrm {gen}}, x}$
) at closed points 
 $x\in X^{\mathrm {gen}}$
 (resp.
$x\in X^{\mathrm {gen}}$
 (resp. 
 $x\in \overline {X}^{\mathrm {gen}}$
), which allows us to deduce the following result.
$x\in \overline {X}^{\mathrm {gen}}$
), which allows us to deduce the following result.
Corollary 1.11 (Corollaries 3.40 and 3.45).
The following hold:
- 
(1)  $A^{\mathrm {gen}}$
 is $A^{\mathrm {gen}}$
 is $\mathcal {O}$
-torsion free, equi-dimensional of dimension $\mathcal {O}$
-torsion free, equi-dimensional of dimension $1+ d^2+ d^2[F:\mathbb {Q}_p]$
 and is locally complete intersection; $1+ d^2+ d^2[F:\mathbb {Q}_p]$
 and is locally complete intersection;
- 
(2)  $A^{\mathrm {gen}}/\varpi $
 is equi-dimensional of dimension $A^{\mathrm {gen}}/\varpi $
 is equi-dimensional of dimension $d^2+d^2[F:\mathbb {Q}_p]$
 and is locally complete intersection. $d^2+d^2[F:\mathbb {Q}_p]$
 and is locally complete intersection.
 We end Section 3 with a result on the density of (certain) absolutely irreducible points in 
 $R^{\square }_{\overline {\rho }}$
 and in
$R^{\square }_{\overline {\rho }}$
 and in 
 $R^{\square }_{\overline {\rho }}/\varpi $
. This is motivated by and relies on similar results for
$R^{\square }_{\overline {\rho }}/\varpi $
. This is motivated by and relies on similar results for 
 $R^{\mathrm {ps}}$
. A point x in
$R^{\mathrm {ps}}$
. A point x in 
 $X^{\mathrm {ps}}=\operatorname {\mathrm {Spec}} R^{\mathrm {ps}}$
 is called absolutely irreducible if the associated semisimple representation
$X^{\mathrm {ps}}=\operatorname {\mathrm {Spec}} R^{\mathrm {ps}}$
 is called absolutely irreducible if the associated semisimple representation 
 $\rho _x:G_F\to \operatorname {\mathrm {GL}}_d(\overline {\kappa (x)})$
 (which is unique up to isomorphism) is irreducible. It follows from the main theorem of [Reference Chenevier16] that the locus of absolutely irreducible points is dense open in the generic fibre
$\rho _x:G_F\to \operatorname {\mathrm {GL}}_d(\overline {\kappa (x)})$
 (which is unique up to isomorphism) is irreducible. It follows from the main theorem of [Reference Chenevier16] that the locus of absolutely irreducible points is dense open in the generic fibre 
 $X^{\mathrm {ps}}[1/p]=\operatorname {\mathrm {Spec}} R^{\mathrm {ps}}[1/p]$
, and this is extremely useful because such points are regular on
$X^{\mathrm {ps}}[1/p]=\operatorname {\mathrm {Spec}} R^{\mathrm {ps}}[1/p]$
, and this is extremely useful because such points are regular on 
 $X^{\mathrm {ps}}[1/p]$
.
$X^{\mathrm {ps}}[1/p]$
.
 A key role in the study of the regular locus in the special fibre 
 $\overline {X}^{\mathrm {ps}}=\operatorname {\mathrm {Spec}} R^{\mathrm {ps}}/\varpi $
 in [Reference Böckle and Juschka9] is played by a class of absolutely irreducible points, which are called non-special. We extend this notion slightly in Appendix A. We say that an absolutely irreducible point x in
$\overline {X}^{\mathrm {ps}}=\operatorname {\mathrm {Spec}} R^{\mathrm {ps}}/\varpi $
 in [Reference Böckle and Juschka9] is played by a class of absolutely irreducible points, which are called non-special. We extend this notion slightly in Appendix A. We say that an absolutely irreducible point x in 
 $\overline {X}^{\mathrm {ps}}$
 with finite or local residue field is Kummer-reducible if there exists a degree p Galois extension
$\overline {X}^{\mathrm {ps}}$
 with finite or local residue field is Kummer-reducible if there exists a degree p Galois extension 
 $F'$
 of
$F'$
 of 
 $F(\zeta _p)$
 such that
$F(\zeta _p)$
 such that 
 $\rho _x|_{G_{F'}}$
 is reducible, and Kummer-irreducible if not. If
$\rho _x|_{G_{F'}}$
 is reducible, and Kummer-irreducible if not. If 
 $\zeta _p \in F$
, then
$\zeta _p \in F$
, then 
 $x \in \overline {X}^{\mathrm {ps}}$
 is Kummer-irreducible if and only if it is non-special in the sense of [Reference Böckle and Juschka9, Section 5]. We show that if x is Kummer-irreducible, then
$x \in \overline {X}^{\mathrm {ps}}$
 is Kummer-irreducible if and only if it is non-special in the sense of [Reference Böckle and Juschka9, Section 5]. We show that if x is Kummer-irreducible, then 
 $H^2(G_F,\operatorname {\mathrm {ad}}^0 \rho _x) = 0$
, where
$H^2(G_F,\operatorname {\mathrm {ad}}^0 \rho _x) = 0$
, where 
 $\operatorname {\mathrm {ad}}^0\rho _x$
 is the subrepresentation of
$\operatorname {\mathrm {ad}}^0\rho _x$
 is the subrepresentation of 
 $\operatorname {\mathrm {ad}} \rho _x$
 of trace zero matrices. Much more importantly for us, we also show that the locus of Kummer-irreducible
$\operatorname {\mathrm {ad}} \rho _x$
 of trace zero matrices. Much more importantly for us, we also show that the locus of Kummer-irreducible 
 $x\in \overline {X}^{\mathrm {ps}}$
 is dense open. At these points,
$x\in \overline {X}^{\mathrm {ps}}$
 is dense open. At these points, 
 $\overline {X}^{\mathrm {ps}}$
 is not necessarily smooth, but it is relatively smooth over
$\overline {X}^{\mathrm {ps}}$
 is not necessarily smooth, but it is relatively smooth over 
 $\operatorname {\mathrm {Spec}} R_{\det \overline {\rho }}$
. Here we prove the following:
$\operatorname {\mathrm {Spec}} R_{\det \overline {\rho }}$
. Here we prove the following:
Proposition 1.12 (Proposition 3.55 and Corollaries 3.59 and 3.61).
We have the following.
- 
(1) The set of absolutely irreducible points  $x\in \operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]$
 with $x\in \operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]$
 with $\kappa (x)$
 finite over L is dense in $\kappa (x)$
 finite over L is dense in $\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]$
. $\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]$
.
- 
(2) The set of Kummer-irreducible points  $x\in \operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}/\varpi $
 with $x\in \operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}/\varpi $
 with $\kappa (x)$
 a local field is dense in $\kappa (x)$
 a local field is dense in $\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}/\varpi $
. $\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}/\varpi $
.
In particular, every continuous representation 
 $\overline {\rho }: G_F\rightarrow \operatorname {\mathrm {GL}}_d(k)$
 has an absolutely irreducible lift to characteristic zero.
$\overline {\rho }: G_F\rightarrow \operatorname {\mathrm {GL}}_d(k)$
 has an absolutely irreducible lift to characteristic zero.
1.2 Irreducible components
 From here on, we assume that L contains F, so that, in particular, L contains all roots of unity contained in F. We now give a more detailed overview of Theorem 1.2 on components of 
 $R^{\square }_{\overline {\rho }}$
. The homomorphism
$R^{\square }_{\overline {\rho }}$
. The homomorphism 
 $R_{\det \overline {\rho }}\to R^{\square }_{\overline {\rho }}$
 from that theorem is induced by the natural transformation
$R_{\det \overline {\rho }}\to R^{\square }_{\overline {\rho }}$
 from that theorem is induced by the natural transformation 
 $D^{\square }_{\overline {\rho }}\to D_{\det \overline {\rho }}$
 that to a representation assigns its determinant, and it induces the map (1) on components.
$D^{\square }_{\overline {\rho }}\to D_{\det \overline {\rho }}$
 that to a representation assigns its determinant, and it induces the map (1) on components.
 Via the Artin map 
 $F^{\times }\to G_F^{\mathrm {ab}}$
 from local class field theory, the inclusion
$F^{\times }\to G_F^{\mathrm {ab}}$
 from local class field theory, the inclusion 
 $\mu \subset F^{\times }$
 and the identification of
$\mu \subset F^{\times }$
 and the identification of 
 $R_{\det \overline {\rho }}$
 with the completed group ring of the pro-p completion of
$R_{\det \overline {\rho }}$
 with the completed group ring of the pro-p completion of 
 $G_F^{\mathrm {ab}}$
, the ring
$G_F^{\mathrm {ab}}$
, the ring 
 $R_{\det \overline {\rho }}$
 becomes an
$R_{\det \overline {\rho }}$
 becomes an 
 $\mathcal {O}[\mu ]$
-algebra. It is well-known that
$\mathcal {O}[\mu ]$
-algebra. It is well-known that 
 $R_{\det \overline {\rho }}$
 is a power series ring over
$R_{\det \overline {\rho }}$
 is a power series ring over 
 $\mathcal {O}[\mu ]$
 in
$\mathcal {O}[\mu ]$
 in 
 $[F:\mathbb {Q}_p]+1$
 formal variables. The components of the étale L-algebra
$[F:\mathbb {Q}_p]+1$
 formal variables. The components of the étale L-algebra 
 $\mathcal {O}[\mu ][1/p]=L[\mu ]$
 are in bijection with the characters
$\mathcal {O}[\mu ][1/p]=L[\mu ]$
 are in bijection with the characters 
 $\chi : \mu \to \mathcal {O}^{\times }$
. Setting
$\chi : \mu \to \mathcal {O}^{\times }$
. Setting 
 $R^{\square ,\chi }_{\overline {\rho }}=R^{\square }_{\overline {\rho }}\otimes _{\mathcal {O}[\mu ],\chi }\mathcal {O}$
, we obtain a decomposition
$R^{\square ,\chi }_{\overline {\rho }}=R^{\square }_{\overline {\rho }}\otimes _{\mathcal {O}[\mu ],\chi }\mathcal {O}$
, we obtain a decomposition 
 $\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]=\bigsqcup _{\chi } \operatorname {\mathrm {Spec}} R^{\square ,\chi }_{\overline {\rho }}[1/p]$
, where
$\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]=\bigsqcup _{\chi } \operatorname {\mathrm {Spec}} R^{\square ,\chi }_{\overline {\rho }}[1/p]$
, where 
 $\chi $
 ranges over the characters
$\chi $
 ranges over the characters 
 $\mu \to \mathcal {O}^{\times }$
.
$\mu \to \mathcal {O}^{\times }$
.
 The main step in the proof of the bijectivity of the map (1) in Theorem 1.2 is to show that the rings 
 $R^{\square ,\chi }_{\overline {\rho }}$
 are normal by verifying Serre’s criterion for normality. We first present
$R^{\square ,\chi }_{\overline {\rho }}$
 are normal by verifying Serre’s criterion for normality. We first present 
 $R^{\square }_{\overline {\rho }}$
 over
$R^{\square }_{\overline {\rho }}$
 over 
 $R_{\det \overline {\rho }}$
 (Proposition 4.3) by imitating Kisin’s method of presenting global rings over local rings. Since
$R_{\det \overline {\rho }}$
 (Proposition 4.3) by imitating Kisin’s method of presenting global rings over local rings. Since 
 $R^{\chi }_{\det \overline {\rho }}:=R_{\det \overline {\rho }}\otimes _{\mathcal {O}[\mu ], \chi }\mathcal {O}$
 is formally smooth, by applying
$R^{\chi }_{\det \overline {\rho }}:=R_{\det \overline {\rho }}\otimes _{\mathcal {O}[\mu ], \chi }\mathcal {O}$
 is formally smooth, by applying 
 $\otimes _{\mathcal {O}[\mu ], \chi }\mathcal {O}$
, we obtain a presentation of
$\otimes _{\mathcal {O}[\mu ], \chi }\mathcal {O}$
, we obtain a presentation of 
 $R^{\square ,\chi }_{\overline {\rho }}$
 over
$R^{\square ,\chi }_{\overline {\rho }}$
 over 
 $R^{\chi }_{\det \overline {\rho }}$
 analogous to the presentation (2). Since
$R^{\chi }_{\det \overline {\rho }}$
 analogous to the presentation (2). Since 
 $R^{\square , \chi }_{\overline {\rho }}$
 has the same dimension as
$R^{\square , \chi }_{\overline {\rho }}$
 has the same dimension as 
 $R^{\square }_{\overline {\rho }}$
, the presentation yields that
$R^{\square }_{\overline {\rho }}$
, the presentation yields that 
 $R^{\square , \chi }_{\overline {\rho }}$
 is complete intersection of expected dimension and hence satisfies Serre’s condition (S2). We then show that
$R^{\square , \chi }_{\overline {\rho }}$
 is complete intersection of expected dimension and hence satisfies Serre’s condition (S2). We then show that 
 $X^{\mathrm {gen}, \chi }:=\operatorname {\mathrm {Spec}} (A^{\mathrm {gen}}\otimes _{\mathcal {O}[\mu ], \chi }\mathcal {O})$
 and its special fibre
$X^{\mathrm {gen}, \chi }:=\operatorname {\mathrm {Spec}} (A^{\mathrm {gen}}\otimes _{\mathcal {O}[\mu ], \chi }\mathcal {O})$
 and its special fibre 
 $\overline {X}^{\mathrm {gen}, \chi }$
 are regular in codimension
$\overline {X}^{\mathrm {gen}, \chi }$
 are regular in codimension 
 $1$
 by showing that the Kummer-irreducible locus in
$1$
 by showing that the Kummer-irreducible locus in 
 $\overline {X}^{\mathrm {gen}, \chi }$
 (resp. absolutely irreducible locus in
$\overline {X}^{\mathrm {gen}, \chi }$
 (resp. absolutely irreducible locus in 
 $X^{\mathrm {gen}, \chi }[1/p]$
) is regular, and its complement has codimension at least
$X^{\mathrm {gen}, \chi }[1/p]$
) is regular, and its complement has codimension at least 
 $2$
 if either
$2$
 if either 
 $F\neq \mathbb {Q}_p$
, or
$F\neq \mathbb {Q}_p$
, or 
 $d>2$
 or
$d>2$
 or 
 $\overline {D}$
 is absolutely irreducible. The case
$\overline {D}$
 is absolutely irreducible. The case 
 $F=\mathbb {Q}_p$
,
$F=\mathbb {Q}_p$
, 
 $d=2$
 and
$d=2$
 and 
 $\overline {D}$
 reducible requires an extra analysis of the reducible locus. Since
$\overline {D}$
 reducible requires an extra analysis of the reducible locus. Since 
 $R^{\square , \chi }_{\overline {\rho }}$
 is a completion of a local ring at a closed point of
$R^{\square , \chi }_{\overline {\rho }}$
 is a completion of a local ring at a closed point of 
 $X^{\mathrm {gen},\chi }$
, we deduce that
$X^{\mathrm {gen},\chi }$
, we deduce that 
 $R^{\square , \chi }_{\overline {\rho }}$
 is regular in codimension
$R^{\square , \chi }_{\overline {\rho }}$
 is regular in codimension 
 $1$
. We thus deduce that
$1$
. We thus deduce that 
 $R^{\square , \chi }_{\overline {\rho }}$
 is normal. Since
$R^{\square , \chi }_{\overline {\rho }}$
 is normal. Since 
 $R^{\square , \chi }_{\overline {\rho }}$
 is a local ring, it is an integral domain. A similar argument works for the special fibre.
$R^{\square , \chi }_{\overline {\rho }}$
 is a local ring, it is an integral domain. A similar argument works for the special fibre.
 Theorem 1.5 on 
 $R^{\square , \psi }_{\overline {\rho }}$
 is proved by reduction to the results on
$R^{\square , \psi }_{\overline {\rho }}$
 is proved by reduction to the results on 
 $R^{\square ,\chi }_{\overline {\rho }}$
 where
$R^{\square ,\chi }_{\overline {\rho }}$
 where 
 $\chi :\mathcal {O}[\mu ]\to \mathcal {O}^{\times }$
 is the restriction of
$\chi :\mathcal {O}[\mu ]\to \mathcal {O}^{\times }$
 is the restriction of 
 $\psi $
 to
$\psi $
 to 
 $\mu $
 via the Artin map. To give an idea of the proof, let
$\mu $
 via the Artin map. To give an idea of the proof, let 
 $\mathcal X : \mathfrak {A}_{\mathcal {O}}\rightarrow \operatorname {\mathrm {Sets}}$
 be the functor, which sends
$\mathcal X : \mathfrak {A}_{\mathcal {O}}\rightarrow \operatorname {\mathrm {Sets}}$
 be the functor, which sends 
 $(A, {\mathfrak m}_A)$
 to the group
$(A, {\mathfrak m}_A)$
 to the group 
 $\mathcal X(A)$
 of continuous characters
$\mathcal X(A)$
 of continuous characters 
 $\theta : G_F\rightarrow 1+{\mathfrak m}_A$
 such that
$\theta : G_F\rightarrow 1+{\mathfrak m}_A$
 such that 
 $\theta $
 restricted to
$\theta $
 restricted to 
 $\mu $
 is trivial, and let
$\mu $
 is trivial, and let 
 $\mathcal {O}(\mathcal X)$
 be the complete local Noetherian
$\mathcal {O}(\mathcal X)$
 be the complete local Noetherian 
 $\mathcal {O}$
-algebra pro-representing
$\mathcal {O}$
-algebra pro-representing 
 $\mathcal X$
. Local class field theory gives an isomorphism
$\mathcal X$
. Local class field theory gives an isomorphism 
 . Let
. Let 
 $\varphi _d:\mathcal {O}(\mathcal X)\to \mathcal {O}(\mathcal X)$
 be the morphism induced by the d-power map
$\varphi _d:\mathcal {O}(\mathcal X)\to \mathcal {O}(\mathcal X)$
 be the morphism induced by the d-power map 
 $\mathcal X\to \mathcal X$
,
$\mathcal X\to \mathcal X$
, 
 $\theta \mapsto \theta ^d$
. Our key technical result is Proposition 5.1, which yields a natural isomorphism
$\theta \mapsto \theta ^d$
. Our key technical result is Proposition 5.1, which yields a natural isomorphism 
 $$\begin{align*}R_{\overline{\rho}}^{\square,\chi}\otimes_{\mathcal{O}(\mathcal X), \varphi_d}\mathcal{O}(\mathcal X) \cong R_{\overline{\rho}}^{\square,\psi} \widehat\otimes_{\mathcal{O}}\mathcal{O}(\mathcal X) \end{align*}$$
$$\begin{align*}R_{\overline{\rho}}^{\square,\chi}\otimes_{\mathcal{O}(\mathcal X), \varphi_d}\mathcal{O}(\mathcal X) \cong R_{\overline{\rho}}^{\square,\psi} \widehat\otimes_{\mathcal{O}}\mathcal{O}(\mathcal X) \end{align*}$$
that comes from an analogous isomorphism of functors. It allows us to compare the sets of points x with 
 $\kappa (x)$
 finite or local at which
$\kappa (x)$
 finite or local at which 
 $H^2(G_F,{\operatorname {ad}^0}\rho _x)$
 is non-zero on both sides. We also show that the map
$H^2(G_F,{\operatorname {ad}^0}\rho _x)$
 is non-zero on both sides. We also show that the map 
 $ \operatorname {\mathrm {Spec}} R_{\overline {\rho }}^{\square ,\chi }\otimes _{\mathcal {O}(\mathcal X), \varphi _d}\mathcal {O}(\mathcal X) \to \operatorname {\mathrm {Spec}} R_{\overline {\rho }}^{\square ,\chi }$
 induces a homeomorphism on special fibres, and a finite covering on generic fibres. Then we use topological arguments to obtain the dimension of
$ \operatorname {\mathrm {Spec}} R_{\overline {\rho }}^{\square ,\chi }\otimes _{\mathcal {O}(\mathcal X), \varphi _d}\mathcal {O}(\mathcal X) \to \operatorname {\mathrm {Spec}} R_{\overline {\rho }}^{\square ,\chi }$
 induces a homeomorphism on special fibres, and a finite covering on generic fibres. Then we use topological arguments to obtain the dimension of 
 $R^{\square , \psi }_{\overline {\rho }}$
 and bound the codimension of its singular locus from the analogous results on
$R^{\square , \psi }_{\overline {\rho }}$
 and bound the codimension of its singular locus from the analogous results on 
 $R^{\square ,\chi }_{\overline {\rho }}$
.
$R^{\square ,\chi }_{\overline {\rho }}$
.
 We also prove analogs of Theorem 1.2 (resp. Theorem 1.6) for spaces 
 $X^{\mathrm {gen}, \chi }$
 and
$X^{\mathrm {gen}, \chi }$
 and 
 $\overline {X}^{\mathrm {gen}, \chi }$
 for characters
$\overline {X}^{\mathrm {gen}, \chi }$
 for characters 
 $\chi : \mu \rightarrow \mathcal {O}^{\times }$
 (resp.
$\chi : \mu \rightarrow \mathcal {O}^{\times }$
 (resp. 
 $X^{\mathrm {gen}, \psi }$
,
$X^{\mathrm {gen}, \psi }$
, 
 $\overline {X}^{\mathrm {gen}, \psi }$
 for characters
$\overline {X}^{\mathrm {gen}, \psi }$
 for characters 
 $\psi : G_F \rightarrow \mathcal {O}^{\times }$
 lifting
$\psi : G_F \rightarrow \mathcal {O}^{\times }$
 lifting 
 $\det \overline {\rho }$
); see Corollaries 4.6, 4.18, 4.26 (resp. Corollaries 5.8, 5.9). We expect that our results will be useful in the study of the geometry of the Emerton–Gee stack and its derived versions.
$\det \overline {\rho }$
); see Corollaries 4.6, 4.18, 4.26 (resp. Corollaries 5.8, 5.9). We expect that our results will be useful in the study of the geometry of the Emerton–Gee stack and its derived versions.
 It is natural to ask whether our results generalize to deformations valued in reductive groups other than 
 $\operatorname {\mathrm {GL}}_d$
. This question will be addressed in the forthcoming joint work of VP and Julian Quast.
$\operatorname {\mathrm {GL}}_d$
. This question will be addressed in the forthcoming joint work of VP and Julian Quast.
1.3 Overview by section
 In Section 2, we briefly review GIT. A key result that gets used later on is Lemma 2.2. In Section 3, we introduce 
 $X^{\mathrm {gen}}$
 and its special fibre
$X^{\mathrm {gen}}$
 and its special fibre 
 $\overline {X}^{\mathrm {gen}}$
. In Subsection 3.2, we bound the dimensions of the fibres of the map
$\overline {X}^{\mathrm {gen}}$
. In Subsection 3.2, we bound the dimensions of the fibres of the map 
 $X^{\mathrm {gen}}\rightarrow X^{\mathrm {ps}}$
. In Subsection 3.4, we combine this with results of [Reference Böckle and Juschka9] to bound the dimension of
$X^{\mathrm {gen}}\rightarrow X^{\mathrm {ps}}$
. In Subsection 3.4, we combine this with results of [Reference Böckle and Juschka9] to bound the dimension of 
 $X^{\mathrm {gen}}$
 and
$X^{\mathrm {gen}}$
 and 
 $\overline {X}^{\mathrm {gen}}$
. In Subsection 3.5, we relate the completions of local rings at closed points x of
$\overline {X}^{\mathrm {gen}}$
. In Subsection 3.5, we relate the completions of local rings at closed points x of 
 $X^{\mathrm {gen}}$
,
$X^{\mathrm {gen}}$
, 
 $\overline {X}^{\mathrm {gen}}$
 to the deformation theory of Galois representations
$\overline {X}^{\mathrm {gen}}$
 to the deformation theory of Galois representations 
 $\rho _x: G_F\rightarrow \operatorname {\mathrm {GL}}_d(\kappa (x))$
 and prove Theorem 1.1. In Section 3.6, we bound the maximally reducible semi-simple locus in
$\rho _x: G_F\rightarrow \operatorname {\mathrm {GL}}_d(\kappa (x))$
 and prove Theorem 1.1. In Section 3.6, we bound the maximally reducible semi-simple locus in 
 $X^{\mathrm {gen}}$
 and
$X^{\mathrm {gen}}$
 and 
 $\overline {X}^{\mathrm {gen}}$
. This computation later on gets used only in the case
$\overline {X}^{\mathrm {gen}}$
. This computation later on gets used only in the case 
 $d=2$
,
$d=2$
, 
 $F=\mathbb Q_2$
 and
$F=\mathbb Q_2$
 and 
 $\overline {D}$
 is reducible. In Subsection 3.7, we prove the Zariski density of the Kummer-irreducible locus in
$\overline {D}$
 is reducible. In Subsection 3.7, we prove the Zariski density of the Kummer-irreducible locus in 
 $\overline {X}^{\mathrm {gen}}$
 and absolutely irreducible locus in
$\overline {X}^{\mathrm {gen}}$
 and absolutely irreducible locus in 
 $X^{\mathrm {gen}}[1/p]$
 and also establish lower bounds for the dimension of their complements. These bounds are used to establish normality later on. In Section 4, we present
$X^{\mathrm {gen}}[1/p]$
 and also establish lower bounds for the dimension of their complements. These bounds are used to establish normality later on. In Section 4, we present 
 $R^{\square }_{\overline {\rho }}$
 over
$R^{\square }_{\overline {\rho }}$
 over 
 $R_{\det \overline {\rho }}$
 and prove Theorem 1.2. In Section 5, we prove Theorem 1.5. In Section 6, we prove Theorem 1.6. In Appendix A, we introduce the notion of Kummer-irreducible points in
$R_{\det \overline {\rho }}$
 and prove Theorem 1.2. In Section 5, we prove Theorem 1.5. In Section 6, we prove Theorem 1.6. In Appendix A, we introduce the notion of Kummer-irreducible points in 
 $\operatorname {\mathrm {Spec}} R^{\mathrm {ps}}/\varpi $
, which slightly generalizes the notion of non-special points defined in [Reference Böckle and Juschka9]. This technical improvement is needed in Section 5 when
$\operatorname {\mathrm {Spec}} R^{\mathrm {ps}}/\varpi $
, which slightly generalizes the notion of non-special points defined in [Reference Böckle and Juschka9]. This technical improvement is needed in Section 5 when 
 $\zeta _p\not \in F$
.
$\zeta _p\not \in F$
.
1.4 Notation
 Let F be a finite extension of 
 $\mathbb {Q}_p$
 and let
$\mathbb {Q}_p$
 and let 
 $G_F$
 be its absolute Galois group. Let L be another finite extension of
$G_F$
 be its absolute Galois group. Let L be another finite extension of 
 $\mathbb Q_p$
, such that
$\mathbb Q_p$
, such that 
 $\operatorname {\mathrm {Hom}}_{\mathbb {Q}_p\text {-}\mathrm {alg}}(F, L)$
 has cardinality
$\operatorname {\mathrm {Hom}}_{\mathbb {Q}_p\text {-}\mathrm {alg}}(F, L)$
 has cardinality 
 $[F:\mathbb {Q}_p]$
. Let
$[F:\mathbb {Q}_p]$
. Let 
 $\mathcal {O}$
 be the ring of integers in L,
$\mathcal {O}$
 be the ring of integers in L, 
 $\varpi $
 a uniformiser, and k the residue field. We will denote by
$\varpi $
 a uniformiser, and k the residue field. We will denote by 
 $\zeta _p$
 a primitive p-th root of unity in a fixed algebraic closure of F. For a commutative ring R, we let
$\zeta _p$
 a primitive p-th root of unity in a fixed algebraic closure of F. For a commutative ring R, we let 
 $P_1R=\{ {\mathfrak p} \in \operatorname {\mathrm {Spec}} R: \dim R/{\mathfrak p} =1\}$
.
$P_1R=\{ {\mathfrak p} \in \operatorname {\mathrm {Spec}} R: \dim R/{\mathfrak p} =1\}$
.
 We fix a representation 
 $\overline {\rho }:G_F\rightarrow \operatorname {\mathrm {GL}}_d(k)$
 and assume that all its irreducible subquotients are absolutely irreducible. We note that we may always achieve that after enlarging k, since the image of
$\overline {\rho }:G_F\rightarrow \operatorname {\mathrm {GL}}_d(k)$
 and assume that all its irreducible subquotients are absolutely irreducible. We note that we may always achieve that after enlarging k, since the image of 
 $\overline {\rho }$
 is a finite group. Let
$\overline {\rho }$
 is a finite group. Let 
 $\operatorname {\mathrm {ad}} \overline {\rho }$
 be the adjoint representation of
$\operatorname {\mathrm {ad}} \overline {\rho }$
 be the adjoint representation of 
 $G_F$
 and
$G_F$
 and 
 $\operatorname {\mathrm {ad}}^0\overline {\rho }$
 the subspace of trace zero endomorphisms, so that
$\operatorname {\mathrm {ad}}^0\overline {\rho }$
 the subspace of trace zero endomorphisms, so that 
 $G_F$
 acts on
$G_F$
 acts on 
 $\operatorname {\mathrm {End}}_k(\overline {\rho })$
 by conjugation. We will denote the dimension as a k-vector space of cohomology groups
$\operatorname {\mathrm {End}}_k(\overline {\rho })$
 by conjugation. We will denote the dimension as a k-vector space of cohomology groups 
 $H^i(G_F, \operatorname {\mathrm {ad}} \overline {\rho })$
 by
$H^i(G_F, \operatorname {\mathrm {ad}} \overline {\rho })$
 by 
 $h^i$
.
$h^i$
.
2 Geometric invariant theory
 We first recall the setup of [Reference Seshadri47]. Let R be a Noetherian ring and let 
 $S=\operatorname {\mathrm {Spec}} R$
. Let G be a reductive group scheme over S, so that G is an affine group scheme over S,
$S=\operatorname {\mathrm {Spec}} R$
. Let G be a reductive group scheme over S, so that G is an affine group scheme over S, 
 $G\rightarrow S$
 is smooth and the geometric fibres are connected reductive groups. In the application,
$G\rightarrow S$
 is smooth and the geometric fibres are connected reductive groups. In the application, 
 $G= S\times _{\operatorname {\mathrm {Spec}} \mathbb Z} \operatorname {\mathrm {GL}}_d$
 and
$G= S\times _{\operatorname {\mathrm {Spec}} \mathbb Z} \operatorname {\mathrm {GL}}_d$
 and 
 $G= S\times _{\operatorname {\mathrm {Spec}} \mathbb Z} \mathbb G_m^r$
 so that these conditions hold.
$G= S\times _{\operatorname {\mathrm {Spec}} \mathbb Z} \mathbb G_m^r$
 so that these conditions hold.
 Let V be a free R-module of finite rank r endowed with a G-module structure, let 
 $\check {V}=\operatorname {\mathrm {Hom}}_R(V, R)$
 and let
$\check {V}=\operatorname {\mathrm {Hom}}_R(V, R)$
 and let 
 $\operatorname {\mathrm {Sym}}(\check {V})$
 be the symmetric algebra. The G-module structure on V induces an action of G on
$\operatorname {\mathrm {Sym}}(\check {V})$
 be the symmetric algebra. The G-module structure on V induces an action of G on 
 $\operatorname {\mathrm {Spec}}(\operatorname {\mathrm {Sym}}(\check {V})) = \mathbb A^r_S.$
 Let X be a closed G-invariant subscheme of
$\operatorname {\mathrm {Spec}}(\operatorname {\mathrm {Sym}}(\check {V})) = \mathbb A^r_S.$
 Let X be a closed G-invariant subscheme of 
 $\operatorname {\mathrm {Spec}} (\operatorname {\mathrm {Sym}}(\check {V}))$
. The G-action on X induces an action on B, the ring of functions on X. The GIT quotient
$\operatorname {\mathrm {Spec}} (\operatorname {\mathrm {Sym}}(\check {V}))$
. The G-action on X induces an action on B, the ring of functions on X. The GIT quotient 
 is represented by the ring of invariants
 is represented by the ring of invariants 
 $B^G$
.
$B^G$
.
Lemma 2.1. Every irreducible component Z of X, equipped with its reduced subscheme structure, is G-invariant.
Proof. This fact is mentioned (and a proof is sketched) in [Reference Seshadri47, Section 4], but we give a full proof for the convenience of the reader. We have to show that 
 $\varphi ( G\times _S Z) \subset Z$
, where
$\varphi ( G\times _S Z) \subset Z$
, where 
 $\varphi : G\times _S X \rightarrow X$
 is the action map. In terms of rings, this amounts to showing that the kernel of
$\varphi : G\times _S X \rightarrow X$
 is the action map. In terms of rings, this amounts to showing that the kernel of 
 $\varphi ^{\sharp }: B\rightarrow \mathcal {O}(G)\otimes _R B/{\mathfrak p}$
 is equal to
$\varphi ^{\sharp }: B\rightarrow \mathcal {O}(G)\otimes _R B/{\mathfrak p}$
 is equal to 
 ${\mathfrak p}$
, where
${\mathfrak p}$
, where 
 $\mathcal {O}(G)$
 is the ring of functions of G and
$\mathcal {O}(G)$
 is the ring of functions of G and 
 ${\mathfrak p}$
 is a prime of B such that
${\mathfrak p}$
 is a prime of B such that 
 $Z=V({\mathfrak p})$
. Since the identity element in G maps Z to itself,
$Z=V({\mathfrak p})$
. Since the identity element in G maps Z to itself, 
 $\ker \varphi ^{\sharp }$
 is contained in
$\ker \varphi ^{\sharp }$
 is contained in 
 ${\mathfrak p}$
. Since Z is an irreducible component of X, it is enough to show that
${\mathfrak p}$
. Since Z is an irreducible component of X, it is enough to show that 
 $\mathcal {O}(G)\otimes _R B/{\mathfrak p}$
 is an integral domain, as then
$\mathcal {O}(G)\otimes _R B/{\mathfrak p}$
 is an integral domain, as then 
 $\ker \varphi ^{\sharp }$
 is a prime of B and therefore has to equal to
$\ker \varphi ^{\sharp }$
 is a prime of B and therefore has to equal to 
 ${\mathfrak p}$
.
${\mathfrak p}$
.
 Since 
 $G\rightarrow S$
 is geometrically connected and smooth,
$G\rightarrow S$
 is geometrically connected and smooth, 
 $G\times _S \eta $
 is integral for every geometric point
$G\times _S \eta $
 is integral for every geometric point 
 $\eta $
 of S. Thus,
$\eta $
 of S. Thus, 
 $\mathcal {O}(G)\otimes _R \overline {\kappa ({\mathfrak p})}$
 is an integral domain, where
$\mathcal {O}(G)\otimes _R \overline {\kappa ({\mathfrak p})}$
 is an integral domain, where 
 $\overline {\kappa ({\mathfrak p})}$
 is an algebraic closure of the fraction field of
$\overline {\kappa ({\mathfrak p})}$
 is an algebraic closure of the fraction field of 
 $B/{\mathfrak p}$
. Since
$B/{\mathfrak p}$
. Since 
 $G\rightarrow S$
 is smooth, it is also flat. Thus,
$G\rightarrow S$
 is smooth, it is also flat. Thus, 
 $\mathcal {O}(G)\otimes _R B/{\mathfrak p}$
 is a subring of
$\mathcal {O}(G)\otimes _R B/{\mathfrak p}$
 is a subring of 
 $\mathcal {O}(G)\otimes _R \overline {\kappa ({\mathfrak p})}$
 and hence is an integral domain.
$\mathcal {O}(G)\otimes _R \overline {\kappa ({\mathfrak p})}$
 and hence is an integral domain.
 Let 
 $y=\operatorname {\mathrm {Spec}} \kappa $
 be a geometric point of
$y=\operatorname {\mathrm {Spec}} \kappa $
 be a geometric point of 
 . We may identify the fibre
. We may identify the fibre 
 $X_y$
 with a closed G-invariant subscheme of X.
$X_y$
 with a closed G-invariant subscheme of X.
Lemma 2.2. Let 
 $x\in X_y(\kappa )$
 be such that the orbit
$x\in X_y(\kappa )$
 be such that the orbit 
 $G \cdot x$
 is closed in
$G \cdot x$
 is closed in 
 $X_y$
; then
$X_y$
; then 
 $$ \begin{align*}\dim X_y \le \dim_{\kappa} T_x(X_y).\end{align*} $$
$$ \begin{align*}\dim X_y \le \dim_{\kappa} T_x(X_y).\end{align*} $$
Proof. Let Z be an irreducible component of 
 $X_y$
 such that
$X_y$
 such that 
 $\dim Z = \dim X_y$
. By Lemma 2.1, Z is closed in
$\dim Z = \dim X_y$
. By Lemma 2.1, Z is closed in 
 $X_y$
 and G-invariant. Then by [Reference Seshadri47, Theorem 3], both Z and
$X_y$
 and G-invariant. Then by [Reference Seshadri47, Theorem 3], both Z and 
 $X_y$
 have a unique closed G-orbit; hence, those orbits must be equal. Therefore,
$X_y$
 have a unique closed G-orbit; hence, those orbits must be equal. Therefore, 
 $x \in Z$
, so since Z is irreducible,
$x \in Z$
, so since Z is irreducible, 
 $$\begin{align*}\dim X_y = \dim Z \leq \dim_{\kappa} T_x(Z) \leq \dim_{\kappa} T_x(X_y).\\[-38pt] \end{align*}$$
$$\begin{align*}\dim X_y = \dim Z \leq \dim_{\kappa} T_x(Z) \leq \dim_{\kappa} T_x(X_y).\\[-38pt] \end{align*}$$
3 
 $R^{\square }_{\overline {\rho }}$
 is complete intersection
$R^{\square }_{\overline {\rho }}$
 is complete intersection
 Let 
 $\overline {\rho }:G_F\rightarrow \operatorname {\mathrm {GL}}_d(k)$
 be a continuous representation. Let
$\overline {\rho }:G_F\rightarrow \operatorname {\mathrm {GL}}_d(k)$
 be a continuous representation. Let 
 $D^{\square }_{\overline {\rho }}: {\mathfrak A}_{\mathcal {O}}\rightarrow \mathrm {Sets}$
 be the functor from the category of local Artinian
$D^{\square }_{\overline {\rho }}: {\mathfrak A}_{\mathcal {O}}\rightarrow \mathrm {Sets}$
 be the functor from the category of local Artinian 
 $\mathcal {O}$
-algebras with residue field k to the category of sets, such that for
$\mathcal {O}$
-algebras with residue field k to the category of sets, such that for 
 $(A,{\mathfrak m}_A)\in {\mathfrak A}_{\mathcal {O}}$
,
$(A,{\mathfrak m}_A)\in {\mathfrak A}_{\mathcal {O}}$
, 
 $D^{\square }_{\overline {\rho }}(A)$
 is the set of continuous representations
$D^{\square }_{\overline {\rho }}(A)$
 is the set of continuous representations 
 $\rho _A: G_F\rightarrow \operatorname {\mathrm {GL}}_d(A)$
 such that
$\rho _A: G_F\rightarrow \operatorname {\mathrm {GL}}_d(A)$
 such that 
 $\rho _A \ \pmod {{\mathfrak m}_A}=\overline {\rho }$
. The functor
$\rho _A \ \pmod {{\mathfrak m}_A}=\overline {\rho }$
. The functor 
 $D^{\square }_{\overline {\rho }}$
 is pro-represented by a complete local Noetherian
$D^{\square }_{\overline {\rho }}$
 is pro-represented by a complete local Noetherian 
 $\mathcal {O}$
-algebra
$\mathcal {O}$
-algebra 
 $R^{\square }_{\overline {\rho }}$
. The main goal of this section is to establish inequalities
$R^{\square }_{\overline {\rho }}$
. The main goal of this section is to establish inequalities 
 $$ \begin{align} \dim R^{\square}_{\overline{\rho}} \le 1 + d^2 + d^2[F:\mathbb{Q}_p], \quad \dim R^{\square}_{\overline{\rho}}/\varpi\le d^2 + d^2[F:\mathbb{Q}_p]. \end{align} $$
$$ \begin{align} \dim R^{\square}_{\overline{\rho}} \le 1 + d^2 + d^2[F:\mathbb{Q}_p], \quad \dim R^{\square}_{\overline{\rho}}/\varpi\le d^2 + d^2[F:\mathbb{Q}_p]. \end{align} $$
 It is well known to the experts that these bounds imply that the rings 
 $R^{\square }_{\overline {\rho }}$
 and
$R^{\square }_{\overline {\rho }}$
 and 
 $R^{\square }_{\overline {\rho }}/\varpi $
 are complete intersection. Namely, the proof of [Reference Mazur38, Proposition 21.1] shows that the tangent space to
$R^{\square }_{\overline {\rho }}/\varpi $
 are complete intersection. Namely, the proof of [Reference Mazur38, Proposition 21.1] shows that the tangent space to 
 $D^{\square }_{\overline {\rho }}$
 is
$D^{\square }_{\overline {\rho }}$
 is 
 $Z^1(G_F, \operatorname {\mathrm {ad}}\overline {\rho })$
, and it follows from the proof of Proposition 2 in [Reference Mazur37, Section 1.6] that there is a presentation
$Z^1(G_F, \operatorname {\mathrm {ad}}\overline {\rho })$
, and it follows from the proof of Proposition 2 in [Reference Mazur37, Section 1.6] that there is a presentation 

where 
 $r = \dim _k Z^1(G_F, \operatorname {\mathrm {ad}} \overline {\rho }) = d^2-h^0+h^1$
 and
$r = \dim _k Z^1(G_F, \operatorname {\mathrm {ad}} \overline {\rho }) = d^2-h^0+h^1$
 and 
 $s = h^2$
 and
$s = h^2$
 and 
 $h^i=\dim _k H^i(G_F, \operatorname {\mathrm {ad}} \overline {\rho })$
. The Euler–Poincaré characteristic formula implies that
$h^i=\dim _k H^i(G_F, \operatorname {\mathrm {ad}} \overline {\rho })$
. The Euler–Poincaré characteristic formula implies that 
 $r - s = d^2 + d^2[F:\mathbb {Q}_p]$
. Thus,
$r - s = d^2 + d^2[F:\mathbb {Q}_p]$
. Thus, 
 $\varpi , f_1, \ldots , f_s$
 can be extended to a system of parameters in a regular ring
$\varpi , f_1, \ldots , f_s$
 can be extended to a system of parameters in a regular ring 
 and hence form a regular sequence.
 and hence form a regular sequence.
 Let 
 $\overline {D}: k[G_F] \rightarrow k$
 be the determinant law attached to
$\overline {D}: k[G_F] \rightarrow k$
 be the determinant law attached to 
 $\overline {\rho }$
 in the sense of [Reference Chenevier18], so that
$\overline {\rho }$
 in the sense of [Reference Chenevier18], so that 
 $\overline {D}$
 is equal to the composition of the polynomial laws induced by
$\overline {D}$
 is equal to the composition of the polynomial laws induced by 
 $k[G_F]\overset {\overline {\rho }}{\longrightarrow } M_d(k)$
 and
$k[G_F]\overset {\overline {\rho }}{\longrightarrow } M_d(k)$
 and 
 $M_d(k) \overset {\det }{\longrightarrow } k$
. In this paper, we will refer to determinant laws as pseudo-characters. Let
$M_d(k) \overset {\det }{\longrightarrow } k$
. In this paper, we will refer to determinant laws as pseudo-characters. Let 
 $D^{\mathrm {ps}}: {\mathfrak A}_{\mathcal {O}}\rightarrow \mathrm {Sets}$
 be the functor sending an object
$D^{\mathrm {ps}}: {\mathfrak A}_{\mathcal {O}}\rightarrow \mathrm {Sets}$
 be the functor sending an object 
 $(A,{\mathfrak m}_A)\in {\mathfrak A}_{\mathcal {O}}$
 to the set
$(A,{\mathfrak m}_A)\in {\mathfrak A}_{\mathcal {O}}$
 to the set 
 $D^{\mathrm {ps}}(A)$
 of continuous A-valued d-dimensional pseudo-characters of
$D^{\mathrm {ps}}(A)$
 of continuous A-valued d-dimensional pseudo-characters of 
 $A[G_F]$
 which reduce to
$A[G_F]$
 which reduce to 
 $\overline {D}$
 modulo
$\overline {D}$
 modulo 
 ${\mathfrak m}_A$
. The functor
${\mathfrak m}_A$
. The functor 
 $D^{\mathrm {ps}}$
 is pro-representable by a complete local Noetherian
$D^{\mathrm {ps}}$
 is pro-representable by a complete local Noetherian 
 $\mathcal {O}$
-algebra
$\mathcal {O}$
-algebra 
 $(R^{\mathrm {ps}}, {\mathfrak m}_{R^{\mathrm {ps}}})$
 by [Reference Chenevier18, Proposition 3.3].
$(R^{\mathrm {ps}}, {\mathfrak m}_{R^{\mathrm {ps}}})$
 by [Reference Chenevier18, Proposition 3.3].
 Mapping a deformation of 
 $\overline {\rho }$
 to its determinant induces a natural transformation
$\overline {\rho }$
 to its determinant induces a natural transformation 
 $D^{\square }_{\overline {\rho }}\rightarrow D^{\mathrm {ps}}$
 and thus a map of local
$D^{\square }_{\overline {\rho }}\rightarrow D^{\mathrm {ps}}$
 and thus a map of local 
 $\mathcal {O}$
-algebras
$\mathcal {O}$
-algebras 
 $R^{\mathrm {ps}}\rightarrow R^{\square }_{\overline {\rho }}$
. The ring
$R^{\mathrm {ps}}\rightarrow R^{\square }_{\overline {\rho }}$
. The ring 
 $R^{\mathrm {ps}}$
 has been well understood in the recent work of GB–Juschka [Reference Böckle and Juschka9], who have determined its dimension and showed that the absolutely irreducible locus is dense in the special fibre. Our basic idea is to study
$R^{\mathrm {ps}}$
 has been well understood in the recent work of GB–Juschka [Reference Böckle and Juschka9], who have determined its dimension and showed that the absolutely irreducible locus is dense in the special fibre. Our basic idea is to study 
 $R^{\square }_{\overline {\rho }}$
 by studying the fibres of this map. In fact, it is technically more convenient to introduce an intermediate ring
$R^{\square }_{\overline {\rho }}$
 by studying the fibres of this map. In fact, it is technically more convenient to introduce an intermediate ring 
 $R^{\mathrm {ps}}\rightarrow A^{\mathrm {gen}}\rightarrow R^{\square }_{\overline {\rho }}$
 (see the next subsection), depending on
$R^{\mathrm {ps}}\rightarrow A^{\mathrm {gen}}\rightarrow R^{\square }_{\overline {\rho }}$
 (see the next subsection), depending on 
 $\overline {D}$
 and not on
$\overline {D}$
 and not on 
 $\overline {\rho }$
 itself, such that
$\overline {\rho }$
 itself, such that 
 $A^{\mathrm {gen}}$
 is of finite type over
$A^{\mathrm {gen}}$
 is of finite type over 
 $R^{\mathrm {ps}}$
 and
$R^{\mathrm {ps}}$
 and 
 $R^{\square }_{\overline {\rho }}$
 is a completion of
$R^{\square }_{\overline {\rho }}$
 is a completion of 
 $A^{\mathrm {gen}}$
 at a maximal ideal. Since
$A^{\mathrm {gen}}$
 at a maximal ideal. Since 
 $\dim R^{\square }_{\overline {\rho }}\le \dim A^{\mathrm {gen}}$
, it is enough to bound the dimension of
$\dim R^{\square }_{\overline {\rho }}\le \dim A^{\mathrm {gen}}$
, it is enough to bound the dimension of 
 $A^{\mathrm {gen}}$
. In fact, we first bound the dimension of its special fibre (Theorem 3.31).
$A^{\mathrm {gen}}$
. In fact, we first bound the dimension of its special fibre (Theorem 3.31).
3.1 Generic matrices
Let
 
 be the universal pseudo-character lifting 
 $\overline {D}$
. Let
$\overline {D}$
. Let 
 $\mathrm {CH}(D^u)$
 be the Cayley–Hamilton ideal, which is a closed two-sided ideal of
$\mathrm {CH}(D^u)$
 be the Cayley–Hamilton ideal, which is a closed two-sided ideal of 
 
defined in [Reference Chenevier18, Section 1.17] in such a way that

is the largest quotient of
 
 for which the Cayley–Hamilton theorem for 
 $D^u$
 holds. Following [Reference Chenevier18, Section 1.17], we will call such algebras Cayley–Hamilton
$D^u$
 holds. Following [Reference Chenevier18, Section 1.17], we will call such algebras Cayley–Hamilton 
 $R^{\mathrm {ps}}$
-algebras of degree d. Then E is a finitely generated
$R^{\mathrm {ps}}$
-algebras of degree d. Then E is a finitely generated 
 $R^{\mathrm {ps}}$
-module, [Reference Wang-Erickson50, Proposition 3.6]. If
$R^{\mathrm {ps}}$
-module, [Reference Wang-Erickson50, Proposition 3.6]. If 
 $f: E\rightarrow M_d(B)$
 is a homomorphism of
$f: E\rightarrow M_d(B)$
 is a homomorphism of 
 $R^{\mathrm {ps}}$
-algebras for a commutative
$R^{\mathrm {ps}}$
-algebras for a commutative 
 $R^{\mathrm {ps}}$
-algebra B, then we say f is a homomorphism of Cayley–Hamilton algebras if
$R^{\mathrm {ps}}$
-algebra B, then we say f is a homomorphism of Cayley–Hamilton algebras if 
 $\det \circ f: E\rightarrow B$
 is equal to the specialization of
$\det \circ f: E\rightarrow B$
 is equal to the specialization of 
 $D^u$
 along
$D^u$
 along 
 $R^{\mathrm {ps}}\rightarrow B$
.
$R^{\mathrm {ps}}\rightarrow B$
.
 The superscript gen in 
 $A^{\mathrm {gen}}$
 stands for generic matrices, and the following construction appears in the work of Procesi [Reference Procesi44]; Lemmas 3.1, 3.2, 3.4 are contained in [Reference Wang-Erickson50, Theorem 3.8], but one needs to translate from the language of groupoids and stacks used in op. cit. to access them.
$A^{\mathrm {gen}}$
 stands for generic matrices, and the following construction appears in the work of Procesi [Reference Procesi44]; Lemmas 3.1, 3.2, 3.4 are contained in [Reference Wang-Erickson50, Theorem 3.8], but one needs to translate from the language of groupoids and stacks used in op. cit. to access them.
Lemma 3.1. There is a finitely generated commutative 
 $R^{\mathrm {ps}}$
-algebra
$R^{\mathrm {ps}}$
-algebra 
 $A^{\mathrm {gen}}$
 together with a homomorphism of Cayley–Hamilton
$A^{\mathrm {gen}}$
 together with a homomorphism of Cayley–Hamilton 
 $R^{\mathrm {ps}}$
-algebras
$R^{\mathrm {ps}}$
-algebras 
 $j: E\rightarrow M_d(A^{\mathrm {gen}})$
, satisfying the following universal property: if
$j: E\rightarrow M_d(A^{\mathrm {gen}})$
, satisfying the following universal property: if 
 $f: E\rightarrow M_d(B)$
 is a map of Cayley–Hamilton
$f: E\rightarrow M_d(B)$
 is a map of Cayley–Hamilton 
 $R^{\mathrm {ps}}$
-algebras for a commutative
$R^{\mathrm {ps}}$
-algebras for a commutative 
 $R^{\mathrm {ps}}$
-algebra B, then there is a unique map
$R^{\mathrm {ps}}$
-algebra B, then there is a unique map 
 $\tilde {f}: A^{\mathrm {gen}}\rightarrow B$
 of
$\tilde {f}: A^{\mathrm {gen}}\rightarrow B$
 of 
 $R^{\mathrm {ps}}$
-algebras such that
$R^{\mathrm {ps}}$
-algebras such that 
 $f= M_d(\tilde {f})\circ j$
.
$f= M_d(\tilde {f})\circ j$
.
Proof. By writing down a generic 
 $d\times d$
-matrix for each
$d\times d$
-matrix for each 
 $R^{\mathrm {ps}}$
-generator of E and quotienting out by the relations the generators satisfy in E, one obtains a commutative
$R^{\mathrm {ps}}$
-generator of E and quotienting out by the relations the generators satisfy in E, one obtains a commutative 
 $R^{\mathrm {ps}}$
-algebra C and a homomorphism of
$R^{\mathrm {ps}}$
-algebra C and a homomorphism of 
 $R^{\mathrm {ps}}$
-algebras
$R^{\mathrm {ps}}$
-algebras 
 $j: E\rightarrow M_d(C)$
. More formally, C is a quotient of
$j: E\rightarrow M_d(C)$
. More formally, C is a quotient of 
 $R^{\mathrm {ps}}\otimes _{\mathbb Z} \operatorname {\mathrm {Sym}}(W)$
, where W is a direct sum of n copies of
$R^{\mathrm {ps}}\otimes _{\mathbb Z} \operatorname {\mathrm {Sym}}(W)$
, where W is a direct sum of n copies of 
 $\operatorname {\mathrm {End}}(\mathrm {Std})^*$
, where
$\operatorname {\mathrm {End}}(\mathrm {Std})^*$
, where 
 $\mathrm {Std}$
 is the standard representation of
$\mathrm {Std}$
 is the standard representation of 
 $\operatorname {\mathrm {GL}}_d$
 over
$\operatorname {\mathrm {GL}}_d$
 over 
 $\mathbb Z$
, n is the size of a generating set of E as an
$\mathbb Z$
, n is the size of a generating set of E as an 
 $R^{\mathrm {ps}}$
-module and
$R^{\mathrm {ps}}$
-module and 
 $\operatorname {\mathrm {Sym}}(W)$
 is the symmetric algebra over
$\operatorname {\mathrm {Sym}}(W)$
 is the symmetric algebra over 
 $\mathbb Z$
. If we were to only require the maps to be
$\mathbb Z$
. If we were to only require the maps to be 
 $R^{\mathrm {ps}}$
-algebras homomorphisms (i.e., if we did not impose the Cayley–Hamilton condition), then the map
$R^{\mathrm {ps}}$
-algebras homomorphisms (i.e., if we did not impose the Cayley–Hamilton condition), then the map 
 $j: E\rightarrow M_d(C)$
 would satisfy the required universal property. To ensure that the Cayley–Hamilton condition is satisfied, we have to consider the quotient of C constructed as follows. Let
$j: E\rightarrow M_d(C)$
 would satisfy the required universal property. To ensure that the Cayley–Hamilton condition is satisfied, we have to consider the quotient of C constructed as follows. Let 
 $\Lambda _i: E\rightarrow R^{\mathrm {ps}}$
,
$\Lambda _i: E\rightarrow R^{\mathrm {ps}}$
, 
 $0\le i\le d$
 be the coefficients of the characteristic polynomial of
$0\le i\le d$
 be the coefficients of the characteristic polynomial of 
 $D^u$
; these are homogeneous polynomial laws satisfying
$D^u$
; these are homogeneous polynomial laws satisfying 
 $D^{u}(t-a)= \sum _{i=0}^n (-1)^i \Lambda _i(a) t^{d-i}$
 in
$D^{u}(t-a)= \sum _{i=0}^n (-1)^i \Lambda _i(a) t^{d-i}$
 in 
 $R^{\mathrm {ps}}[t]$
 as explained in [Reference Chenevier18, Section 1.10]. For each
$R^{\mathrm {ps}}[t]$
 as explained in [Reference Chenevier18, Section 1.10]. For each 
 $a\in E$
, let
$a\in E$
, let 
 $c_i(j(a))$
 be the i-th coefficient of the characteristic polynomial of the matrix
$c_i(j(a))$
 be the i-th coefficient of the characteristic polynomial of the matrix 
 $j(a)\in M_d(C)$
. Let I be the ideal of C generated by
$j(a)\in M_d(C)$
. Let I be the ideal of C generated by 
 $ \Lambda _i(a)-c_i(j(a))$
 for all
$ \Lambda _i(a)-c_i(j(a))$
 for all 
 $a\in E$
 and
$a\in E$
 and 
 $0\le i\le d$
 and let
$0\le i\le d$
 and let 
 $A^{\mathrm {gen}}:= C/I$
. Since [Reference Chenevier18, Corollary 1.14] and [Reference Wang-Erickson49, 1.1.9.15] imply that the coefficients of the characteristic polynomial determine pseudo-characters uniquely, the composition
$A^{\mathrm {gen}}:= C/I$
. Since [Reference Chenevier18, Corollary 1.14] and [Reference Wang-Erickson49, 1.1.9.15] imply that the coefficients of the characteristic polynomial determine pseudo-characters uniquely, the composition 
 $E\rightarrow M_d(C)\rightarrow M_d(A^{\mathrm {gen}})$
 is a map of Cayley–Hamilton algebras, and the universal property of
$E\rightarrow M_d(C)\rightarrow M_d(A^{\mathrm {gen}})$
 is a map of Cayley–Hamilton algebras, and the universal property of 
 $j: E\rightarrow M_d(C)$
 implies the universal property for
$j: E\rightarrow M_d(C)$
 implies the universal property for 
 $j:E\rightarrow M_d(A^{\mathrm {gen}})$
. Since E is finitely generated as
$j:E\rightarrow M_d(A^{\mathrm {gen}})$
. Since E is finitely generated as 
 $R^{\mathrm {ps}}$
-module, C and hence
$R^{\mathrm {ps}}$
-module, C and hence 
 $A^{\mathrm {gen}}$
 are of finite type over
$A^{\mathrm {gen}}$
 are of finite type over 
 $R^{\mathrm {ps}}$
.
$R^{\mathrm {ps}}$
.
 Let us make a connection to GIT as described in Section 2. If E is generated by n generators as an 
 $R^{\mathrm {ps}}$
-module, then as explained in the proof of Lemma 3.1,
$R^{\mathrm {ps}}$
-module, then as explained in the proof of Lemma 3.1, 
 $A^{\mathrm {gen}}$
 is a quotient of
$A^{\mathrm {gen}}$
 is a quotient of 
 $R^{\mathrm {ps}}\otimes _{\mathbb Z} \operatorname {\mathrm {Sym}}(W)$
. The group
$R^{\mathrm {ps}}\otimes _{\mathbb Z} \operatorname {\mathrm {Sym}}(W)$
. The group 
 $G:=\operatorname {\mathrm {GL}}_d$
 acts on W by conjugation, and this induces an action of
$G:=\operatorname {\mathrm {GL}}_d$
 acts on W by conjugation, and this induces an action of 
 $\operatorname {\mathrm {GL}}_d$
 on
$\operatorname {\mathrm {GL}}_d$
 on 
 $X^{\mathrm {gen}}:= \operatorname {\mathrm {Spec}} A^{\mathrm {gen}}$
. For every
$X^{\mathrm {gen}}:= \operatorname {\mathrm {Spec}} A^{\mathrm {gen}}$
. For every 
 $R^{\mathrm {ps}}$
-algebra B, a point in
$R^{\mathrm {ps}}$
-algebra B, a point in 
 $X^{\mathrm {gen}}(B)$
 corresponds to an n-tuple of
$X^{\mathrm {gen}}(B)$
 corresponds to an n-tuple of 
 $d\times d$
-matrices with entries in B satisfying certain relations, and
$d\times d$
-matrices with entries in B satisfying certain relations, and 
 $\operatorname {\mathrm {GL}}_d(B)$
 acts on
$\operatorname {\mathrm {GL}}_d(B)$
 acts on 
 $X^{\mathrm {gen}}(B)$
 by conjugating the matrices. The scheme
$X^{\mathrm {gen}}(B)$
 by conjugating the matrices. The scheme 
 $X^{\mathrm {gen}}$
 is isomorphic to
$X^{\mathrm {gen}}$
 is isomorphic to 
 $\mathrm {Rep}^{\square }_{\overline {D}} = \mathrm {\operatorname {\mathrm {Rep}}}^{\square }_{E,D^u}$
 as defined in [Reference Wang-Erickson50, Theorem 3.8].
$\mathrm {Rep}^{\square }_{\overline {D}} = \mathrm {\operatorname {\mathrm {Rep}}}^{\square }_{E,D^u}$
 as defined in [Reference Wang-Erickson50, Theorem 3.8].
The GIT quotient
 
 is represented by the ring of invariants 
 $(A^{\mathrm {gen}})^{G}$
. The map
$(A^{\mathrm {gen}})^{G}$
. The map 
 $R^{\mathrm {ps}}\rightarrow A^{\mathrm {gen}}$
 is G-invariant and induces a homomorphism
$R^{\mathrm {ps}}\rightarrow A^{\mathrm {gen}}$
 is G-invariant and induces a homomorphism 
 $R^{\mathrm {ps}}\rightarrow (A^{\mathrm {gen}})^{G}$
. It follows from [Reference Wang-Erickson50, Theorem 2.20] that the induced map
$R^{\mathrm {ps}}\rightarrow (A^{\mathrm {gen}})^{G}$
. It follows from [Reference Wang-Erickson50, Theorem 2.20] that the induced map 

is an adequate homeomorphism in the sense of [Reference Alper1, Definition 3.3.1] (i.e., an integral, universal homeomorphism which is a local isomorphism around points with characteristic zero residue field). We denote by 
 $\overline {X}^{\mathrm {gen}}$
 and
$\overline {X}^{\mathrm {gen}}$
 and 
 $\overline {X}^{\mathrm {ps}}$
 the special fibres of
$\overline {X}^{\mathrm {ps}}$
 the special fibres of 
 $X^{\mathrm {gen}}$
 and
$X^{\mathrm {gen}}$
 and 
 $X^{\mathrm {ps}}$
, respectively. The same argument shows that
$X^{\mathrm {ps}}$
, respectively. The same argument shows that 

is an adequate homeomorphism.
 We equip 
 $R^{\mathrm {ps}} $
 with the
$R^{\mathrm {ps}} $
 with the 
 ${\mathfrak m}_{R^{\mathrm {ps}}}$
-adic topology. Since the ring is Noetherian and the residue field is finite,
${\mathfrak m}_{R^{\mathrm {ps}}}$
-adic topology. Since the ring is Noetherian and the residue field is finite, 
 $R^{\mathrm {ps}}$
 is a compact ring with respect to this topology.
$R^{\mathrm {ps}}$
 is a compact ring with respect to this topology.
Lemma 3.2. Let B be a topological 
 $R^{\mathrm {ps}}$
-algebra. If
$R^{\mathrm {ps}}$
-algebra. If 
 $f: E\rightarrow M_d(B)$
 is any (not a priori continuous) homomorphism of
$f: E\rightarrow M_d(B)$
 is any (not a priori continuous) homomorphism of 
 $R^{\mathrm {ps}}$
-algebras, then the composition
$R^{\mathrm {ps}}$
-algebras, then the composition 
 $G_F \rightarrow E^{\times }\overset {f}{\longrightarrow } \operatorname {\mathrm {GL}}_d(B)$
 defines a continuous representation of
$G_F \rightarrow E^{\times }\overset {f}{\longrightarrow } \operatorname {\mathrm {GL}}_d(B)$
 defines a continuous representation of 
 $G_F$
.
$G_F$
.
Proof. Since 
 $R^{\mathrm {ps}}$
 is a compact ring [Reference Arnautov and Ursul2, Corollary 1.10] implies that for every finitely generated
$R^{\mathrm {ps}}$
 is a compact ring [Reference Arnautov and Ursul2, Corollary 1.10] implies that for every finitely generated 
 $R^{\mathrm {ps}}$
-module M there is a unique Hausdorff topology on M making M into a topological
$R^{\mathrm {ps}}$
-module M there is a unique Hausdorff topology on M making M into a topological 
 $R^{\mathrm {ps}}$
-module.
$R^{\mathrm {ps}}$
-module.
 We equip 
 with its projective limit topology, E with the quotient topology, and its group of units
 with its projective limit topology, E with the quotient topology, and its group of units 
 $E^{\times }$
 with the subspace topology via the embedding
$E^{\times }$
 with the subspace topology via the embedding 
 $E^{\times }\hookrightarrow E\times E$
,
$E^{\times }\hookrightarrow E\times E$
, 
 $x\mapsto (x, x^{-1})$
. Since the map
$x\mapsto (x, x^{-1})$
. Since the map 
 is continuous, the map
 is continuous, the map 
 $G_F\rightarrow E^{\times }$
 is also continuous. Moreover, since
$G_F\rightarrow E^{\times }$
 is also continuous. Moreover, since 
 $\mathrm {CH}(D^u)$
 is a closed ideal, the topology on E is Hausdorff.
$\mathrm {CH}(D^u)$
 is a closed ideal, the topology on E is Hausdorff.
 Since E is a finitely generated 
 $R^{\mathrm {ps}}$
-module, its topology coincides with
$R^{\mathrm {ps}}$
-module, its topology coincides with 
 ${\mathfrak m}_{R^{\mathrm {ps}}}$
-adic topology (this is also proved in [Reference Wang-Erickson50, Proposition 3.6]). Let
${\mathfrak m}_{R^{\mathrm {ps}}}$
-adic topology (this is also proved in [Reference Wang-Erickson50, Proposition 3.6]). Let 
 $M:=f(E)\subset M_d(B)$
, let
$M:=f(E)\subset M_d(B)$
, let 
 $\tau _1$
 be the subspace topology on M and let
$\tau _1$
 be the subspace topology on M and let 
 $\tau _2$
 be be the unique Hausdorff topology on M such that the action of
$\tau _2$
 be be the unique Hausdorff topology on M such that the action of 
 $R^{\mathrm {ps}}$
 is continuous. We claim that the identity map
$R^{\mathrm {ps}}$
 is continuous. We claim that the identity map 
 $(M, \tau _2)\rightarrow (M, \tau _1)$
 is continuous. We will now prove the claim. Since B is a topological
$(M, \tau _2)\rightarrow (M, \tau _1)$
 is continuous. We will now prove the claim. Since B is a topological 
 $R^{\mathrm {ps}}$
-algebra, the action of
$R^{\mathrm {ps}}$
-algebra, the action of 
 $R^{\mathrm {ps}}$
 on
$R^{\mathrm {ps}}$
 on 
 $M_d(B)$
, and hence on M, is continuous with respect to
$M_d(B)$
, and hence on M, is continuous with respect to 
 $\tau _1$
. Since M is a finitely generated
$\tau _1$
. Since M is a finitely generated 
 $R^{\mathrm {ps}}$
-module, we may pick a continuous surjection
$R^{\mathrm {ps}}$
-module, we may pick a continuous surjection 
 $\varphi : (R^{\mathrm {ps}})^n \twoheadrightarrow M$
 for some
$\varphi : (R^{\mathrm {ps}})^n \twoheadrightarrow M$
 for some 
 $n\ge 1$
. Since
$n\ge 1$
. Since 
 $R^{\mathrm {ps}}$
 is Noetherian, the kernel of
$R^{\mathrm {ps}}$
 is Noetherian, the kernel of 
 $\varphi $
 is finitely generated and hence a closed submodule of
$\varphi $
 is finitely generated and hence a closed submodule of 
 $(R^{\mathrm {ps}})^n$
. Thus, the quotient topology on M induced via
$(R^{\mathrm {ps}})^n$
. Thus, the quotient topology on M induced via 
 $\varphi $
 is Hausdorff and therefore must coincide with
$\varphi $
 is Hausdorff and therefore must coincide with 
 $\tau _2$
, which proves the claim.
$\tau _2$
, which proves the claim.
 The same argument shows that 
 $\tau _2$
 coincides with the quotient topology via
$\tau _2$
 coincides with the quotient topology via 
 $E\twoheadrightarrow M$
, and the claim implies that the map
$E\twoheadrightarrow M$
, and the claim implies that the map 
 $f: E\rightarrow M_d(B)$
 is continuous and hence induces a continuous group homomorphism
$f: E\rightarrow M_d(B)$
 is continuous and hence induces a continuous group homomorphism 
 $E^{\times }\rightarrow M_d(B)^{\times }=\operatorname {\mathrm {GL}}_d(B)$
.
$E^{\times }\rightarrow M_d(B)^{\times }=\operatorname {\mathrm {GL}}_d(B)$
.
Lemma 3.3. The composition 
 is surjective.
 is surjective.
Proof. Since 
 $R^{\mathrm {ps}}[G_F]$
 is dense in
$R^{\mathrm {ps}}[G_F]$
 is dense in 
 , its image will be dense in E for the topologies introduced in the proof of Lemma 3.2. The image is also closed, as it is an
, its image will be dense in E for the topologies introduced in the proof of Lemma 3.2. The image is also closed, as it is an 
 $R^{\mathrm {ps}}$
-submodule of E. Hence, the map is surjective.
$R^{\mathrm {ps}}$
-submodule of E. Hence, the map is surjective.
 The representation 
 $\overline {\rho }: G_F \rightarrow \operatorname {\mathrm {GL}}_d(k)$
 induces a map of
$\overline {\rho }: G_F \rightarrow \operatorname {\mathrm {GL}}_d(k)$
 induces a map of 
 $R^{\mathrm {ps}}$
-algebras
$R^{\mathrm {ps}}$
-algebras 
 $E\rightarrow M_d(k)$
 and thus a homomorphism of
$E\rightarrow M_d(k)$
 and thus a homomorphism of 
 $R^{\mathrm {ps}}$
-algebras
$R^{\mathrm {ps}}$
-algebras 
 $A^{\mathrm {gen}}\rightarrow k$
. It follows from the universal property of
$A^{\mathrm {gen}}\rightarrow k$
. It follows from the universal property of 
 $A^{\mathrm {gen}}$
 that
$A^{\mathrm {gen}}$
 that 
 $R^{\square }_{\overline {\rho }}$
 is isomorphic to the completion of
$R^{\square }_{\overline {\rho }}$
 is isomorphic to the completion of 
 $A^{\mathrm {gen}}$
 with respect to the kernel of this map; see Proposition 3.34 for a more precise statement. Conversely, we have the following Lemma.
$A^{\mathrm {gen}}$
 with respect to the kernel of this map; see Proposition 3.34 for a more precise statement. Conversely, we have the following Lemma.
Lemma 3.4. Let 
 $x\in X^{\mathrm {gen}}$
 be a closed point above the unique closed point of
$x\in X^{\mathrm {gen}}$
 be a closed point above the unique closed point of 
 $X^{\mathrm {ps}}$
 and let
$X^{\mathrm {ps}}$
 and let 
 $\rho _x: G_F\rightarrow \operatorname {\mathrm {GL}}_d(\kappa (x))$
 be the representation obtained by composing
$\rho _x: G_F\rightarrow \operatorname {\mathrm {GL}}_d(\kappa (x))$
 be the representation obtained by composing 

Then the pseudo-character associated to 
 $\rho _x$
 is equal to
$\rho _x$
 is equal to 
 $\overline {D}\otimes _k \kappa (x)$
. In particular,
$\overline {D}\otimes _k \kappa (x)$
. In particular, 
 $\rho _x$
 and
$\rho _x$
 and 
 $\overline {\rho }\otimes _k \kappa (x)$
 have the same semi-simplification.
$\overline {\rho }\otimes _k \kappa (x)$
 have the same semi-simplification.
Proof. Since 
 $D^u\otimes _{R^{\mathrm {ps}}} k = \overline {D}$
, the first part follows immediately from the definition of
$D^u\otimes _{R^{\mathrm {ps}}} k = \overline {D}$
, the first part follows immediately from the definition of 
 $A^{\mathrm {gen}}$
. The second part follows from [Reference Chenevier18, Theorem 2.12]. Note that since we have assumed that all irreducible subquotients of
$A^{\mathrm {gen}}$
. The second part follows from [Reference Chenevier18, Theorem 2.12]. Note that since we have assumed that all irreducible subquotients of 
 $\overline {\rho }$
 are absolutely irreducible, it is enough to prove that
$\overline {\rho }$
 are absolutely irreducible, it is enough to prove that 
 $\rho _x$
 and
$\rho _x$
 and 
 $\overline {\rho }$
 have the same semi-simplification after extending scalars to the algebraic closure of k.
$\overline {\rho }$
 have the same semi-simplification after extending scalars to the algebraic closure of k.
Remark 3.5. We note that one needs to impose the Cayley–Hamilton condition in the definition of 
 $A^{\mathrm {gen}}$
 for Lemma 3.4 to hold. For example, if
$A^{\mathrm {gen}}$
 for Lemma 3.4 to hold. For example, if 
 $\overline {D}=\chi _1+\chi _2$
, where
$\overline {D}=\chi _1+\chi _2$
, where 
 $\chi _1, \chi _2: G_F\rightarrow k^{\times }$
 are distinct characters, then
$\chi _1, \chi _2: G_F\rightarrow k^{\times }$
 are distinct characters, then 
 $E\otimes _{R^{\mathrm {ps}}} k\cong k\times k$
 by Equation (8) in the proof of [Reference Bellaïche and Chenevier5, Lemma 1.4.3], let
$E\otimes _{R^{\mathrm {ps}}} k\cong k\times k$
 by Equation (8) in the proof of [Reference Bellaïche and Chenevier5, Lemma 1.4.3], let 
 $\pi _1: E\rightarrow k$
 be the map obtained by projecting to the first component. Then the map
$\pi _1: E\rightarrow k$
 be the map obtained by projecting to the first component. Then the map 
 $E\rightarrow M_2(k)$
,
$E\rightarrow M_2(k)$
, 
 $a\mapsto \mathrm {diag}( \pi _1(a), \pi _1(a))$
 is a map of
$a\mapsto \mathrm {diag}( \pi _1(a), \pi _1(a))$
 is a map of 
 $R^{\mathrm {ps}}$
-algebras, and hence induces a map of
$R^{\mathrm {ps}}$
-algebras, and hence induces a map of 
 $R^{\mathrm {ps}}$
-algebras
$R^{\mathrm {ps}}$
-algebras 
 $x: C\rightarrow k$
, where C is the algebra introduced in the proof of Lemma 3.1. The representation
$x: C\rightarrow k$
, where C is the algebra introduced in the proof of Lemma 3.1. The representation 
 $\rho _x$
 obtained by specializing
$\rho _x$
 obtained by specializing 
 $j: E\rightarrow M_2(C)$
 at x is isomorphic to
$j: E\rightarrow M_2(C)$
 at x is isomorphic to 
 $\chi _1+\chi _1$
; hence,
$\chi _1+\chi _1$
; hence, 
 $\rho _x$
 is not equal to
$\rho _x$
 is not equal to 
 $\chi _1+\chi _2$
.
$\chi _1+\chi _2$
.
3.2 Bounding the dimension of the fibres
 Let 
 ${\mathfrak p}$
 be a prime ideal of
${\mathfrak p}$
 be a prime ideal of 
 $R^{\mathrm {ps}}$
 such that
$R^{\mathrm {ps}}$
 such that 
 $\dim R^{\mathrm {ps}}/{\mathfrak p}\le 1$
. Its residue field
$\dim R^{\mathrm {ps}}/{\mathfrak p}\le 1$
. Its residue field 
 $\kappa ({\mathfrak p})$
 is either k or a local field by Lemma 3.17 below. Let
$\kappa ({\mathfrak p})$
 is either k or a local field by Lemma 3.17 below. Let 
 $\kappa $
 be an algebraic closure
$\kappa $
 be an algebraic closure 
 $\kappa ({\mathfrak p})$
 equipped with its natural topology and let
$\kappa ({\mathfrak p})$
 equipped with its natural topology and let 
 $y: R^{\mathrm {ps}} \to \kappa $
 denote the corresponding homomorphism. The goal of this subsection (Proposition 3.15) is to bound the dimension of the fibre
$y: R^{\mathrm {ps}} \to \kappa $
 denote the corresponding homomorphism. The goal of this subsection (Proposition 3.15) is to bound the dimension of the fibre 
 $$\begin{align*}X^{\mathrm{gen}}_y:= X^{\mathrm{gen}}\times_{X^{\mathrm{ps}},y } \operatorname{\mathrm{Spec}} \kappa. \end{align*}$$
$$\begin{align*}X^{\mathrm{gen}}_y:= X^{\mathrm{gen}}\times_{X^{\mathrm{ps}},y } \operatorname{\mathrm{Spec}} \kappa. \end{align*}$$
Let 
 $D_y$
 be the specialization of the universal pseudo-character along
$D_y$
 be the specialization of the universal pseudo-character along 
 $y: R^{\mathrm {ps}}\rightarrow \kappa $
 and let
$y: R^{\mathrm {ps}}\rightarrow \kappa $
 and let 

where the last isomorphism follows from [Reference Chenevier18, Section 1.22] or [Reference Wang-Erickson49, Lemma 1.1.8.6].
 Since E is a finitely generated 
 $R^{\mathrm {ps}}$
-module,
$R^{\mathrm {ps}}$
-module, 
 $E_y$
 is a finite dimensional
$E_y$
 is a finite dimensional 
 $\kappa $
-algebra. It follows from the proof of Lemma 3.2 that the natural map
$\kappa $
-algebra. It follows from the proof of Lemma 3.2 that the natural map 
 $G_F \rightarrow E_y^{\times }$
 is continuous for the topology on
$G_F \rightarrow E_y^{\times }$
 is continuous for the topology on 
 $E_y$
 induced by the topology on
$E_y$
 induced by the topology on 
 $\kappa $
. Thus, if W is an
$\kappa $
. Thus, if W is an 
 $E_y$
-module on a finite dimensional
$E_y$
-module on a finite dimensional 
 $\kappa $
-vector space, then the induced
$\kappa $
-vector space, then the induced 
 $G_F$
-action on W is continuous.
$G_F$
-action on W is continuous.
 Since 
 $\kappa $
 is algebraically closed, we may writeFootnote 1
$\kappa $
 is algebraically closed, we may writeFootnote 1
 
 $$\begin{align*}D_y= \prod_{i=1}^r D_i, \end{align*}$$
$$\begin{align*}D_y= \prod_{i=1}^r D_i, \end{align*}$$
where each 
 $D_i$
 is an irreducible pseudo-characterFootnote 2
 of dimension
$D_i$
 is an irreducible pseudo-characterFootnote 2
 of dimension 
 $d_i$
. We define an equivalence relation on the set
$d_i$
. We define an equivalence relation on the set 
 $\{ D_i: 1\le i \le r\}$
 by
$\{ D_i: 1\le i \le r\}$
 by 
 $D_i \sim D_j$
 if
$D_i \sim D_j$
 if 
 $D_i=D_j(m)$
 for some
$D_i=D_j(m)$
 for some 
 $m\in \mathbb Z$
. Let k be the number of the equivalence classes and let
$m\in \mathbb Z$
. Let k be the number of the equivalence classes and let 
 $n_i$
 be the number of elements in the i-th equivalence class.
$n_i$
 be the number of elements in the i-th equivalence class.
 Moreover, for 
 $1\le i\le r$
, we fix representations
$1\le i\le r$
, we fix representations 
 $\rho _i: G_F \rightarrow \operatorname {\mathrm {GL}}_{d_i}(\kappa )$
 such that
$\rho _i: G_F \rightarrow \operatorname {\mathrm {GL}}_{d_i}(\kappa )$
 such that 
 $D_i$
 is the pseudo-character associated to
$D_i$
 is the pseudo-character associated to 
 $\rho _i$
. These representations are uniquely determined up to an isomorphism by [Reference Chenevier18, Theorem 2.12], but by
$\rho _i$
. These representations are uniquely determined up to an isomorphism by [Reference Chenevier18, Theorem 2.12], but by 
 $\rho _i$
, we really mean a group homomorphism into
$\rho _i$
, we really mean a group homomorphism into 
 $\operatorname {\mathrm {GL}}_{d_i}(\kappa )$
 and not the equivalence class.
$\operatorname {\mathrm {GL}}_{d_i}(\kappa )$
 and not the equivalence class.
 If V is a continuous representation of 
 $G_F$
 on a finite dimensional
$G_F$
 on a finite dimensional 
 $\kappa $
-vector space such that its semi-simplification is isomorphic to
$\kappa $
-vector space such that its semi-simplification is isomorphic to 
 $\oplus _{i=1}^r \rho _i$
, then the pseudo-character associated to V is equal to
$\oplus _{i=1}^r \rho _i$
, then the pseudo-character associated to V is equal to 
 $D_y$
 and the action of
$D_y$
 and the action of 
 $G_F$
 on V extends to an action of
$G_F$
 on V extends to an action of 
 and then to an action of
 and then to an action of 
 , which factors through the Cayley–Hamilton quotient. It follows from (6) that V and any
, which factors through the Cayley–Hamilton quotient. It follows from (6) that V and any 
 $G_F$
-invariant subquotient of V is an
$G_F$
-invariant subquotient of V is an 
 $E_y$
-module. In particular, we may apply this to
$E_y$
-module. In particular, we may apply this to 
 $V= \oplus _{i=1}^r \rho _i$
 to deduce that each
$V= \oplus _{i=1}^r \rho _i$
 to deduce that each 
 $\rho _i$
 is an
$\rho _i$
 is an 
 $E_y$
-module.
$E_y$
-module.
Lemma 3.6. If 
 $i\neq j$
, thenFootnote 3
$i\neq j$
, thenFootnote 3
 
 $$ \begin{align*}\operatorname{\mathrm{Hom}}_{E_y}(\rho_i, \rho_j)= \operatorname{\mathrm{Hom}}_{G_F}(\rho_i, \rho_j) \quad \text{and} \quad \operatorname{\mathrm{Ext}}^1_{E_y}(\rho_i, \rho_{j})= \operatorname{\mathrm{Ext}}^1_{G_F}(\rho_i, \rho_{j}),\end{align*} $$
$$ \begin{align*}\operatorname{\mathrm{Hom}}_{E_y}(\rho_i, \rho_j)= \operatorname{\mathrm{Hom}}_{G_F}(\rho_i, \rho_j) \quad \text{and} \quad \operatorname{\mathrm{Ext}}^1_{E_y}(\rho_i, \rho_{j})= \operatorname{\mathrm{Ext}}^1_{G_F}(\rho_i, \rho_{j}),\end{align*} $$
where 
 $\operatorname {\mathrm {Ext}}^1_{G_F}(\rho _i, \rho _j)$
 is computed in the category of continuous representations of
$\operatorname {\mathrm {Ext}}^1_{G_F}(\rho _i, \rho _j)$
 is computed in the category of continuous representations of 
 $G_F$
 on finite dimensional
$G_F$
 on finite dimensional 
 $\kappa $
-vector spaces.
$\kappa $
-vector spaces.
Proof. It follows from Lemma 3.3 that the natural map 
 $\kappa [G_F]\rightarrow E_y$
 is surjective. This implies the assertion about
$\kappa [G_F]\rightarrow E_y$
 is surjective. This implies the assertion about 
 $\operatorname {\mathrm {Hom}}$
 spaces and gives an inclusion
$\operatorname {\mathrm {Hom}}$
 spaces and gives an inclusion 
 $\operatorname {\mathrm {Ext}}^1_{E_y}(\rho _i, \rho _{j})\subset \operatorname {\mathrm {Ext}}^1_{G_F}(\rho _i, \rho _{j})$
. To prove the reverse inclusion, consider an extension
$\operatorname {\mathrm {Ext}}^1_{E_y}(\rho _i, \rho _{j})\subset \operatorname {\mathrm {Ext}}^1_{G_F}(\rho _i, \rho _{j})$
. To prove the reverse inclusion, consider an extension 
 $0\rightarrow \rho _{j} \rightarrow W \rightarrow \rho _i \rightarrow 0$
 of
$0\rightarrow \rho _{j} \rightarrow W \rightarrow \rho _i \rightarrow 0$
 of 
 $G_F$
-representations and let
$G_F$
-representations and let 
 $V= W\oplus \bigoplus _{l\neq i, {j}} \rho _l$
. As explained above, the
$V= W\oplus \bigoplus _{l\neq i, {j}} \rho _l$
. As explained above, the 
 $G_F$
-action on V will factor through the action of
$G_F$
-action on V will factor through the action of 
 $E_y$
. Hence, W is a representation of
$E_y$
. Hence, W is a representation of 
 $E_y$
, which implies that
$E_y$
, which implies that 
 $\operatorname {\mathrm {Ext}}^1_{E_y}(\rho _i, \rho _{j})= \operatorname {\mathrm {Ext}}^1_{G_F}(\rho _i, \rho _{j})$
.
$\operatorname {\mathrm {Ext}}^1_{E_y}(\rho _i, \rho _{j})= \operatorname {\mathrm {Ext}}^1_{G_F}(\rho _i, \rho _{j})$
.
 Since (5) is an adequate homeomorphism, there is a unique point 
 above y and
 above y and 
 $X^{\mathrm {gen}}_{y'} \to X^{\mathrm {gen}}_y$
 is a homeomorphism. The group G acts on
$X^{\mathrm {gen}}_{y'} \to X^{\mathrm {gen}}_y$
 is a homeomorphism. The group G acts on 
 $X^{\mathrm {gen}}_y$
. Moreover,
$X^{\mathrm {gen}}_y$
. Moreover, 
 $X^{\mathrm {gen}}_y$
 is of finite type over
$X^{\mathrm {gen}}_y$
 is of finite type over 
 $\kappa $
 and
$\kappa $
 and 
 $X^{\mathrm {gen}}_y(\kappa )$
 is in bijection with the set of continuous representations
$X^{\mathrm {gen}}_y(\kappa )$
 is in bijection with the set of continuous representations 
 $\rho : G_F \rightarrow \operatorname {\mathrm {GL}}_d(\kappa )$
 such that the semi-simplification of
$\rho : G_F \rightarrow \operatorname {\mathrm {GL}}_d(\kappa )$
 such that the semi-simplification of 
 $\rho $
 is isomorphic to
$\rho $
 is isomorphic to 
 $\rho _1\oplus \ldots \oplus \rho _r$
.
$\rho _1\oplus \ldots \oplus \rho _r$
.
Lemma 3.7. The fibre 
 $X^{\mathrm {gen}}_y$
 is connected, and the unique closed G-orbit in
$X^{\mathrm {gen}}_y$
 is connected, and the unique closed G-orbit in 
 $X^{\mathrm {gen}}_y$
 corresponds to the semi-simple representations. If the
$X^{\mathrm {gen}}_y$
 corresponds to the semi-simple representations. If the 
 $\rho _i$
 are pairwise non-isomorphic, then its dimension is equal to
$\rho _i$
 are pairwise non-isomorphic, then its dimension is equal to 
 $d^2-r$
.
$d^2-r$
.
Proof. It follows from [Reference Seshadri47, Theorem 3] that 
 $X^{\mathrm {gen}}_{y'}$
 (and hence
$X^{\mathrm {gen}}_{y'}$
 (and hence 
 $X^{\mathrm {gen}}_y$
, by the remark in the paragraph above) contains a unique closed G-orbit. Thus, it is enough to show that the closure of every G-orbit will contain a semi-simple representation. If
$X^{\mathrm {gen}}_y$
, by the remark in the paragraph above) contains a unique closed G-orbit. Thus, it is enough to show that the closure of every G-orbit will contain a semi-simple representation. If 
 $x\in X^{\mathrm {gen}}_y(\kappa )$
, then after conjugation we may assume that x corresponds to a representation
$x\in X^{\mathrm {gen}}_y(\kappa )$
, then after conjugation we may assume that x corresponds to a representation 
 $\rho : G_F \rightarrow \operatorname {\mathrm {GL}}_d(\kappa )$
 such that the image of
$\rho : G_F \rightarrow \operatorname {\mathrm {GL}}_d(\kappa )$
 such that the image of 
 $\rho $
 is block-upper-triangular, and the blocks on the diagonal are given by
$\rho $
 is block-upper-triangular, and the blocks on the diagonal are given by 
 $\mathrm {diag}(\rho _{\sigma (1)}(g), \ldots , \rho _{\sigma (r)}(g))$
 for some permutation
$\mathrm {diag}(\rho _{\sigma (1)}(g), \ldots , \rho _{\sigma (r)}(g))$
 for some permutation 
 $\sigma \in S_r$
. By extending scalars to
$\sigma \in S_r$
. By extending scalars to 
 $\kappa [T]$
, conjugating
$\kappa [T]$
, conjugating 
 $\rho $
 by
$\rho $
 by 
 $\mathrm {diag}(T^{r-1} \operatorname {\mathrm {id}}_{d_{\sigma (1)}}, T^{r-2} \operatorname {\mathrm {id}}_{d_{\sigma (2)}}, \dots , \operatorname {\mathrm {id}}_{d_{\sigma (r)}})$
 and specializing at
$\mathrm {diag}(T^{r-1} \operatorname {\mathrm {id}}_{d_{\sigma (1)}}, T^{r-2} \operatorname {\mathrm {id}}_{d_{\sigma (2)}}, \dots , \operatorname {\mathrm {id}}_{d_{\sigma (r)}})$
 and specializing at 
 $T=0$
, we see that the closure of the G-orbit will contain a semi-simple representation. The action of G on
$T=0$
, we see that the closure of the G-orbit will contain a semi-simple representation. The action of G on 
 $X^{\mathrm {gen}}_y$
 leaves the connected components invariant by Lemma 2.1. Hence, every connected component of
$X^{\mathrm {gen}}_y$
 leaves the connected components invariant by Lemma 2.1. Hence, every connected component of 
 $X^{\mathrm {gen}}_y$
 will contain the closed point corresponding to the representation
$X^{\mathrm {gen}}_y$
 will contain the closed point corresponding to the representation 
 $g \mapsto \mathrm {diag}(\rho _{1}(g), \ldots , \rho _{r}(g))$
. Thus
$g \mapsto \mathrm {diag}(\rho _{1}(g), \ldots , \rho _{r}(g))$
. Thus 
 $X^{\mathrm {gen}}_y$
 is connected.
$X^{\mathrm {gen}}_y$
 is connected.
 The stabilizer of a semi-simple representation with distinct irreducible factors in 
 $\operatorname {\mathrm {GL}}_d$
 is isomorphic to
$\operatorname {\mathrm {GL}}_d$
 is isomorphic to 
 $\mathbb {G}_m^r$
: a copy of
$\mathbb {G}_m^r$
: a copy of 
 $\mathbb G_m$
 is embedded as scalar matrices inside of each block. Hence, the dimension of the closed G-orbit is given by
$\mathbb G_m$
 is embedded as scalar matrices inside of each block. Hence, the dimension of the closed G-orbit is given by 
 $\dim \operatorname {\mathrm {GL}}_d - \dim \mathbb {G}_m^r= d^2-r$
.
$\dim \operatorname {\mathrm {GL}}_d - \dim \mathbb {G}_m^r= d^2-r$
.
 In order to analyze 
 $X^{\mathrm {gen}}_y$
, we introduce the following notation. We fix a permutation
$X^{\mathrm {gen}}_y$
, we introduce the following notation. We fix a permutation 
 $\sigma \in S_r$
 and write P for the block-upper-triangular parabolic subgroup of
$\sigma \in S_r$
 and write P for the block-upper-triangular parabolic subgroup of 
 $\operatorname {\mathrm {GL}}_d$
 with the i-th diagonal block of size
$\operatorname {\mathrm {GL}}_d$
 with the i-th diagonal block of size 
 $d_{\sigma (i)}\times d_{\sigma (i)}$
. We write N for its unipotent radical and L for its Levi subgroup consisting of block diagonal matrices. We let
$d_{\sigma (i)}\times d_{\sigma (i)}$
. We write N for its unipotent radical and L for its Levi subgroup consisting of block diagonal matrices. We let 
 $Z_L \cong \mathbb {G}_m^r$
 denote the centre of L. Finally, we denote their Lie algebras by
$Z_L \cong \mathbb {G}_m^r$
 denote the centre of L. Finally, we denote their Lie algebras by 
 ${\mathfrak p}$
,
${\mathfrak p}$
, 
 $\mathfrak n$
,
$\mathfrak n$
, 
 $\mathfrak l$
 and
$\mathfrak l$
 and 
 $\mathfrak z_L$
, respectively, and write
$\mathfrak z_L$
, respectively, and write 
 $\mathfrak {g}$
 for the Lie algebra of
$\mathfrak {g}$
 for the Lie algebra of 
 $\operatorname {\mathrm {GL}}_d$
. We have
$\operatorname {\mathrm {GL}}_d$
. We have 
 $$ \begin{align} \dim \mathfrak{g} =d^2, \quad \dim \mathfrak l= \sum_{i=1}^r d_{i}^2, \quad \dim \mathfrak z_L= r, \end{align} $$
$$ \begin{align} \dim \mathfrak{g} =d^2, \quad \dim \mathfrak l= \sum_{i=1}^r d_{i}^2, \quad \dim \mathfrak z_L= r, \end{align} $$
 $$ \begin{align} \dim \mathfrak n=\frac{1}{2} (\dim \mathfrak{g} -\dim \mathfrak l)= \sum_{1\le i< j \le r} d_i d_j. \end{align} $$
$$ \begin{align} \dim \mathfrak n=\frac{1}{2} (\dim \mathfrak{g} -\dim \mathfrak l)= \sum_{1\le i< j \le r} d_i d_j. \end{align} $$
Remark 3.8. We note that although 
 ${\mathfrak p}$
,
${\mathfrak p}$
, 
 $\mathfrak n$
,
$\mathfrak n$
, 
 $\mathfrak l$
 and
$\mathfrak l$
 and 
 $\mathfrak z_L$
 depend on
$\mathfrak z_L$
 depend on 
 $\sigma $
, their dimensions do not.
$\sigma $
, their dimensions do not.
 Let 
 $\rho _{\sigma }: G_F\rightarrow \operatorname {\mathrm {GL}}_d(\kappa )$
 be the representation
$\rho _{\sigma }: G_F\rightarrow \operatorname {\mathrm {GL}}_d(\kappa )$
 be the representation 
 $g\mapsto \mathrm {diag}(\rho _{\sigma (1)}(g), \ldots , \rho _{\sigma (r)}(g))$
. It follows from a calculation with block-upper-triangular matrices that
$g\mapsto \mathrm {diag}(\rho _{\sigma (1)}(g), \ldots , \rho _{\sigma (r)}(g))$
. It follows from a calculation with block-upper-triangular matrices that 
 ${\mathfrak p}$
 can be given an associative
${\mathfrak p}$
 can be given an associative 
 $\kappa $
-algebra structure such that the inclusion
$\kappa $
-algebra structure such that the inclusion 
 ${\mathfrak p}\subset \mathfrak {g}=M_d(\kappa )$
 is an inclusion of Cayley–Hamilton algebras.
${\mathfrak p}\subset \mathfrak {g}=M_d(\kappa )$
 is an inclusion of Cayley–Hamilton algebras.
Lemma 3.9. There exists a closed subscheme 
 $X^{\mathrm {gen}}_{y,\sigma } \subset X^{\mathrm {gen}}_y$
 representing the functor sending a
$X^{\mathrm {gen}}_{y,\sigma } \subset X^{\mathrm {gen}}_y$
 representing the functor sending a 
 $\kappa $
-algebra B to the set of homomorphisms of Cayley–Hamilton
$\kappa $
-algebra B to the set of homomorphisms of Cayley–Hamilton 
 $\kappa $
-algebra
$\kappa $
-algebra 
 $\varphi : E_y \to {\mathfrak p} \otimes _{\kappa } B$
 such that the projection onto the ith diagonal block is
$\varphi : E_y \to {\mathfrak p} \otimes _{\kappa } B$
 such that the projection onto the ith diagonal block is 
 $\rho _{\sigma (i)}\otimes _{\kappa } B$
 for
$\rho _{\sigma (i)}\otimes _{\kappa } B$
 for 
 $1 \leq i \leq r$
.
$1 \leq i \leq r$
.
Proof. The universal map 
 $j: E\rightarrow M_d(A^{\mathrm {gen}})$
 induces a map
$j: E\rightarrow M_d(A^{\mathrm {gen}})$
 induces a map 
 $$\begin{align*}j_y: E_y \rightarrow M_d(A^{\mathrm{gen}} \otimes_{R^{\mathrm{ps}},y} \kappa). \end{align*}$$
$$\begin{align*}j_y: E_y \rightarrow M_d(A^{\mathrm{gen}} \otimes_{R^{\mathrm{ps}},y} \kappa). \end{align*}$$
Let 
 $I_{\rho , \sigma }$
 be the ideal of
$I_{\rho , \sigma }$
 be the ideal of 
 $A^{\mathrm {gen}} \otimes _{R^{\mathrm {ps}},y} \kappa $
 generated by the matrix entries of
$A^{\mathrm {gen}} \otimes _{R^{\mathrm {ps}},y} \kappa $
 generated by the matrix entries of 
 $j_y(a)$
 for all
$j_y(a)$
 for all 
 $a\in E_y$
, which lie below the diagonal blocks of P, and by all the elements on the block diagonal of the matrices
$a\in E_y$
, which lie below the diagonal blocks of P, and by all the elements on the block diagonal of the matrices 
 $(j_y(a)- \rho _{\sigma }(a))$
 for all
$(j_y(a)- \rho _{\sigma }(a))$
 for all 
 $a\in E_y$
. Let
$a\in E_y$
. Let 
 $$\begin{align*}X^{\mathrm{gen}}_{y,\sigma}:= \operatorname{\mathrm{Spec}} ((A^{\mathrm{gen}} \otimes_{R^{\mathrm{ps}},y} \kappa)/ I_{\rho, \sigma}). \end{align*}$$
$$\begin{align*}X^{\mathrm{gen}}_{y,\sigma}:= \operatorname{\mathrm{Spec}} ((A^{\mathrm{gen}} \otimes_{R^{\mathrm{ps}},y} \kappa)/ I_{\rho, \sigma}). \end{align*}$$
Then 
 $X^{\mathrm {gen}}_{y,\sigma }$
 is a closed subscheme of
$X^{\mathrm {gen}}_{y,\sigma }$
 is a closed subscheme of 
 $X^{\mathrm {gen}}_y$
, and its defining ideal
$X^{\mathrm {gen}}_y$
, and its defining ideal 
 $I_{\rho ,\sigma }$
 was constructed precisely so that a B-point of
$I_{\rho ,\sigma }$
 was constructed precisely so that a B-point of 
 $X^{\mathrm {gen}}_y$
 factors through
$X^{\mathrm {gen}}_y$
 factors through 
 $X^{\mathrm {gen}}_{y,\sigma }$
 if and only if it lands in
$X^{\mathrm {gen}}_{y,\sigma }$
 if and only if it lands in 
 ${\mathfrak p} \otimes _{\kappa } B$
 and matches the
${\mathfrak p} \otimes _{\kappa } B$
 and matches the 
 $\rho _i$
 on the diagonals for
$\rho _i$
 on the diagonals for 
 $1 \le i \le r$
.
$1 \le i \le r$
.
 The adjoint action (i.e., via conjugation) of 
 $Z_L N$
 on
$Z_L N$
 on 
 ${\mathfrak p}$
 induces an action of
${\mathfrak p}$
 induces an action of 
 $Z_L N$
 on
$Z_L N$
 on 
 $X^{\mathrm {gen}}_{y,\sigma }$
.
$X^{\mathrm {gen}}_{y,\sigma }$
.
Lemma 3.10. The unique closed 
 $Z_L$
-orbit in
$Z_L$
-orbit in 
 $X^{\mathrm {gen}}_{y,\sigma }$
 is the singleton
$X^{\mathrm {gen}}_{y,\sigma }$
 is the singleton 
 $\{\rho _{\sigma }\}$
.
$\{\rho _{\sigma }\}$
.
Proof. This is the same proof as in Lemma 3.7 and uses the same diagonal matrix trick to kill off the unipotent part.
Proposition 3.11. Let 
 $x \in X^{\mathrm {gen}}_{y,\sigma }$
 be the point corresponding to the representation
$x \in X^{\mathrm {gen}}_{y,\sigma }$
 be the point corresponding to the representation 
 $\rho _{\sigma }$
. Then
$\rho _{\sigma }$
. Then 
 $$ \begin{align} \begin{aligned} \dim T_x(X^{\mathrm{gen}}_{y,\sigma})&= \dim \mathfrak n +(\dim \mathfrak n)[F:\mathbb{Q}_p] +\sum_{1\le i<j\le r} \dim \operatorname{\mathrm{Hom}}_{G_F}( \rho_{\sigma(i)}, \rho_{\sigma(j)}(1))\\ & \le \dim \mathfrak n +(\dim \mathfrak n)[F:\mathbb{Q}_p] + \sum_{i=1}^k \begin{pmatrix} n_i\\ 2\end{pmatrix}. \end{aligned} \end{align} $$
$$ \begin{align} \begin{aligned} \dim T_x(X^{\mathrm{gen}}_{y,\sigma})&= \dim \mathfrak n +(\dim \mathfrak n)[F:\mathbb{Q}_p] +\sum_{1\le i<j\le r} \dim \operatorname{\mathrm{Hom}}_{G_F}( \rho_{\sigma(i)}, \rho_{\sigma(j)}(1))\\ & \le \dim \mathfrak n +(\dim \mathfrak n)[F:\mathbb{Q}_p] + \sum_{i=1}^k \begin{pmatrix} n_i\\ 2\end{pmatrix}. \end{aligned} \end{align} $$
Proof. Using Lemma 3.9 and the decomposition 
 ${\mathfrak p} = \mathfrak l \oplus \mathfrak n$
, we may identify
${\mathfrak p} = \mathfrak l \oplus \mathfrak n$
, we may identify 
 $T_x(X^{\mathrm {gen}}_{y,\sigma })$
 with the space of
$T_x(X^{\mathrm {gen}}_{y,\sigma })$
 with the space of 
 $\kappa $
-algebra homomorphisms
$\kappa $
-algebra homomorphisms 
 $\varphi : E_y \rightarrow M_d(\kappa [\varepsilon ])$
, which can be written as
$\varphi : E_y \rightarrow M_d(\kappa [\varepsilon ])$
, which can be written as 
 $\varphi = \rho _{\sigma } + \varepsilon \beta $
, where
$\varphi = \rho _{\sigma } + \varepsilon \beta $
, where 
 $\beta $
 is a
$\beta $
 is a 
 $\kappa $
-linear map
$\kappa $
-linear map 
 $\beta : E_y \rightarrow \mathfrak n$
. If
$\beta : E_y \rightarrow \mathfrak n$
. If 
 $\beta : E_y\rightarrow \mathfrak n$
 is any
$\beta : E_y\rightarrow \mathfrak n$
 is any 
 $\kappa $
-linear map, then
$\kappa $
-linear map, then 
 $\varphi := \rho _{\sigma } + \varepsilon \beta $
 is a homomorphism of
$\varphi := \rho _{\sigma } + \varepsilon \beta $
 is a homomorphism of 
 $\kappa $
-algebras if and only if
$\kappa $
-algebras if and only if 
 $$ \begin{align} \beta(aa') = \rho_{\sigma}(a) \beta(a')+ \beta(a) \rho_{\sigma}(a'), \quad \forall a, a'\in E_y. \end{align} $$
$$ \begin{align} \beta(aa') = \rho_{\sigma}(a) \beta(a')+ \beta(a) \rho_{\sigma}(a'), \quad \forall a, a'\in E_y. \end{align} $$
For 
 $1\le i\le r$
, we let
$1\le i\le r$
, we let 
 $\mathbf 1_i\in M_d(\kappa )$
 be the block diagonal matrix with the identity matrix on the i-th block and zeros everywhere else. Since
$\mathbf 1_i\in M_d(\kappa )$
 be the block diagonal matrix with the identity matrix on the i-th block and zeros everywhere else. Since 
 $\rho _{\sigma }(g)$
 commutes with
$\rho _{\sigma }(g)$
 commutes with 
 $\mathbf 1_i$
 for all i, we have an isomorphism
$\mathbf 1_i$
 for all i, we have an isomorphism 
 $$\begin{align*}T_x(X^{\mathrm{gen}}_{y,\sigma})\cong \bigoplus_{1\le i< j\le r} V_{ij}, \end{align*}$$
$$\begin{align*}T_x(X^{\mathrm{gen}}_{y,\sigma})\cong \bigoplus_{1\le i< j\le r} V_{ij}, \end{align*}$$
where 
 $V_{ij}$
 is the space of functions
$V_{ij}$
 is the space of functions 
 $\beta : E_y \rightarrow \mathbf 1_i \mathfrak n \mathbf 1_j$
 satisfying (10). We may identify
$\beta : E_y \rightarrow \mathbf 1_i \mathfrak n \mathbf 1_j$
 satisfying (10). We may identify 
 $\mathbf 1_i \mathfrak n \mathbf 1_j$
 with
$\mathbf 1_i \mathfrak n \mathbf 1_j$
 with 
 $\operatorname {\mathrm {Hom}}_{\kappa }(\rho _{\sigma (j)}, \rho _{\sigma (i)})$
. Then
$\operatorname {\mathrm {Hom}}_{\kappa }(\rho _{\sigma (j)}, \rho _{\sigma (i)})$
. Then 
 $V_{ij}$
 is precisely the space of
$V_{ij}$
 is precisely the space of 
 $1$
-cocycles for the Hochschild cohomology of
$1$
-cocycles for the Hochschild cohomology of 
 $E_y$
 with values in
$E_y$
 with values in 
 $\operatorname {\mathrm {Hom}}_{\kappa }(\rho _{\sigma (j)}, \rho _{\sigma (i)})$
. Thus,
$\operatorname {\mathrm {Hom}}_{\kappa }(\rho _{\sigma (j)}, \rho _{\sigma (i)})$
. Thus, 
 $$ \begin{align} \begin{aligned} \dim_{\kappa} V_{ij} &= \dim_{\kappa} HH^1(E_y, \operatorname{\mathrm{Hom}}_{\kappa}(\rho_{\sigma(j)}, \rho_{\sigma(i)})) + \dim_{\kappa} \operatorname{\mathrm{Hom}}_{\kappa}(\rho_{\sigma(j)}, \rho_{\sigma(i)})\\&- \dim_{\kappa} HH^0(E_y, \operatorname{\mathrm{Hom}}_{\kappa}(\rho_{\sigma(j)}, \rho_{\sigma(i)}))\\&= \dim_{\kappa}\operatorname{\mathrm{Ext}}^1_{E_y}(\rho_{\sigma(j)}, \rho_{\sigma(i)}) + d_i d_j - \dim_{\kappa} \operatorname{\mathrm{Hom}}_{E_y}(\rho_{\sigma(j)}, \rho_{\sigma(i)})\\ &= d_i d_j + [F:\mathbb{Q}_p] d_i d_j + \dim_{\kappa} \operatorname{\mathrm{Ext}}^2_{G_F}(\rho_{\sigma(j)}, \rho_{\sigma(i)}), \end{aligned} \end{align} $$
$$ \begin{align} \begin{aligned} \dim_{\kappa} V_{ij} &= \dim_{\kappa} HH^1(E_y, \operatorname{\mathrm{Hom}}_{\kappa}(\rho_{\sigma(j)}, \rho_{\sigma(i)})) + \dim_{\kappa} \operatorname{\mathrm{Hom}}_{\kappa}(\rho_{\sigma(j)}, \rho_{\sigma(i)})\\&- \dim_{\kappa} HH^0(E_y, \operatorname{\mathrm{Hom}}_{\kappa}(\rho_{\sigma(j)}, \rho_{\sigma(i)}))\\&= \dim_{\kappa}\operatorname{\mathrm{Ext}}^1_{E_y}(\rho_{\sigma(j)}, \rho_{\sigma(i)}) + d_i d_j - \dim_{\kappa} \operatorname{\mathrm{Hom}}_{E_y}(\rho_{\sigma(j)}, \rho_{\sigma(i)})\\ &= d_i d_j + [F:\mathbb{Q}_p] d_i d_j + \dim_{\kappa} \operatorname{\mathrm{Ext}}^2_{G_F}(\rho_{\sigma(j)}, \rho_{\sigma(i)}), \end{aligned} \end{align} $$
where the first equality follows from [Reference Cartan and Eilenberg15, Proposition IX.4.4.1], the second from [Reference Cartan and Eilenberg15, Corollary IX.4.4.4] and the third from Lemma 3.6 together with the local Euler–Poincaré characteristic formula in this contextFootnote 4 (see [Reference Böckle and Juschka9, Theorem 3.4.1 (c)]). Thus,
 $$\begin{align*}\dim_{\kappa} T_x(X^{\mathrm{gen}}_{y,\sigma})= \dim \mathfrak n + (\dim \mathfrak n)[F:\mathbb{Q}_p] +\sum_{1\le i<j\le r} \dim_{\kappa} \operatorname{\mathrm{Ext}}^2_{G_F}(\rho_{\sigma(j)}, \rho_{\sigma(i)}). \end{align*}$$
$$\begin{align*}\dim_{\kappa} T_x(X^{\mathrm{gen}}_{y,\sigma})= \dim \mathfrak n + (\dim \mathfrak n)[F:\mathbb{Q}_p] +\sum_{1\le i<j\le r} \dim_{\kappa} \operatorname{\mathrm{Ext}}^2_{G_F}(\rho_{\sigma(j)}, \rho_{\sigma(i)}). \end{align*}$$
It follows from the local duality (see [Reference Böckle and Juschka9, Theorem 3.4.1 (b)]) that
 $$\begin{align*}\dim_{\kappa}\operatorname{\mathrm{Ext}}^2_{G_F}(\rho_{\sigma(j)}, \rho_{\sigma(i)}) = \dim_{\kappa}\operatorname{\mathrm{Hom}}_{G_F}( \rho_{\sigma(i)}, \rho_{\sigma(j)}(1)). \end{align*}$$
$$\begin{align*}\dim_{\kappa}\operatorname{\mathrm{Ext}}^2_{G_F}(\rho_{\sigma(j)}, \rho_{\sigma(i)}) = \dim_{\kappa}\operatorname{\mathrm{Hom}}_{G_F}( \rho_{\sigma(i)}, \rho_{\sigma(j)}(1)). \end{align*}$$
Thus, if this term is non-zero, then it is equal to 
 $1$
 and
$1$
 and 
 $\rho _{\sigma (i)}$
 and
$\rho _{\sigma (i)}$
 and 
 $\rho _{\sigma (j)}$
 belong to the same equivalence class.
$\rho _{\sigma (j)}$
 belong to the same equivalence class.
Remark 3.12. If 
 $\mathrm {char} (\kappa )=p$
 and
$\mathrm {char} (\kappa )=p$
 and 
 $\zeta _p\in F$
, then
$\zeta _p\in F$
, then 
 $D_i\sim D_j$
 if and only if
$D_i\sim D_j$
 if and only if 
 $D_i=D_j$
 and the bound is sharp in this case.
$D_i=D_j$
 and the bound is sharp in this case.
Corollary 3.13. 
 $\dim X^{\mathrm {gen}}_{y,\sigma } \le \dim _{\kappa } T_x(X^{\mathrm {gen}}_{y,\sigma })\le \dim \mathfrak n +(\dim \mathfrak n)[F:\mathbb {Q}_p] + \sum _{i=1}^k \begin {pmatrix} n_i\\ 2\end {pmatrix}.$
$\dim X^{\mathrm {gen}}_{y,\sigma } \le \dim _{\kappa } T_x(X^{\mathrm {gen}}_{y,\sigma })\le \dim \mathfrak n +(\dim \mathfrak n)[F:\mathbb {Q}_p] + \sum _{i=1}^k \begin {pmatrix} n_i\\ 2\end {pmatrix}.$
Proof. This follows from Lemma 3.10 and Lemma 2.2 applied with 
 $G = Z_L$
 and
$G = Z_L$
 and 
 $X = X^{\mathrm {gen}}_{y,\sigma }$
, noting that
$X = X^{\mathrm {gen}}_{y,\sigma }$
, noting that 
 is a singleton.
 is a singleton.
Lemma 3.14. If 
 $f: X \to Y$
 is a finite type and dominant morphism of Noetherian Jacobson universally catenary schemes, then
$f: X \to Y$
 is a finite type and dominant morphism of Noetherian Jacobson universally catenary schemes, then 
 $\dim Y \leq \dim X$
.
$\dim Y \leq \dim X$
.
Proof. Passing to reduced subschemes does not affect Krull dimension, so we may assume that X and Y are both reduced.
 First, assume X and Y are irreducible. Pick dense open affines 
 $U\subset Y$
,
$U\subset Y$
, 
 $V\subset X$
 such that
$V\subset X$
 such that 
 $f(V)\subset U$
. Since f is dominant, [48, Tag 0CC1] implies that
$f(V)\subset U$
. Since f is dominant, [48, Tag 0CC1] implies that 
 ${A:=\mathcal {O}_Y(U)\hookrightarrow B:= \mathcal {O}_X(V)}$
 is injective. Since A is an integral domain, Noether normalization [48, Tag 07NA] implies that the map factors as
${A:=\mathcal {O}_Y(U)\hookrightarrow B:= \mathcal {O}_X(V)}$
 is injective. Since A is an integral domain, Noether normalization [48, Tag 07NA] implies that the map factors as 
 $$\begin{align*}A\hookrightarrow A[x_1,\ldots, x_m]\hookrightarrow B' \hookrightarrow B, \end{align*}$$
$$\begin{align*}A\hookrightarrow A[x_1,\ldots, x_m]\hookrightarrow B' \hookrightarrow B, \end{align*}$$
with 
 $B'$
 finite over
$B'$
 finite over 
 $A[x_1, \ldots , x_m]$
 and
$A[x_1, \ldots , x_m]$
 and 
 $B^{\prime }_g \cong B_g$
 for some non-zero
$B^{\prime }_g \cong B_g$
 for some non-zero 
 $g \in A$
. Then [48, Tag 0DRT] and [Reference Matsumura35, 13.C, Theorem 20] imply that
$g \in A$
. Then [48, Tag 0DRT] and [Reference Matsumura35, 13.C, Theorem 20] imply that 
 $$\begin{align*}\dim X = \dim B = \dim B_g = \dim B^{\prime}_g = \dim B' = \dim A + m = \dim Y + m, \end{align*}$$
$$\begin{align*}\dim X = \dim B = \dim B_g = \dim B^{\prime}_g = \dim B' = \dim A + m = \dim Y + m, \end{align*}$$
so 
 $\dim Y \leq \dim X$
.
$\dim Y \leq \dim X$
.
 For the general case, we argue as in the proof of [48, Tag 01RM]. Write 
 $X = \bigcup _j Z_j$
 as the union of its irreducible components. Because f is dominant, we have
$X = \bigcup _j Z_j$
 as the union of its irreducible components. Because f is dominant, we have 
 $Y=\bigcup _j \overline {f(Z_j)}$
. Clearly, the
$Y=\bigcup _j \overline {f(Z_j)}$
. Clearly, the 
 $\overline {f(Z_j)}$
 have to be irreducible, and so the irreducible components of Y have to be among them. The
$\overline {f(Z_j)}$
 have to be irreducible, and so the irreducible components of Y have to be among them. The 
 $Z_j$
 and
$Z_j$
 and 
 $\overline {f(Z_j)}$
 are again Noetherian, Jacobson and universally catenary, and hence by the case already treated, we have
$\overline {f(Z_j)}$
 are again Noetherian, Jacobson and universally catenary, and hence by the case already treated, we have 
 $$\begin{align*}\dim Y = \max_j \dim \overline{f(Z_j)} \leq \max_j \dim Z_{j} = \dim X. \\[-42pt] \end{align*}$$
$$\begin{align*}\dim Y = \max_j \dim \overline{f(Z_j)} \leq \max_j \dim Z_{j} = \dim X. \\[-42pt] \end{align*}$$
Proposition 3.15. 
 $\dim X^{\mathrm {gen}}_y \le \dim \mathfrak {g} -r + (\dim \mathfrak n)[F:\mathbb {Q}_p] + \sum _{i=1}^k \begin {pmatrix} n_i \\ 2\end {pmatrix}.$
$\dim X^{\mathrm {gen}}_y \le \dim \mathfrak {g} -r + (\dim \mathfrak n)[F:\mathbb {Q}_p] + \sum _{i=1}^k \begin {pmatrix} n_i \\ 2\end {pmatrix}.$
Proof. We want to apply Lemma 3.14 to
 $$ \begin{align} \coprod_{\sigma\in S_r} G\times^{Z_{L_{\sigma}} N_{\sigma}} X^{\mathrm{gen}}_{y,\sigma} \rightarrow X_y^{\mathrm{gen}}, \end{align} $$
$$ \begin{align} \coprod_{\sigma\in S_r} G\times^{Z_{L_{\sigma}} N_{\sigma}} X^{\mathrm{gen}}_{y,\sigma} \rightarrow X_y^{\mathrm{gen}}, \end{align} $$
where the actions of 
 $Z_{L_{\sigma }} N_{\sigma }$
 on
$Z_{L_{\sigma }} N_{\sigma }$
 on 
 $X^{\mathrm {gen}}_{y,\sigma }$
 and of G on
$X^{\mathrm {gen}}_{y,\sigma }$
 and of G on 
 $X^{\mathrm {gen}}_{y}$
 are given by conjugation.
$X^{\mathrm {gen}}_{y}$
 are given by conjugation.
 If 
 $x\in X_y^{\mathrm {gen}}(\kappa )$
 and
$x\in X_y^{\mathrm {gen}}(\kappa )$
 and 
 $\varphi : E_y \rightarrow M_d(\kappa )$
 is the corresponding
$\varphi : E_y \rightarrow M_d(\kappa )$
 is the corresponding 
 $\kappa $
-algebra homomorphism, then there will exist
$\kappa $
-algebra homomorphism, then there will exist 
 $\sigma \in S_r$
 such that
$\sigma \in S_r$
 such that 
 $\kappa ^d$
 will admit a filtration by subspaces
$\kappa ^d$
 will admit a filtration by subspaces 
 $0=V_0\subset V_1\subset \ldots \subset V_r=V$
, which is invariant under the action of
$0=V_0\subset V_1\subset \ldots \subset V_r=V$
, which is invariant under the action of 
 $E_y$
 via
$E_y$
 via 
 $\varphi $
, satisfying
$\varphi $
, satisfying 
 $V_i/ V_{i-1}\cong \rho _{\sigma (i)}$
 for
$V_i/ V_{i-1}\cong \rho _{\sigma (i)}$
 for 
 $1\le i\le r$
. Thus, there is
$1\le i\le r$
. Thus, there is 
 $g\in G(\kappa )$
 such that
$g\in G(\kappa )$
 such that 
 $g \varphi g^{-1}$
 will lie in
$g \varphi g^{-1}$
 will lie in 
 $X^{\mathrm {gen}}_{y,\sigma }(\kappa )$
, and hence, (12) induces a surjection on
$X^{\mathrm {gen}}_{y,\sigma }(\kappa )$
, and hence, (12) induces a surjection on 
 $\kappa $
-points. But (12) is also a map of finite type
$\kappa $
-points. But (12) is also a map of finite type 
 $\kappa $
-schemes and therefore is a dominant map of Noetherian Jacobson universally catenary schemes, so we can apply Lemma 3.14.
$\kappa $
-schemes and therefore is a dominant map of Noetherian Jacobson universally catenary schemes, so we can apply Lemma 3.14.
 The fibre bundles 
 $G\times ^{Z_{L_{\sigma }} N_{\sigma }} X^{\mathrm {gen}}_{y,\sigma }$
 have dimension equal to
$G\times ^{Z_{L_{\sigma }} N_{\sigma }} X^{\mathrm {gen}}_{y,\sigma }$
 have dimension equal to 
 $$\begin{align*}\dim G + \dim X^{\mathrm{gen}}_{y,\sigma} -\dim (Z_{L_{\sigma}} N_{\sigma}) =\dim \mathfrak{g} -r +\dim X^{\mathrm{gen}}_{y,\sigma} -\dim \mathfrak n. \end{align*}$$
$$\begin{align*}\dim G + \dim X^{\mathrm{gen}}_{y,\sigma} -\dim (Z_{L_{\sigma}} N_{\sigma}) =\dim \mathfrak{g} -r +\dim X^{\mathrm{gen}}_{y,\sigma} -\dim \mathfrak n. \end{align*}$$
The bound in Corollary 3.13 gives the required assertion.
Corollary 3.16. If 
 $r=1$
, then
$r=1$
, then 
 $X^{\mathrm {gen}}_y$
 is smooth of dimension
$X^{\mathrm {gen}}_y$
 is smooth of dimension 
 $\dim \mathfrak {g}-1$
.
$\dim \mathfrak {g}-1$
.
Proof. If 
 $r=1$
 then
$r=1$
 then 
 $E_y\cong M_d(\kappa )$
 and thus has a unique irreducible representation
$E_y\cong M_d(\kappa )$
 and thus has a unique irreducible representation 
 $\rho $
 (up to isomorphism). Thus, all the points in
$\rho $
 (up to isomorphism). Thus, all the points in 
 $X^{\mathrm {gen}}_y(\kappa )$
 lie in the same G-orbit. Fix such a point x. Since the G-stabiliser of x is equal to
$X^{\mathrm {gen}}_y(\kappa )$
 lie in the same G-orbit. Fix such a point x. Since the G-stabiliser of x is equal to 
 $Z_G$
, we obtain
$Z_G$
, we obtain 
 $\dim X^{\mathrm {gen}}_y= \dim G-\dim Z_G= \dim \mathfrak {g} -1$
.
$\dim X^{\mathrm {gen}}_y= \dim G-\dim Z_G= \dim \mathfrak {g} -1$
.
 Since 
 $E_y$
 is semi-simple, we have
$E_y$
 is semi-simple, we have 
 $\operatorname {\mathrm {Ext}}^1_{E_y}(\rho , \rho )=0$
, and thus an argument as in the proof of Proposition 3.11 gives us
$\operatorname {\mathrm {Ext}}^1_{E_y}(\rho , \rho )=0$
, and thus an argument as in the proof of Proposition 3.11 gives us 
 $$ \begin{align*}\dim_{\kappa} T_x(X^{\mathrm{gen}}_y)= \dim_{\kappa} \operatorname{\mathrm{End}}_{\kappa}(\rho)-\dim_{\kappa} \operatorname{\mathrm{End}}_{E_y}(\rho)=\dim X_y^{\mathrm{gen}}.\end{align*} $$
$$ \begin{align*}\dim_{\kappa} T_x(X^{\mathrm{gen}}_y)= \dim_{\kappa} \operatorname{\mathrm{End}}_{\kappa}(\rho)-\dim_{\kappa} \operatorname{\mathrm{End}}_{E_y}(\rho)=\dim X_y^{\mathrm{gen}}.\end{align*} $$
Thus, x is a smooth point of 
 $X^{\mathrm {gen}}_y$
, and since G acts transitively on
$X^{\mathrm {gen}}_y$
, and since G acts transitively on 
 $X^{\mathrm {gen}}_y(\kappa )$
, all the points in
$X^{\mathrm {gen}}_y(\kappa )$
, all the points in 
 $X^{\mathrm {gen}}_y(\kappa )$
 are smooth. Since
$X^{\mathrm {gen}}_y(\kappa )$
 are smooth. Since 
 $X_y^{\mathrm {gen}}$
 is of finite type over
$X_y^{\mathrm {gen}}$
 is of finite type over 
 $\kappa $
, we deduce that
$\kappa $
, we deduce that 
 $X_y^{\mathrm {gen}}$
 is smooth.
$X_y^{\mathrm {gen}}$
 is smooth.
3.3 Commutative algebra preparations
 Lemma 3.18 is the key result of this section, and it will be applied repeatedly with 
 $R=R^{\mathrm {ps}}$
 and
$R=R^{\mathrm {ps}}$
 and 
 $S=A^{\mathrm {gen}}$
 or their reductions modulo
$S=A^{\mathrm {gen}}$
 or their reductions modulo 
 $\varpi $
.
$\varpi $
.
 We will start with some general commutative algebra lemmas. For a ring R, we set
 $P_1R=\{{\mathfrak p}\in \operatorname {\mathrm {Spec}} R : \dim R/{\mathfrak p} =1\}$
.
$P_1R=\{{\mathfrak p}\in \operatorname {\mathrm {Spec}} R : \dim R/{\mathfrak p} =1\}$
.
Lemma 3.17. Let 
 $(R, {\mathfrak m}_R)$
 be a complete local Noetherian
$(R, {\mathfrak m}_R)$
 be a complete local Noetherian 
 $\mathcal {O}$
-algebra with finite residue field
$\mathcal {O}$
-algebra with finite residue field 
 $k'$
. If
$k'$
. If 
 ${\mathfrak p}\in P_1R$
, then
${\mathfrak p}\in P_1R$
, then 
 $\kappa ({\mathfrak p})$
 is either a finite extension of L or a local field of characteristic p. Moreover,
$\kappa ({\mathfrak p})$
 is either a finite extension of L or a local field of characteristic p. Moreover, 
 $R/{\mathfrak p}$
 is contained in the ring of integers
$R/{\mathfrak p}$
 is contained in the ring of integers 
 $\mathcal {O}_{\kappa ({\mathfrak p})}$
 of
$\mathcal {O}_{\kappa ({\mathfrak p})}$
 of 
 $\kappa ({\mathfrak p})$
, and the quotient topology on
$\kappa ({\mathfrak p})$
, and the quotient topology on 
 $R/{\mathfrak p}$
 induced by the
$R/{\mathfrak p}$
 induced by the 
 ${\mathfrak m}_R$
-adic topology on R coincides with the subspace topology induced by the topology on
${\mathfrak m}_R$
-adic topology on R coincides with the subspace topology induced by the topology on 
 $\mathcal {O}_{\kappa ({\mathfrak p})}$
.
$\mathcal {O}_{\kappa ({\mathfrak p})}$
.
Proof. It follows from Cohen’s structure theorem that if 
 $\mathrm {char} (R/{\mathfrak p})=0$
, then
$\mathrm {char} (R/{\mathfrak p})=0$
, then 
 $\mathcal {O}\subset R/{\mathfrak p}$
 and
$\mathcal {O}\subset R/{\mathfrak p}$
 and 
 $R/{\mathfrak p}$
 is a finitely generated
$R/{\mathfrak p}$
 is a finitely generated 
 $\mathcal {O}$
-module. Thus,
$\mathcal {O}$
-module. Thus, 
 $\kappa ({\mathfrak p})$
 is a finite extension of L, and
$\kappa ({\mathfrak p})$
 is a finite extension of L, and 
 $R/{\mathfrak p}$
 is contained in the integral closure of
$R/{\mathfrak p}$
 is contained in the integral closure of 
 $\mathcal {O}$
 in
$\mathcal {O}$
 in 
 $\kappa ({\mathfrak p})$
, which is equal to
$\kappa ({\mathfrak p})$
, which is equal to 
 $\mathcal {O}_{\kappa ({\mathfrak p})}$
. If
$\mathcal {O}_{\kappa ({\mathfrak p})}$
. If 
 $\mathrm {char}(R/{\mathfrak p})=p$
, then
$\mathrm {char}(R/{\mathfrak p})=p$
, then 
 $R/{\mathfrak p}$
 is finite over a subring isomorphic to
$R/{\mathfrak p}$
 is finite over a subring isomorphic to 
 , and the same argument carries over. Moreover,
, and the same argument carries over. Moreover, 
 $\mathcal {O}_{\kappa ({\mathfrak p})}$
 is a finitely generated
$\mathcal {O}_{\kappa ({\mathfrak p})}$
 is a finitely generated 
 $R/{\mathfrak p}$
-module, and this implies that the topologies coincide.
$R/{\mathfrak p}$
-module, and this implies that the topologies coincide.
Lemma 3.18. Let 
 $(R, {\mathfrak m}_R)$
 be a complete local Noetherian ring and
$(R, {\mathfrak m}_R)$
 be a complete local Noetherian ring and 
 $\varphi : R \rightarrow S$
 a ring map of finite type. Let U be a non-empty open subscheme of
$\varphi : R \rightarrow S$
 a ring map of finite type. Let U be a non-empty open subscheme of 
 $U_{\max }:=(\operatorname {\mathrm {Spec}} R)\setminus \{{\mathfrak m}_R\}$
, let V (resp.
$U_{\max }:=(\operatorname {\mathrm {Spec}} R)\setminus \{{\mathfrak m}_R\}$
, let V (resp. 
 $V_{\max }$
) be the preimage of U (resp.
$V_{\max }$
) be the preimage of U (resp. 
 $U_{\max }$
) in
$U_{\max }$
) in 
 $\operatorname {\mathrm {Spec}} S$
, let Z (resp.
$\operatorname {\mathrm {Spec}} S$
, let Z (resp. 
 $Z_{\max }$
) be the closure of V (resp.
$Z_{\max }$
) be the closure of V (resp. 
 $V_{\max }$
) in
$V_{\max }$
) in 
 $\operatorname {\mathrm {Spec}} S$
 and let Y be the preimage of
$\operatorname {\mathrm {Spec}} S$
 and let Y be the preimage of 
 $\{{\mathfrak m}_R\}$
 in
$\{{\mathfrak m}_R\}$
 in 
 $\operatorname {\mathrm {Spec}} S$
. Then
$\operatorname {\mathrm {Spec}} S$
. Then 
- 
(1) V is Jacobson; 
- 
(2) the set of closed points of V is  $V \cap \{\text {closed points of } V_{\max }\}$
; $V \cap \{\text {closed points of } V_{\max }\}$
;
- 
(3) if x is a closed point of V, then its image y in  $\operatorname {\mathrm {Spec}} R$
 is a closed point of U and the field extension $\operatorname {\mathrm {Spec}} R$
 is a closed point of U and the field extension $\kappa (x)/ \kappa (y)$
 is finite; $\kappa (x)/ \kappa (y)$
 is finite;
- 
(4) the set of closed points of U is  $U \cap P_1 R$
; $U \cap P_1 R$
;
- 
(5) if every irreducible component of  $\operatorname {\mathrm {Spec}} S$
 meets Y nontrivially, then $\operatorname {\mathrm {Spec}} S$
 meets Y nontrivially, then $\dim Z= \dim V +1$
; $\dim Z= \dim V +1$
;
- 
(6)  $ \dim V\le \dim U +\max _{y \in U \cap P_1 R} \dim \varphi ^{-1}(\{y\})$
. $ \dim V\le \dim U +\max _{y \in U \cap P_1 R} \dim \varphi ^{-1}(\{y\})$
.
Proof. We summarize the situation in the following diagram.

 We will first prove parts (1), (2) and (3). If 
 $R=S$
 and if
$R=S$
 and if 
 $U=U_{\max }$
, then (1) follows from [48, Tag 02IM] and both (2) and (3) hold trivially. If
$U=U_{\max }$
, then (1) follows from [48, Tag 02IM] and both (2) and (3) hold trivially. If 
 $R=S$
 and if U is arbitrary, then
$R=S$
 and if U is arbitrary, then 
 $U=V$
 and (1), (2) follow from the previous case together with [48, Tag 005W] and (3) holds trivially. The case of general
$U=V$
 and (1), (2) follow from the previous case together with [48, Tag 005W] and (3) holds trivially. The case of general 
 $\varphi $
 now follows from [48, Tag 00GB] together with [48, Tag 01P4] because the map
$\varphi $
 now follows from [48, Tag 00GB] together with [48, Tag 01P4] because the map 
 $V\to U$
 induced from
$V\to U$
 induced from 
 $\varphi $
 is of finite type.
$\varphi $
 is of finite type.
 Part (4) follows from (2) applied with 
 $S=R$
, using that
$S=R$
, using that 
 ${\mathfrak m}_R$
 is the unique maximal ideal of R, so that the set of closed points of
${\mathfrak m}_R$
 is the unique maximal ideal of R, so that the set of closed points of 
 $U_{\max }$
 is equal to
$U_{\max }$
 is equal to 
 $P_1R$
.
$P_1R$
.
 For (5), note first that since V is open in 
 $\operatorname {\mathrm {Spec}} S$
, the set of generic points of V is a subset of the set of generic points of
$\operatorname {\mathrm {Spec}} S$
, the set of generic points of V is a subset of the set of generic points of 
 $\operatorname {\mathrm {Spec}} S$
. Thus, Z is union of irreducible components of
$\operatorname {\mathrm {Spec}} S$
. Thus, Z is union of irreducible components of 
 $\operatorname {\mathrm {Spec}} S$
. Let
$\operatorname {\mathrm {Spec}} S$
. Let 
 $Z'=\operatorname {\mathrm {Spec}} S'$
 be an irreducible component of Z with the induced reduced subscheme structure so that
$Z'=\operatorname {\mathrm {Spec}} S'$
 be an irreducible component of Z with the induced reduced subscheme structure so that 
 $S'$
 is a domain, let
$S'$
 is a domain, let 
 $V'= Z'\cap V$
 and let
$V'= Z'\cap V$
 and let 
 $R'$
 be the image of R in
$R'$
 be the image of R in 
 $S'$
. The rings
$S'$
. The rings 
 $R'$
 and
$R'$
 and 
 $S'$
 are excellent and hence universally catenary by [48, Tag 07QW]. If
$S'$
 are excellent and hence universally catenary by [48, Tag 07QW]. If 
 $\mathfrak {q}\in \operatorname {\mathrm {Spec}} S'$
 and
$\mathfrak {q}\in \operatorname {\mathrm {Spec}} S'$
 and 
 ${\mathfrak p}=\mathfrak {q} \cap R'$
, then
${\mathfrak p}=\mathfrak {q} \cap R'$
, then 
 $$ \begin{align} \begin{aligned} \dim S^{\prime}_{\mathfrak{q}}&= \dim R^{\prime}_{{\mathfrak p}} + \mathrm{trdeg}_{R'} S' - \mathrm{trdeg}_{\kappa({\mathfrak p})} \kappa(\mathfrak{q})\\ &= \dim R'+ \mathrm{trdeg}_{R'} S' -\dim R'/{\mathfrak p} -\mathrm{trdeg}_{\kappa({\mathfrak p})} \kappa(\mathfrak{q}), \end{aligned} \end{align} $$
$$ \begin{align} \begin{aligned} \dim S^{\prime}_{\mathfrak{q}}&= \dim R^{\prime}_{{\mathfrak p}} + \mathrm{trdeg}_{R'} S' - \mathrm{trdeg}_{\kappa({\mathfrak p})} \kappa(\mathfrak{q})\\ &= \dim R'+ \mathrm{trdeg}_{R'} S' -\dim R'/{\mathfrak p} -\mathrm{trdeg}_{\kappa({\mathfrak p})} \kappa(\mathfrak{q}), \end{aligned} \end{align} $$
 where 
 $\mathrm {trdeg}$
 stands for transcendence degree, the first equality is [48, Tag 02IJ] and the second is [Reference Matsumura36, Theorem 31.4]. It follows from (13) that
$\mathrm {trdeg}$
 stands for transcendence degree, the first equality is [48, Tag 02IJ] and the second is [Reference Matsumura36, Theorem 31.4]. It follows from (13) that 
 $$ \begin{align} \dim S^{\prime}_{\mathfrak{q}} \le \dim R' + \mathrm{trdeg}_{R'} S', \end{align} $$
$$ \begin{align} \dim S^{\prime}_{\mathfrak{q}} \le \dim R' + \mathrm{trdeg}_{R'} S', \end{align} $$
and the equality in (14) holds if and only if 
 $\mathfrak {q}$
 maps to the maximal ideal of
$\mathfrak {q}$
 maps to the maximal ideal of 
 $R'$
 and
$R'$
 and 
 $\mathfrak {q}$
 is a maximal ideal of
$\mathfrak {q}$
 is a maximal ideal of 
 $S'$
. Since
$S'$
. Since 
 $Z'\cap Y$
 is non-empty by assumption, such
$Z'\cap Y$
 is non-empty by assumption, such 
 $\mathfrak {q}$
 exists and so
$\mathfrak {q}$
 exists and so 
 $$ \begin{align*} \dim S'= \dim R' + \mathrm{trdeg}_{R'} S'. \end{align*} $$
$$ \begin{align*} \dim S'= \dim R' + \mathrm{trdeg}_{R'} S'. \end{align*} $$
Let 
 $\mathfrak {q}$
 be a closed point of
$\mathfrak {q}$
 be a closed point of 
 $V'$
 and let
$V'$
 and let 
 ${\mathfrak p}=\mathfrak {q} \cap R'$
. Since
${\mathfrak p}=\mathfrak {q} \cap R'$
. Since 
 $V'$
 is open in
$V'$
 is open in 
 $Z'$
, we have
$Z'$
, we have 
 $\mathcal {O}_{V',\mathfrak {q}}= S^{\prime }_{\mathfrak {q}^{\prime }}$
. It follows from (3) that
$\mathcal {O}_{V',\mathfrak {q}}= S^{\prime }_{\mathfrak {q}^{\prime }}$
. It follows from (3) that 
 $\mathrm {trdeg}_{\kappa ({\mathfrak p})}\kappa (\mathfrak {q})=0$
 and
$\mathrm {trdeg}_{\kappa ({\mathfrak p})}\kappa (\mathfrak {q})=0$
 and 
 $\dim R/{\mathfrak p}=1$
. Thus, (13) gives us
$\dim R/{\mathfrak p}=1$
. Thus, (13) gives us 
 $$ \begin{align*}\dim \mathcal{O}_{V',\mathfrak{q}}= \dim R' + \mathrm{trdeg}_{R'} S'-1.\end{align*} $$
$$ \begin{align*}\dim \mathcal{O}_{V',\mathfrak{q}}= \dim R' + \mathrm{trdeg}_{R'} S'-1.\end{align*} $$
Since this holds for all closed points of 
 $V'$
, we deduce that
$V'$
, we deduce that 
 $$ \begin{align*}\dim V'= \dim R' + \mathrm{trdeg}_{R'} S'-1.\end{align*} $$
$$ \begin{align*}\dim V'= \dim R' + \mathrm{trdeg}_{R'} S'-1.\end{align*} $$
This implies part (5).
Let x be a closed point of V and let y be its image in U. Then y is also a closed point of U. We have
 $$ \begin{align*}\dim \mathcal{O}_{V, x} \le \dim \mathcal{O}_{U, y} + \dim (\mathcal{O}_{V, x}\otimes_{\mathcal{O}_{U, y}} \kappa(y))\le \dim U + \dim \varphi^{-1}(\{y\}),\end{align*} $$
$$ \begin{align*}\dim \mathcal{O}_{V, x} \le \dim \mathcal{O}_{U, y} + \dim (\mathcal{O}_{V, x}\otimes_{\mathcal{O}_{U, y}} \kappa(y))\le \dim U + \dim \varphi^{-1}(\{y\}),\end{align*} $$
where the first inequality is given by [Reference Matsumura36, Theorem 15.1 (i)]. Since
 $$ \begin{align*}\dim V = \max_x \dim \mathcal{O}_{V, x},\end{align*} $$
$$ \begin{align*}\dim V = \max_x \dim \mathcal{O}_{V, x},\end{align*} $$
where the maximum is taken over all closed points x of V, we get (6).
Remark 3.19. We caution the reader that the equality 
 $\dim Z= \dim V +1$
 might fail if one drops the assumption that Y meets every irreducible component nontrivially. For example, if
$\dim Z= \dim V +1$
 might fail if one drops the assumption that Y meets every irreducible component nontrivially. For example, if 
 $R=\mathbb {Z}_p$
 and
$R=\mathbb {Z}_p$
 and 
 $S=\mathbb {Z}_p[x]/(px-1)= \mathbb {Q}_p$
, then Y is empty and
$S=\mathbb {Z}_p[x]/(px-1)= \mathbb {Q}_p$
, then Y is empty and 
 $V_{\max }=Z_{\max }=\operatorname {\mathrm {Spec}} S$
.
$V_{\max }=Z_{\max }=\operatorname {\mathrm {Spec}} S$
.
Remark 3.20. Here is another cautionary example. If R and S are as in Lemma 3.18, 
 $\mathfrak {q}$
 is a prime of S and S is a domain, then it need not be true that
$\mathfrak {q}$
 is a prime of S and S is a domain, then it need not be true that 
 $\dim S_{\mathfrak {q}}+\dim S/\mathfrak {q} = \dim S$
. For example, if
$\dim S_{\mathfrak {q}}+\dim S/\mathfrak {q} = \dim S$
. For example, if 
 $R=\mathbb {Z}_p$
,
$R=\mathbb {Z}_p$
, 
 $S=\mathbb {Z}_p[x]$
 and
$S=\mathbb {Z}_p[x]$
 and 
 $\mathfrak {q}=(px-1)$
, then
$\mathfrak {q}=(px-1)$
, then 
 $S/\mathfrak {q}=\mathbb {Q}_p$
 and
$S/\mathfrak {q}=\mathbb {Q}_p$
 and 
 $S_{\mathfrak {q}}$
 is a DVR, so that
$S_{\mathfrak {q}}$
 is a DVR, so that 
 $\dim S_{\mathfrak {q}}+\dim S/\mathfrak {q} =1$
 and
$\dim S_{\mathfrak {q}}+\dim S/\mathfrak {q} =1$
 and 
 $\dim S=2$
. We also note that
$\dim S=2$
. We also note that 
 $\mathfrak {q}$
 is a closed point of
$\mathfrak {q}$
 is a closed point of 
 $\operatorname {\mathrm {Spec}} S$
, but it does not map to a closed point of
$\operatorname {\mathrm {Spec}} S$
, but it does not map to a closed point of 
 $\operatorname {\mathrm {Spec}} R$
. Further, if
$\operatorname {\mathrm {Spec}} R$
. Further, if 
 $\mathfrak {q}'=(p, x)$
, then
$\mathfrak {q}'=(p, x)$
, then 
 $S/\mathfrak {q}'=\mathbb F_p$
 and
$S/\mathfrak {q}'=\mathbb F_p$
 and 
 $p, x$
 is a regular sequence of parameters in
$p, x$
 is a regular sequence of parameters in 
 $S_{\mathfrak {q}^{\prime }}$
, and thus
$S_{\mathfrak {q}^{\prime }}$
, and thus 
 $\dim S_{\mathfrak {q}^{\prime }}=2$
. Thus,
$\dim S_{\mathfrak {q}^{\prime }}=2$
. Thus, 
 $\mathfrak {q}$
 and
$\mathfrak {q}$
 and 
 $\mathfrak {q}'$
 are closed points of an irreducible scheme, but their local rings have different dimensions.
$\mathfrak {q}'$
 are closed points of an irreducible scheme, but their local rings have different dimensions.
Lemma 3.21. Let Y be the preimage of 
 $\{{\mathfrak m}_{R^{\mathrm {ps}}}\}$
 in
$\{{\mathfrak m}_{R^{\mathrm {ps}}}\}$
 in 
 $X^{\mathrm {gen}}$
, let W be a closed non-empty
$X^{\mathrm {gen}}$
, let W be a closed non-empty 
 $\operatorname {\mathrm {GL}}_d$
-invariant subscheme of
$\operatorname {\mathrm {GL}}_d$
-invariant subscheme of 
 $X^{\mathrm {gen}}$
 and let Z be an irreducible component of W. Then
$X^{\mathrm {gen}}$
 and let Z be an irreducible component of W. Then 
 $Y\cap Z$
 is non-empty. Moreover, if x is a closed point of Z, then the following hold:
$Y\cap Z$
 is non-empty. Moreover, if x is a closed point of Z, then the following hold: 
- 
(1) if  $x\in Y$
, then $x\in Y$
, then $\dim \mathcal {O}_{Z, x}= \dim Z$
; $\dim \mathcal {O}_{Z, x}= \dim Z$
;
- 
(2) if  $x\not \in Y$
, then $x\not \in Y$
, then $\dim \mathcal {O}_{Z, x}= \dim Z-1$
. $\dim \mathcal {O}_{Z, x}= \dim Z-1$
.
Proof. By Lemma 2.1, each irreducible component Z of W is 
 $\operatorname {\mathrm {GL}}_d$
-invariant. The image of Z in
$\operatorname {\mathrm {GL}}_d$
-invariant. The image of Z in 
 $X^{\mathrm {ps}}$
 is closed by Corollary 2 (ii) to [Reference Seshadri47, Proposition 9], and is nonempty and so must contain
$X^{\mathrm {ps}}$
 is closed by Corollary 2 (ii) to [Reference Seshadri47, Proposition 9], and is nonempty and so must contain 
 ${\mathfrak m}_{R^{\mathrm {ps}}}$
 because
${\mathfrak m}_{R^{\mathrm {ps}}}$
 because 
 $X^{\mathrm {ps}}$
 has a unique closed point. Therefore,
$X^{\mathrm {ps}}$
 has a unique closed point. Therefore, 
 $Y \cap Z$
 is nonempty.
$Y \cap Z$
 is nonempty.
 The claims about 
 $\dim \mathcal {O}_{Z,x}$
 follows from the proof of part (5) in Lemma 3.18.
$\dim \mathcal {O}_{Z,x}$
 follows from the proof of part (5) in Lemma 3.18.
Example 3.22. Let us illustrate Lemma 3.21 with a concrete example. Let 
 $\overline {D}$
 be the pseudo-character of the
$\overline {D}$
 be the pseudo-character of the 
 $2$
-dimensional trivial representation of the group
$2$
-dimensional trivial representation of the group 
 $\Gamma :=\mathbb {Z}_p$
. It follows from [Reference Chenevier18, Theorem 1.15] that
$\Gamma :=\mathbb {Z}_p$
. It follows from [Reference Chenevier18, Theorem 1.15] that 
 
and

where the map
 
 sends a fixed topological generator 
 $\gamma $
 of
$\gamma $
 of 
 $\Gamma $
 to
$\Gamma $
 to 
 $1+T$
. Then E is a free
$1+T$
. Then E is a free 
 $R^{\mathrm {ps}}$
-module with basis
$R^{\mathrm {ps}}$
-module with basis 
 $1+T, 1$
 and so
$1+T, 1$
 and so 
 $$ \begin{align*}A^{\mathrm{gen}}=\frac{R^{\mathrm{ps}}[x_{11}, x_{12}, x_{21}, x_{22}]}{(x_{11}+x_{22} - (2+t), x_{11}x_{22} - x_{12}x_{21} - (1+d))},\end{align*} $$
$$ \begin{align*}A^{\mathrm{gen}}=\frac{R^{\mathrm{ps}}[x_{11}, x_{12}, x_{21}, x_{22}]}{(x_{11}+x_{22} - (2+t), x_{11}x_{22} - x_{12}x_{21} - (1+d))},\end{align*} $$
and 
 $j: E\rightarrow M_2(A^{\mathrm {gen}})$
 sends
$j: E\rightarrow M_2(A^{\mathrm {gen}})$
 sends 
 $1+T$
 to the matrix
$1+T$
 to the matrix 
 $\bigl ( \begin {smallmatrix} x_{11} & x_{12} \\ x_{21} & x_{22}\end {smallmatrix}\bigr )$
. Let
$\bigl ( \begin {smallmatrix} x_{11} & x_{12} \\ x_{21} & x_{22}\end {smallmatrix}\bigr )$
. Let 
 $x: A^{\mathrm {gen}}\rightarrow L$
 be the homomorphism corresponding to the representation
$x: A^{\mathrm {gen}}\rightarrow L$
 be the homomorphism corresponding to the representation 
 $\rho : E\rightarrow M_2(L)$
, such that
$\rho : E\rightarrow M_2(L)$
, such that 
 $\rho (\gamma )= \bigl ( \begin {smallmatrix} 1 & p^{-1} \\ 0 & 1 \end {smallmatrix}\bigr )$
. Then x is a closed point of
$\rho (\gamma )= \bigl ( \begin {smallmatrix} 1 & p^{-1} \\ 0 & 1 \end {smallmatrix}\bigr )$
. Then x is a closed point of 
 $X^{\mathrm {gen}}$
 with residue field L; thus, it does not map to the closed point in
$X^{\mathrm {gen}}$
 with residue field L; thus, it does not map to the closed point in 
 $X^{\mathrm {ps}}$
. Indeed,
$X^{\mathrm {ps}}$
. Indeed, 
 $A^{\mathrm {gen}}/(x_{11}-1, x_{21}, x_{22}-1)\cong \mathcal {O}[x_{12}]$
, so we are in the situation considered in Remark 3.20.
$A^{\mathrm {gen}}/(x_{11}-1, x_{21}, x_{22}-1)\cong \mathcal {O}[x_{12}]$
, so we are in the situation considered in Remark 3.20.
Lemma 3.23. Let W be a closed nonempty 
 $\operatorname {\mathrm {GL}}_d$
-invariant subscheme of
$\operatorname {\mathrm {GL}}_d$
-invariant subscheme of 
 $X^{\mathrm {gen}}$
 and write
$X^{\mathrm {gen}}$
 and write 
 $W[1/p]$
 and
$W[1/p]$
 and 
 $\overline {W}$
 for the generic and special fibre. Then
$\overline {W}$
 for the generic and special fibre. Then 
 $\dim W[1/p]\le \dim \overline {W}$
. In particular,
$\dim W[1/p]\le \dim \overline {W}$
. In particular, 
 $\dim X^{\mathrm {gen}}[1/p] \le \dim \overline {X}^{\mathrm {gen}}.$
$\dim X^{\mathrm {gen}}[1/p] \le \dim \overline {X}^{\mathrm {gen}}.$
Proof. We may assume that 
 $W[1/p]$
 is nonempty, and using Lemma 2.1, we may further assume that W is irreducible. Lemma 3.21 implies that there is a closed point
$W[1/p]$
 is nonempty, and using Lemma 2.1, we may further assume that W is irreducible. Lemma 3.21 implies that there is a closed point 
 $x\in W$
, which maps to the closed point in
$x\in W$
, which maps to the closed point in 
 $X^{\mathrm {ps}}$
. Lemma 3.18 (5) implies that
$X^{\mathrm {ps}}$
. Lemma 3.18 (5) implies that 
 $\dim W[1/p]=\dim W -1$
.
$\dim W[1/p]=\dim W -1$
.
 Since W is irreducible and 
 $W[1/p]\neq \emptyset $
, the local ring
$W[1/p]\neq \emptyset $
, the local ring 
 $\mathcal {O}_{W,x}$
 is a domain, and multiplication by
$\mathcal {O}_{W,x}$
 is a domain, and multiplication by 
 $\varpi $
 is injective. Since
$\varpi $
 is injective. Since 
 $\mathrm {char}(\kappa (x))=p$
,
$\mathrm {char}(\kappa (x))=p$
, 
 $\varpi $
 cannot be a unit in
$\varpi $
 cannot be a unit in 
 $\mathcal {O}_{W,x}$
. Thus,
$\mathcal {O}_{W,x}$
. Thus, 
 $\dim \mathcal {O}_{\overline {W}, x}= \dim \mathcal {O}_{W,x}-1$
. It follows from Lemma 3.21 that
$\dim \mathcal {O}_{\overline {W}, x}= \dim \mathcal {O}_{W,x}-1$
. It follows from Lemma 3.21 that 
 $\dim \overline {W}= \dim W-1$
.
$\dim \overline {W}= \dim W-1$
.
3.4 Bounding the dimension of the space
 The main result of this subsection is Theorem 3.31, which bounds the dimension of 
 $\overline {X}^{\mathrm {gen}}$
. As explained earlier, this is an intermediate step in bounding the dimension of
$\overline {X}^{\mathrm {gen}}$
. As explained earlier, this is an intermediate step in bounding the dimension of 
 $R_{\overline {\rho }}^{\square }$
.
$R_{\overline {\rho }}^{\square }$
.
 Recall that 
 $\overline {D}: G_F \rightarrow k$
 is the specialization of the universal pseudo-character
$\overline {D}: G_F \rightarrow k$
 is the specialization of the universal pseudo-character 
 $D^{u}: G_F \rightarrow R^{\mathrm {ps}}$
 at the maximal ideal of
$D^{u}: G_F \rightarrow R^{\mathrm {ps}}$
 at the maximal ideal of 
 $R^{\mathrm {ps}}$
. We may write
$R^{\mathrm {ps}}$
. We may write 
 $\overline {D}= \prod _{i=1}^m \overline {D}_i$
, where
$\overline {D}= \prod _{i=1}^m \overline {D}_i$
, where 
 $\overline {D}_i$
 are absolutely irreducible pseudo-characters. Let
$\overline {D}_i$
 are absolutely irreducible pseudo-characters. Let 
 $\mathcal {P}$
 be an (unordered) partition of the set
$\mathcal {P}$
 be an (unordered) partition of the set 
 $\{1, \ldots , m\}$
 into r disjoint subsets
$\{1, \ldots , m\}$
 into r disjoint subsets 
 $\Sigma _j$
, and let
$\Sigma _j$
, and let 
 $\underline {\Sigma }=(\Sigma _1,\ldots , \Sigma _r)$
 be an ordering of the subsets in
$\underline {\Sigma }=(\Sigma _1,\ldots , \Sigma _r)$
 be an ordering of the subsets in 
 $\mathcal {P}$
. For each
$\mathcal {P}$
. For each 
 $1\le j \le r$
, let
$1\le j \le r$
, let 
 $\overline {D}^{\prime }_j= \prod _{i\in \Sigma _j} \overline {D}_i$
, and let
$\overline {D}^{\prime }_j= \prod _{i\in \Sigma _j} \overline {D}_i$
, and let 
 $d_j$
 be the dimension of
$d_j$
 be the dimension of 
 $\overline {D}^{\prime }_j$
. We define an equivalence relation on the set of pseudo-characters
$\overline {D}^{\prime }_j$
. We define an equivalence relation on the set of pseudo-characters 
 $\{\overline {D}^{\prime }_j: 1\le j\le r\}$
 by
$\{\overline {D}^{\prime }_j: 1\le j\le r\}$
 by 
 $\overline {D}^{\prime }_j \sim \overline {D}^{\prime }_{j'}$
 if
$\overline {D}^{\prime }_j \sim \overline {D}^{\prime }_{j'}$
 if 
 $\overline {D}^{\prime }_j=\overline {D}^{\prime }_{j'}(t)$
 for some
$\overline {D}^{\prime }_j=\overline {D}^{\prime }_{j'}(t)$
 for some 
 $t\in \mathbb Z$
. Let
$t\in \mathbb Z$
. Let 
 $k'$
 be the number of the equivalence classes,
$k'$
 be the number of the equivalence classes, 
 $n_i^{\prime }$
 be the number of elements in the i-th equivalence class, and
$n_i^{\prime }$
 be the number of elements in the i-th equivalence class, and 
 $c_i$
 be the dimension of the pseudo-characters in the i-th equivalence class. We have
$c_i$
 be the dimension of the pseudo-characters in the i-th equivalence class. We have 
 $$ \begin{align*}\sum_{i=1}^{k'} n_i^{\prime} = r, \quad \sum_{i=1}^{k'} c_i n_i^{\prime} = d.\end{align*} $$
$$ \begin{align*}\sum_{i=1}^{k'} n_i^{\prime} = r, \quad \sum_{i=1}^{k'} c_i n_i^{\prime} = d.\end{align*} $$
We define
 $$ \begin{align} l_{\mathcal{P}}:=\sum_{j=1}^r d_j^2=\sum_{i=1}^{k'}n_i^{\prime} c_i^2, \quad p_{\mathcal{P}}:= l_{\mathcal{P}} + n_{\mathcal{P}}= \sum_{j=1}^r d_j^2 +\sum_{1\le j<j' \le r} d_j d_{j'}, \end{align} $$
$$ \begin{align} l_{\mathcal{P}}:=\sum_{j=1}^r d_j^2=\sum_{i=1}^{k'}n_i^{\prime} c_i^2, \quad p_{\mathcal{P}}:= l_{\mathcal{P}} + n_{\mathcal{P}}= \sum_{j=1}^r d_j^2 +\sum_{1\le j<j' \le r} d_j d_{j'}, \end{align} $$
where
 $$ \begin{align} n_{\mathcal{P}}= \frac{1}{2}(d^2- l_{\mathcal{P}})= \sum_{1\le j<j' \le r} d_j d_{j'}= \sum_{1\le i < i' \le k'} c_i c_{i'} n_i^{\prime} n_{i'}^{\prime} + \sum_{i=1}^{k'} c_i^2 \begin{pmatrix} n_i^{\prime} \\ 2\end{pmatrix}. \end{align} $$
$$ \begin{align} n_{\mathcal{P}}= \frac{1}{2}(d^2- l_{\mathcal{P}})= \sum_{1\le j<j' \le r} d_j d_{j'}= \sum_{1\le i < i' \le k'} c_i c_{i'} n_i^{\prime} n_{i'}^{\prime} + \sum_{i=1}^{k'} c_i^2 \begin{pmatrix} n_i^{\prime} \\ 2\end{pmatrix}. \end{align} $$
The notation is motivated by (7) and (8); see also Remark 3.8.
 For each 
 $1\le j\le r$
, let
$1\le j\le r$
, let 
 $R^{\mathrm {ps}}_j$
 be the universal deformation ring of
$R^{\mathrm {ps}}_j$
 be the universal deformation ring of 
 $\overline {D}^{\prime }_j$
 and let
$\overline {D}^{\prime }_j$
 and let 
 $X^{\mathrm {ps}}_j := R^{\mathrm {ps}}_j$
. The functor
$X^{\mathrm {ps}}_j := R^{\mathrm {ps}}_j$
. The functor 
 $\mathcal F_{\underline {\Sigma }}$
, which sends a local Artinian
$\mathcal F_{\underline {\Sigma }}$
, which sends a local Artinian 
 $\mathcal {O}$
-algebra
$\mathcal {O}$
-algebra 
 $(A, {\mathfrak m}_A)$
 with residue field k to the set of ordered r-tuples
$(A, {\mathfrak m}_A)$
 with residue field k to the set of ordered r-tuples 
 $(D_1, \ldots , D_r)$
 of pseudo-characters with each
$(D_1, \ldots , D_r)$
 of pseudo-characters with each 
 $D_i$
, a deformation of
$D_i$
, a deformation of 
 $\overline {D}^{\prime }_i$
 to A is represented by the completed tensor product
$\overline {D}^{\prime }_i$
 to A is represented by the completed tensor product 
 $$ \begin{align*}R^{\mathrm{ps}}_{\underline{\Sigma}}:= R^{\mathrm{ps}}_1\operatorname{\mathrm{\widehat{\otimes}}}_{\mathcal{O}} \ldots \operatorname{\mathrm{\widehat{\otimes}}}_{\mathcal{O}}R^{\mathrm{ps}}_r.\end{align*} $$
$$ \begin{align*}R^{\mathrm{ps}}_{\underline{\Sigma}}:= R^{\mathrm{ps}}_1\operatorname{\mathrm{\widehat{\otimes}}}_{\mathcal{O}} \ldots \operatorname{\mathrm{\widehat{\otimes}}}_{\mathcal{O}}R^{\mathrm{ps}}_r.\end{align*} $$
We let 
 $X^{\mathrm {ps}}_{\underline {\Sigma }}:= \operatorname {\mathrm {Spec}} R^{\mathrm {ps}}_{\underline {\Sigma }}$
 and denote by
$X^{\mathrm {ps}}_{\underline {\Sigma }}:= \operatorname {\mathrm {Spec}} R^{\mathrm {ps}}_{\underline {\Sigma }}$
 and denote by 
 $\overline {X}^{\mathrm {ps}}_{\underline {\Sigma }}:= \operatorname {\mathrm {Spec}} R^{\mathrm {ps}}_{\underline {\Sigma }}/\varpi $
 its special fibre. By mapping an r-tuple of pseudo-characters to their product, we obtain a map
$\overline {X}^{\mathrm {ps}}_{\underline {\Sigma }}:= \operatorname {\mathrm {Spec}} R^{\mathrm {ps}}_{\underline {\Sigma }}/\varpi $
 its special fibre. By mapping an r-tuple of pseudo-characters to their product, we obtain a map 
 $$ \begin{align*}\iota_{\underline{\Sigma}}: \overline{X}^{\mathrm{ps}}_{\underline{\Sigma}} \rightarrow \overline{X}^{\mathrm{ps}}.\end{align*} $$
$$ \begin{align*}\iota_{\underline{\Sigma}}: \overline{X}^{\mathrm{ps}}_{\underline{\Sigma}} \rightarrow \overline{X}^{\mathrm{ps}}.\end{align*} $$
Lemma 3.24. The map 
 $R^{\mathrm {ps}}\rightarrow R^{\mathrm {ps}}_{\underline {\Sigma }}$
 is finite.
$R^{\mathrm {ps}}\rightarrow R^{\mathrm {ps}}_{\underline {\Sigma }}$
 is finite.
Proof. By topological Nakayama’s lemma, it is enough to show that the fibre ring 
 $C:=k\otimes _{R^{\mathrm {ps}}} R^{\mathrm {ps}}_{\underline {\Sigma }}$
 is a finite dimensional k-vector space. Let
$C:=k\otimes _{R^{\mathrm {ps}}} R^{\mathrm {ps}}_{\underline {\Sigma }}$
 is a finite dimensional k-vector space. Let 
 $\mathcal F$
 be the closed subfunctor of
$\mathcal F$
 be the closed subfunctor of 
 $\mathcal F_{\underline {\Sigma }}$
 defined by C. If
$\mathcal F_{\underline {\Sigma }}$
 defined by C. If 
 $(A, {\mathfrak m}_A)$
 is a local Artinian k-algebra, then
$(A, {\mathfrak m}_A)$
 is a local Artinian k-algebra, then 
 $\mathcal F(A)$
 is in bijection with the set of r-tuples
$\mathcal F(A)$
 is in bijection with the set of r-tuples 
 $(D_{1}, \ldots , D_{r})$
, each
$(D_{1}, \ldots , D_{r})$
, each 
 $D_{i}$
 lifting
$D_{i}$
 lifting 
 $\overline {D}^{\prime }_i$
 to A such that
$\overline {D}^{\prime }_i$
 to A such that 
 $\prod _{i=1}^r D_i= (\prod _{i=1}^r \overline {D}^{\prime }_i)\otimes _k A$
.
$\prod _{i=1}^r D_i= (\prod _{i=1}^r \overline {D}^{\prime }_i)\otimes _k A$
.
 Since C is a complete local Noetherian ring, it is enough to show that its Krull dimension is 
 $0$
. If this is not the case, then there is
$0$
. If this is not the case, then there is 
 ${\mathfrak p}\in \operatorname {\mathrm {Spec}} C$
 such that
${\mathfrak p}\in \operatorname {\mathrm {Spec}} C$
 such that 
 $\dim C/{\mathfrak p}=1$
. Let
$\dim C/{\mathfrak p}=1$
. Let 
 $(D_{1, y}, \ldots , D_{r,y})$
 be the specialization of the universal object of
$(D_{1, y}, \ldots , D_{r,y})$
 be the specialization of the universal object of 
 $\mathcal F_{\underline {\Sigma }}$
 along
$\mathcal F_{\underline {\Sigma }}$
 along 
 $y: R^{\mathrm {ps}}_{\underline {\Sigma }}\rightarrow \kappa ({\mathfrak p})$
. It follows from [Reference Chenevier18, Corollary 1.14] that the coefficients of the polynomials
$y: R^{\mathrm {ps}}_{\underline {\Sigma }}\rightarrow \kappa ({\mathfrak p})$
. It follows from [Reference Chenevier18, Corollary 1.14] that the coefficients of the polynomials 
 $D_{i,y}(t - a)$
, for all
$D_{i,y}(t - a)$
, for all 
 $a\in E$
 and
$a\in E$
 and 
 $1\le i\le r$
 will generate a dense subring of
$1\le i\le r$
 will generate a dense subring of 
 $R^{\mathrm {ps}}_{\underline {\Sigma }}/{\mathfrak p}$
. Since
$R^{\mathrm {ps}}_{\underline {\Sigma }}/{\mathfrak p}$
. Since 
 $R^{\mathrm {ps}}_{\underline {\Sigma }}/{\mathfrak p}$
 is a complete local k-algebra of dimension
$R^{\mathrm {ps}}_{\underline {\Sigma }}/{\mathfrak p}$
 is a complete local k-algebra of dimension 
 $1$
, there will exist
$1$
, there will exist 
 $a\in E$
 and index i such that the coefficients of
$a\in E$
 and index i such that the coefficients of 
 $D_{i,y}(t - a)$
 will generate a transcendental extension of k inside
$D_{i,y}(t - a)$
 will generate a transcendental extension of k inside 
 $\kappa ({\mathfrak p})$
. Since
$\kappa ({\mathfrak p})$
. Since 
 ${\mathfrak p}\in \operatorname {\mathrm {Spec}} C$
, we have
${\mathfrak p}\in \operatorname {\mathrm {Spec}} C$
, we have 
 $$ \begin{align*}\prod_{i=1}^r D_{i,y}(t-a)= \prod_{i=1}^r \overline{D}^{\prime}_i(t-a).\end{align*} $$
$$ \begin{align*}\prod_{i=1}^r D_{i,y}(t-a)= \prod_{i=1}^r \overline{D}^{\prime}_i(t-a).\end{align*} $$
Thus, all the roots of 
 $D_{i,y}(t-a)$
 in the algebraic closure of
$D_{i,y}(t-a)$
 in the algebraic closure of 
 $\kappa ({\mathfrak p})$
 are algebraic over k. Since
$\kappa ({\mathfrak p})$
 are algebraic over k. Since 
 $D_{i,y}(t-a)$
 is a monic polynomial, we conclude that all the coefficients are also algebraic over k, giving a contradiction.
$D_{i,y}(t-a)$
 is a monic polynomial, we conclude that all the coefficients are also algebraic over k, giving a contradiction.
 Let 
 $\overline {X}^{\mathrm {ps}}_{\mathcal {P}}$
 be the scheme theoretic image of
$\overline {X}^{\mathrm {ps}}_{\mathcal {P}}$
 be the scheme theoretic image of 
 $\iota _{\underline {\Sigma }}$
. We note that
$\iota _{\underline {\Sigma }}$
. We note that 
 $\overline {X}^{\mathrm {ps}}_{\mathcal {P}}$
 depends only on
$\overline {X}^{\mathrm {ps}}_{\mathcal {P}}$
 depends only on 
 $\mathcal {P}$
 and not on the chosen ordering
$\mathcal {P}$
 and not on the chosen ordering 
 $\underline {\Sigma }$
. It follows from Lemma 3.24 that
$\underline {\Sigma }$
. It follows from Lemma 3.24 that 
 $$ \begin{align} \dim \overline{X}^{\mathrm{ps}}_{\mathcal{P}}= \dim \overline{X}^{\mathrm{ps}}_{\underline{\Sigma}} = \sum_{i=1}^r\dim \overline{X}^{\mathrm{ps}}_i = r+ l_{\mathcal{P}} [F:\mathbb{Q}_p], \end{align} $$
$$ \begin{align} \dim \overline{X}^{\mathrm{ps}}_{\mathcal{P}}= \dim \overline{X}^{\mathrm{ps}}_{\underline{\Sigma}} = \sum_{i=1}^r\dim \overline{X}^{\mathrm{ps}}_i = r+ l_{\mathcal{P}} [F:\mathbb{Q}_p], \end{align} $$
where the last equality is obtained by applying [Reference Böckle and Juschka9, Theorem 5.4.1(a)] to each 
 $\overline {X}_i^{\mathrm {ps}}$
.
$\overline {X}_i^{\mathrm {ps}}$
.
 We define a partial order on the set of partitions of 
 $\{1, \ldots , m\}$
 by
$\{1, \ldots , m\}$
 by 
 $\mathcal {P}\le \mathcal {P}'$
 if
$\mathcal {P}\le \mathcal {P}'$
 if 
 $\mathcal {P}'$
 is a refinement of
$\mathcal {P}'$
 is a refinement of 
 $\mathcal {P}$
. The partition
$\mathcal {P}$
. The partition 
 $\mathcal {P}_{\min }$
 consisting of one part is the minimal element, and the partition
$\mathcal {P}_{\min }$
 consisting of one part is the minimal element, and the partition 
 $\mathcal {P}_{\max }$
 consisting of m parts is the maximal element with respect to this partial ordering. If
$\mathcal {P}_{\max }$
 consisting of m parts is the maximal element with respect to this partial ordering. If 
 $ \mathcal {P}\le \mathcal {P}'$
, then
$ \mathcal {P}\le \mathcal {P}'$
, then 
 $\overline {X}^{\mathrm {ps}}_{\mathcal {P}'}$
 is a closed subscheme of
$\overline {X}^{\mathrm {ps}}_{\mathcal {P}'}$
 is a closed subscheme of 
 $\overline {X}^{\mathrm {ps}}_{\mathcal {P}}$
 and
$\overline {X}^{\mathrm {ps}}_{\mathcal {P}}$
 and 
 $\overline {X}^{\mathrm {ps}}_{\mathcal {P}_{\min }}= \overline {X}^{\mathrm {ps}}$
. Let
$\overline {X}^{\mathrm {ps}}_{\mathcal {P}_{\min }}= \overline {X}^{\mathrm {ps}}$
. Let 
 $$ \begin{align*}U_{\mathcal{P}}:= \overline{X}^{\mathrm{ps}}_{\mathcal{P}} \setminus ( \{{\mathfrak m}_{R^{\mathrm{ps}}}\} \cup \bigcup_{\mathcal{P}< \mathcal{P}'} \overline{X}^{\mathrm{ps}}_{\mathcal{P}'}),\end{align*} $$
$$ \begin{align*}U_{\mathcal{P}}:= \overline{X}^{\mathrm{ps}}_{\mathcal{P}} \setminus ( \{{\mathfrak m}_{R^{\mathrm{ps}}}\} \cup \bigcup_{\mathcal{P}< \mathcal{P}'} \overline{X}^{\mathrm{ps}}_{\mathcal{P}'}),\end{align*} $$
let 
 $V_{\mathcal {P}}$
 be the preimage of
$V_{\mathcal {P}}$
 be the preimage of 
 $U_{\mathcal {P}}$
 in
$U_{\mathcal {P}}$
 in 
 $\overline {X}^{\mathrm {gen}}$
 and let
$\overline {X}^{\mathrm {gen}}$
 and let 
 $Z_{\mathcal {P}}$
 be the closure of
$Z_{\mathcal {P}}$
 be the closure of 
 $V_{\mathcal {P}}$
 in
$V_{\mathcal {P}}$
 in 
 $\overline {X}^{\mathrm {gen}}$
. Let
$\overline {X}^{\mathrm {gen}}$
. Let 
 $\overline {X}^{\mathrm {gen}}_{\mathcal {P}}$
 be the preimage of
$\overline {X}^{\mathrm {gen}}_{\mathcal {P}}$
 be the preimage of 
 $\overline {X}^{\mathrm {ps}}_{\mathcal {P}}$
 in
$\overline {X}^{\mathrm {ps}}_{\mathcal {P}}$
 in 
 $\overline {X}^{\mathrm {gen}}$
. Then
$\overline {X}^{\mathrm {gen}}$
. Then 
 $\overline {X}^{\mathrm {gen}}_{\mathcal {P}}$
 is closed in
$\overline {X}^{\mathrm {gen}}_{\mathcal {P}}$
 is closed in 
 $\overline {X}^{\mathrm {gen}}$
 and contains
$\overline {X}^{\mathrm {gen}}$
 and contains 
 $V_{\mathcal {P}}$
; hence, we are in the situation of Lemma 3.18 with
$V_{\mathcal {P}}$
; hence, we are in the situation of Lemma 3.18 with 
 $\operatorname {\mathrm {Spec}} R = \overline {X}^{\mathrm {ps}}_{\mathcal {P}}$
 and
$\operatorname {\mathrm {Spec}} R = \overline {X}^{\mathrm {ps}}_{\mathcal {P}}$
 and 
 $\operatorname {\mathrm {Spec}} S = Z_{\mathcal {P}}$
. Note that Lemma 3.21 implies that every irreducible component of
$\operatorname {\mathrm {Spec}} S = Z_{\mathcal {P}}$
. Note that Lemma 3.21 implies that every irreducible component of 
 $\overline {X}^{\mathrm {gen}}_{\mathcal {P}}$
 contains a closed point mapping to
$\overline {X}^{\mathrm {gen}}_{\mathcal {P}}$
 contains a closed point mapping to 
 ${\mathfrak m}_{R^{\mathrm {ps}}}$
. Thus, the condition in part (5) of Lemma 3.18 is satisfied, and hence,
${\mathfrak m}_{R^{\mathrm {ps}}}$
. Thus, the condition in part (5) of Lemma 3.18 is satisfied, and hence, 
 $\dim Z_{\mathcal {P}} = \dim V_{\mathcal {P}} + 1$
; the same conclusion applies to closures of various loci considered below. Moreover, we have
$\dim Z_{\mathcal {P}} = \dim V_{\mathcal {P}} + 1$
; the same conclusion applies to closures of various loci considered below. Moreover, we have 
 $$ \begin{align} \overline{X}^{\mathrm{gen}}_{\mathcal{P}}= Y \cup \bigcup_{\mathcal{P}\le \mathcal{P}'} Z_{\mathcal{P}'}, \end{align} $$
$$ \begin{align} \overline{X}^{\mathrm{gen}}_{\mathcal{P}}= Y \cup \bigcup_{\mathcal{P}\le \mathcal{P}'} Z_{\mathcal{P}'}, \end{align} $$
where Y is the preimage of 
 $\{{\mathfrak m}_{R^{\mathrm {ps}}}\}$
 in
$\{{\mathfrak m}_{R^{\mathrm {ps}}}\}$
 in 
 $\overline {X}^{\mathrm {gen}}$
.
$\overline {X}^{\mathrm {gen}}$
.
 We will also need a variant of the situation above. Let us assume that 
 $r>1$
 and let i and j be distinct indices with
$r>1$
 and let i and j be distinct indices with 
 $1\le i, j\le r$
. Let
$1\le i, j\le r$
. Let 
 $\mathcal F_{\underline {\Sigma }}^{ij}$
 be a subfunctor of
$\mathcal F_{\underline {\Sigma }}^{ij}$
 be a subfunctor of 
 $\mathcal F_{\underline {\Sigma }}$
 parameterizing the deformations
$\mathcal F_{\underline {\Sigma }}$
 parameterizing the deformations 
 $(D_1, \ldots , D_r)$
 of the ordered r-tuple
$(D_1, \ldots , D_r)$
 of the ordered r-tuple 
 $(\overline {D}^{\prime }_1, \ldots , \overline {D}^{\prime }_r)$
 such that
$(\overline {D}^{\prime }_1, \ldots , \overline {D}^{\prime }_r)$
 such that 
 $D_i= D_j(1)$
. Then
$D_i= D_j(1)$
. Then 
 $\mathcal F_{\underline {\Sigma }}^{ij}$
 is a closed subfunctor of
$\mathcal F_{\underline {\Sigma }}^{ij}$
 is a closed subfunctor of 
 $\mathcal F_{\underline {\Sigma }}$
, and we let
$\mathcal F_{\underline {\Sigma }}$
, and we let 
 $R^{\mathrm {ps}, ij}_{\underline {\Sigma }}$
 be the quotient of
$R^{\mathrm {ps}, ij}_{\underline {\Sigma }}$
 be the quotient of 
 $R^{\mathrm {ps}}_{\underline {\Sigma }}$
 representing it. If
$R^{\mathrm {ps}}_{\underline {\Sigma }}$
 representing it. If 
 $\overline {D}^{\prime }_i\neq \overline {D}^{\prime }_j(1)$
, then
$\overline {D}^{\prime }_i\neq \overline {D}^{\prime }_j(1)$
, then 
 $R^{\mathrm {ps}, ij}_{\underline {\Sigma }}$
 is the zero ring; otherwise, it follows from Equation (17) and another application of [Reference Böckle and Juschka9, Theorem 5.4.1(a)] that
$R^{\mathrm {ps}, ij}_{\underline {\Sigma }}$
 is the zero ring; otherwise, it follows from Equation (17) and another application of [Reference Böckle and Juschka9, Theorem 5.4.1(a)] that 
 $$ \begin{align*} \dim R^{\mathrm{ps}, ij}_{\underline{\Sigma}}/\varpi = \dim R^{\mathrm{ps}}_{\underline{\Sigma}}/\varpi - \dim R^{\mathrm{ps}}_i/\varpi &\leq r + l_{\mathcal{P}} [F:\mathbb{Q}_p] - ( 1+d_i^2[F:\mathbb{Q}_p]) \\ &\leq r + l_{\mathcal{P}} [F:\mathbb{Q}_p] - ( 1+[F:\mathbb{Q}_p]). \end{align*} $$
$$ \begin{align*} \dim R^{\mathrm{ps}, ij}_{\underline{\Sigma}}/\varpi = \dim R^{\mathrm{ps}}_{\underline{\Sigma}}/\varpi - \dim R^{\mathrm{ps}}_i/\varpi &\leq r + l_{\mathcal{P}} [F:\mathbb{Q}_p] - ( 1+d_i^2[F:\mathbb{Q}_p]) \\ &\leq r + l_{\mathcal{P}} [F:\mathbb{Q}_p] - ( 1+[F:\mathbb{Q}_p]). \end{align*} $$
Let 
 $\overline {X}^{\mathrm {ps}, ij}_{\mathcal {P}}$
 be the scheme theoretic image of
$\overline {X}^{\mathrm {ps}, ij}_{\mathcal {P}}$
 be the scheme theoretic image of 
 $\operatorname {\mathrm {Spec}} R^{\mathrm {ps}, ij}_{\underline {\Sigma }}$
 in
$\operatorname {\mathrm {Spec}} R^{\mathrm {ps}, ij}_{\underline {\Sigma }}$
 in 
 $\overline {X}^{\mathrm {ps}}$
 under
$\overline {X}^{\mathrm {ps}}$
 under 
 $\iota _{\underline {\Sigma }}$
. Then
$\iota _{\underline {\Sigma }}$
. Then 
 $$ \begin{align} \dim \overline{X}^{\mathrm{ps},ij}_{\mathcal{P}}\le r + l_{\mathcal{P}} [F:\mathbb{Q}_p] - ( 1+[F:\mathbb{Q}_p]). \end{align} $$
$$ \begin{align} \dim \overline{X}^{\mathrm{ps},ij}_{\mathcal{P}}\le r + l_{\mathcal{P}} [F:\mathbb{Q}_p] - ( 1+[F:\mathbb{Q}_p]). \end{align} $$
Let 
 $U_{\mathcal {P}}^{ij}:= U_{\mathcal {P}} \cap \overline {X}^{\mathrm {ps}, ij}_{\mathcal {P}}$
, let
$U_{\mathcal {P}}^{ij}:= U_{\mathcal {P}} \cap \overline {X}^{\mathrm {ps}, ij}_{\mathcal {P}}$
, let 
 $V_{\mathcal {P}}^{ij}$
 be the preimage of
$V_{\mathcal {P}}^{ij}$
 be the preimage of 
 $U_{\mathcal {P}}^{ij}$
 in
$U_{\mathcal {P}}^{ij}$
 in 
 $\overline {X}^{\mathrm {gen}}$
 and let
$\overline {X}^{\mathrm {gen}}$
 and let 
 $Z_{\mathcal {P}}^{ij}$
 be the closure of
$Z_{\mathcal {P}}^{ij}$
 be the closure of 
 $V_{\mathcal {P}}^{ij}$
 in
$V_{\mathcal {P}}^{ij}$
 in 
 $\overline {X}^{\mathrm {gen}}$
.
$\overline {X}^{\mathrm {gen}}$
.
Lemma 3.25. If y is a geometric closed point of 
 $U_{\mathcal {P}}$
, then
$U_{\mathcal {P}}$
, then 
 $$ \begin{align*}\dim X^{\mathrm{gen}}_y\le d^2-r+ n_{\mathcal{P}} [F:\mathbb{Q}_p] + \sum_{i=1}^{k'} \begin{pmatrix} n_i^{\prime}\\ 2\end{pmatrix}.\end{align*} $$
$$ \begin{align*}\dim X^{\mathrm{gen}}_y\le d^2-r+ n_{\mathcal{P}} [F:\mathbb{Q}_p] + \sum_{i=1}^{k'} \begin{pmatrix} n_i^{\prime}\\ 2\end{pmatrix}.\end{align*} $$
If we additionally assume that 
 $y\not \in U_{\mathcal {P}}^{ij}$
 for any
$y\not \in U_{\mathcal {P}}^{ij}$
 for any 
 $i\neq j$
, then
$i\neq j$
, then 
 $$ \begin{align*}\dim X^{\mathrm{gen}}_y\le d^2-r+ n_{\mathcal{P}} [F:\mathbb{Q}_p].\end{align*} $$
$$ \begin{align*}\dim X^{\mathrm{gen}}_y\le d^2-r+ n_{\mathcal{P}} [F:\mathbb{Q}_p].\end{align*} $$
Proof. We may write 
 $D_y=D_1+ \ldots + D_r$
 with
$D_y=D_1+ \ldots + D_r$
 with 
 $D_i$
 lifting
$D_i$
 lifting 
 $\overline {D}_i^{\prime }$
. We note that all the
$\overline {D}_i^{\prime }$
. We note that all the 
 $D_i$
 are absolutely irreducible since otherwise,
$D_i$
 are absolutely irreducible since otherwise, 
 $y \in X_{\mathcal {P}'}^{\mathrm {ps}}$
 for some
$y \in X_{\mathcal {P}'}^{\mathrm {ps}}$
 for some 
 $\mathcal {P}'> \mathcal {P}$
. Let k and
$\mathcal {P}'> \mathcal {P}$
. Let k and 
 $n_i$
 be the numbers defined in Section 3.2. Proposition 3.15 implies that
$n_i$
 be the numbers defined in Section 3.2. Proposition 3.15 implies that 
 $$ \begin{align*} \dim X^{\mathrm{gen}}_y\le d^2-r+ n_{\mathcal{P}} [F:\mathbb{Q}_p] + \sum_{i=1}^{k} \begin{pmatrix} n_i\\ 2\end{pmatrix}. \end{align*} $$
$$ \begin{align*} \dim X^{\mathrm{gen}}_y\le d^2-r+ n_{\mathcal{P}} [F:\mathbb{Q}_p] + \sum_{i=1}^{k} \begin{pmatrix} n_i\\ 2\end{pmatrix}. \end{align*} $$
If 
 $D_i= D_j(m)$
 for some
$D_i= D_j(m)$
 for some 
 $m \in \mathbb Z$
, then also
$m \in \mathbb Z$
, then also 
 $\overline {D}_i^{\prime }= \overline {D}_j^{\prime }(m)$
. This implies that
$\overline {D}_i^{\prime }= \overline {D}_j^{\prime }(m)$
. This implies that 
 $$ \begin{align*}\sum_{i=1}^k \begin{pmatrix} n_i \\ 2\end{pmatrix} \le \sum_{i=1}^{k'} \begin{pmatrix} n_i^{\prime} \\ 2\end{pmatrix},\end{align*} $$
$$ \begin{align*}\sum_{i=1}^k \begin{pmatrix} n_i \\ 2\end{pmatrix} \le \sum_{i=1}^{k'} \begin{pmatrix} n_i^{\prime} \\ 2\end{pmatrix},\end{align*} $$
which implies the first assertion. We note that if 
 $a_i, \ldots , a_s$
 are positive integers, then
$a_i, \ldots , a_s$
 are positive integers, then 
 $$ \begin{align*}\sum _{i=1}^s \begin {pmatrix} a_i \\2\end {pmatrix} \le \begin {pmatrix} \sum _{i=1}^s a_i \\2\end {pmatrix}.\end{align*} $$
$$ \begin{align*}\sum _{i=1}^s \begin {pmatrix} a_i \\2\end {pmatrix} \le \begin {pmatrix} \sum _{i=1}^s a_i \\2\end {pmatrix}.\end{align*} $$
 If 
 $y\not \in U_{\mathcal {P}}^{ij}$
 for any
$y\not \in U_{\mathcal {P}}^{ij}$
 for any 
 $i\neq j$
, then
$i\neq j$
, then 
 $D_i\neq D_j(1)$
 for any
$D_i\neq D_j(1)$
 for any 
 $i\neq j$
, and the
$i\neq j$
, and the 
 $\operatorname {\mathrm {Hom}}$
 terms in (9) vanish. The assertion follows from Proposition 3.15 using this improved bound.
$\operatorname {\mathrm {Hom}}$
 terms in (9) vanish. The assertion follows from Proposition 3.15 using this improved bound.
Proposition 3.26. 
 $\dim Z_{\mathcal {P}}^{ij} \le d^2 + p_{\mathcal {P}} [F:\mathbb {Q}_p]+ \sum _{i=1}^{k'} \begin {pmatrix} n_i^{\prime }\\ 2\end {pmatrix} - (1 + [F:\mathbb {Q}_p])$
.
$\dim Z_{\mathcal {P}}^{ij} \le d^2 + p_{\mathcal {P}} [F:\mathbb {Q}_p]+ \sum _{i=1}^{k'} \begin {pmatrix} n_i^{\prime }\\ 2\end {pmatrix} - (1 + [F:\mathbb {Q}_p])$
.
Proof. It follows from Lemma 3.18 (5) that the closure of 
 $U_{\mathcal {P}}^{ij}$
 has dimension
$U_{\mathcal {P}}^{ij}$
 has dimension 
 $\dim U_{\mathcal {P}}^{ij} +1$
. Thus,
$\dim U_{\mathcal {P}}^{ij} +1$
. Thus, 
 $$ \begin{align*}\dim U_{\mathcal{P}}^{ij} +1 \le \dim X^{\mathrm{ps}, ij}_{\mathcal{P}}\le r+ l_{\mathcal{P}}[F:\mathbb{Q}_p] - (1+[F:\mathbb{Q}_p]),\end{align*} $$
$$ \begin{align*}\dim U_{\mathcal{P}}^{ij} +1 \le \dim X^{\mathrm{ps}, ij}_{\mathcal{P}}\le r+ l_{\mathcal{P}}[F:\mathbb{Q}_p] - (1+[F:\mathbb{Q}_p]),\end{align*} $$
where the last inequality is (19). Parts (5) and (6) of Lemma 3.18 together with Lemma 3.25 imply that
 $$ \begin{align*}\dim Z^{ij}_{\mathcal{P}}\le (r+ l_{\mathcal{P}}[F:\mathbb{Q}_p] - (1+[F:\mathbb{Q}_p]))+ (d^2-r +n_{\mathcal{P}} [F:\mathbb{Q}_p] + \sum_{i=1}^{k'} \begin{pmatrix} n_i^{\prime}\\ 2\end{pmatrix}),\end{align*} $$
$$ \begin{align*}\dim Z^{ij}_{\mathcal{P}}\le (r+ l_{\mathcal{P}}[F:\mathbb{Q}_p] - (1+[F:\mathbb{Q}_p]))+ (d^2-r +n_{\mathcal{P}} [F:\mathbb{Q}_p] + \sum_{i=1}^{k'} \begin{pmatrix} n_i^{\prime}\\ 2\end{pmatrix}),\end{align*} $$
which imply the assertion.
Proposition 3.27. Let 
 $\delta _{\mathcal {P}}= \max \{ 0, \sum _{i=1}^{k'} \begin {pmatrix} n_i^{\prime }\\ 2\end {pmatrix} - (1+[F:\mathbb {Q}_p])\}$
. Then
$\delta _{\mathcal {P}}= \max \{ 0, \sum _{i=1}^{k'} \begin {pmatrix} n_i^{\prime }\\ 2\end {pmatrix} - (1+[F:\mathbb {Q}_p])\}$
. Then 
 $$ \begin{align*}\dim Z_{\mathcal{P}} \le d^2+ p_{\mathcal{P}} [F:\mathbb{Q}_p] +\delta_{\mathcal{P}}.\end{align*} $$
$$ \begin{align*}\dim Z_{\mathcal{P}} \le d^2+ p_{\mathcal{P}} [F:\mathbb{Q}_p] +\delta_{\mathcal{P}}.\end{align*} $$
Proof. Let 
 $U^{\prime }_{\mathcal {P}}:= U_{\mathcal {P}} \setminus \bigcup _{i\neq j} U_{\mathcal {P}}^{ij}$
, let
$U^{\prime }_{\mathcal {P}}:= U_{\mathcal {P}} \setminus \bigcup _{i\neq j} U_{\mathcal {P}}^{ij}$
, let 
 $V^{\prime }_{\mathcal {P}}$
 be the preimage of
$V^{\prime }_{\mathcal {P}}$
 be the preimage of 
 $U^{\prime }_{\mathcal {P}}$
 in
$U^{\prime }_{\mathcal {P}}$
 in 
 $\overline {X}^{\mathrm {gen}}$
 and let
$\overline {X}^{\mathrm {gen}}$
 and let 
 $Z^{\prime }_P$
 denote the closure of
$Z^{\prime }_P$
 denote the closure of 
 $V^{\prime }_{\mathcal {P}}$
 in
$V^{\prime }_{\mathcal {P}}$
 in 
 $\overline {X}^{\mathrm {gen}}$
. If y is a closed point of
$\overline {X}^{\mathrm {gen}}$
. If y is a closed point of 
 $U^{\prime }_{\mathcal {P}}$
, then
$U^{\prime }_{\mathcal {P}}$
, then 
 $\dim \overline {X}^{\mathrm {gen}}_y \le d^2-r+ n_{\mathcal {P}} [F:\mathbb {Q}_p]$
 by Lemma 3.25. Thus, Lemma 3.18 implies that
$\dim \overline {X}^{\mathrm {gen}}_y \le d^2-r+ n_{\mathcal {P}} [F:\mathbb {Q}_p]$
 by Lemma 3.25. Thus, Lemma 3.18 implies that 
 $$ \begin{align} \dim Z^{\prime}_{\mathcal{P}} \le \dim \overline{X}^{\mathrm{ps}}_{\mathcal{P}} + (d^2-r+ n_{\mathcal{P}} [F:\mathbb{Q}_p])= d^2+ p_{\mathcal{P}} [F:\mathbb{Q}_p]. \end{align} $$
$$ \begin{align} \dim Z^{\prime}_{\mathcal{P}} \le \dim \overline{X}^{\mathrm{ps}}_{\mathcal{P}} + (d^2-r+ n_{\mathcal{P}} [F:\mathbb{Q}_p])= d^2+ p_{\mathcal{P}} [F:\mathbb{Q}_p]. \end{align} $$
Since 
 $Z_{\mathcal {P}}= Z^{\prime }_{\mathcal {P}} \cup \bigcup _{i\neq j} Z^{ij}_{\mathcal {P}}$
, we have
$Z_{\mathcal {P}}= Z^{\prime }_{\mathcal {P}} \cup \bigcup _{i\neq j} Z^{ij}_{\mathcal {P}}$
, we have 
 $\dim Z_{\mathcal {P}}= \max _{i\neq j}\{ \dim Z^{\prime }_{\mathcal {P}}, \dim Z^{ij}_{\mathcal {P}}\}$
, and the assertion follows from Proposition 3.26.
$\dim Z_{\mathcal {P}}= \max _{i\neq j}\{ \dim Z^{\prime }_{\mathcal {P}}, \dim Z^{ij}_{\mathcal {P}}\}$
, and the assertion follows from Proposition 3.26.
Proposition 3.28. 
 $\dim Z_{\mathcal {P}_{\min }}\le d^2 + d^2[F:\mathbb {Q}_p]$
.
$\dim Z_{\mathcal {P}_{\min }}\le d^2 + d^2[F:\mathbb {Q}_p]$
.
Proof. In this case, 
 $r=1$
, so
$r=1$
, so 
 $Z_{\mathcal {P}}=Z^{\prime }_{\mathcal {P}}$
, and the assertion follows from (20).
$Z_{\mathcal {P}}=Z^{\prime }_{\mathcal {P}}$
, and the assertion follows from (20).
Lemma 3.29. Assume that 
 $\mathcal {P} \neq \mathcal {P}_{\min }$
. If
$\mathcal {P} \neq \mathcal {P}_{\min }$
. If 
 $d=2$
, then
$d=2$
, then 
 $$ \begin{align*}d^2+ d^2[F:\mathbb{Q}_p] - \dim Z_{\mathcal{P}} \ge [F:\mathbb{Q}_p],\end{align*} $$
$$ \begin{align*}d^2+ d^2[F:\mathbb{Q}_p] - \dim Z_{\mathcal{P}} \ge [F:\mathbb{Q}_p],\end{align*} $$
and
 $$ \begin{align*}d^2+d^2[F:\mathbb{Q}_p] - \dim Z_{\mathcal{P}}\ge 1+[F:\mathbb{Q}_p],\end{align*} $$
$$ \begin{align*}d^2+d^2[F:\mathbb{Q}_p] - \dim Z_{\mathcal{P}}\ge 1+[F:\mathbb{Q}_p],\end{align*} $$
otherwise.
Proof. Proposition 3.27 implies that
 $$ \begin{align*}d^2+ d^2[F:\mathbb{Q}_p] - \dim Z_{\mathcal{P}}\ge n_{\mathcal{P}}[F:\mathbb{Q}_p] - \delta_{\mathcal{P}}.\end{align*} $$
$$ \begin{align*}d^2+ d^2[F:\mathbb{Q}_p] - \dim Z_{\mathcal{P}}\ge n_{\mathcal{P}}[F:\mathbb{Q}_p] - \delta_{\mathcal{P}}.\end{align*} $$
If 
 $d>2$
, then
$d>2$
, then 
 $n_{\mathcal {P}}\ge 2$
, and if
$n_{\mathcal {P}}\ge 2$
, and if 
 $d=2$
, then
$d=2$
, then 
 $n_{\mathcal {P}} =1$
, which implies the assertion if
$n_{\mathcal {P}} =1$
, which implies the assertion if 
 $\delta _{\mathcal {P}}=0$
. Let us assume that
$\delta _{\mathcal {P}}=0$
. Let us assume that 
 $\delta _{\mathcal {P}}\neq 0$
. Then using (16), we may write
$\delta _{\mathcal {P}}\neq 0$
. Then using (16), we may write 
 $$ \begin{align*}n_{\mathcal{P}}[F:\mathbb{Q}_p] -\delta_{\mathcal{P}}= \sum_{1\le i< j\le k'} c_i c_j n_i^{\prime} n_j^{\prime} [F:\mathbb{Q}_p] + \sum_{i=1}^{k'} ( c_i^2 [F:\mathbb{Q}_p] -1) \begin{pmatrix} n_i^{\prime}\\ 2\end{pmatrix} + 1 + [F:\mathbb{Q}_p],\end{align*} $$
$$ \begin{align*}n_{\mathcal{P}}[F:\mathbb{Q}_p] -\delta_{\mathcal{P}}= \sum_{1\le i< j\le k'} c_i c_j n_i^{\prime} n_j^{\prime} [F:\mathbb{Q}_p] + \sum_{i=1}^{k'} ( c_i^2 [F:\mathbb{Q}_p] -1) \begin{pmatrix} n_i^{\prime}\\ 2\end{pmatrix} + 1 + [F:\mathbb{Q}_p],\end{align*} $$
which implies the assertion.
Lemma 3.30. Let Y be the preimage of 
 $\{{\mathfrak m}_{R^{\mathrm {ps}}}\}$
 in
$\{{\mathfrak m}_{R^{\mathrm {ps}}}\}$
 in 
 $\overline {X}^{\mathrm {gen}}$
. Then
$\overline {X}^{\mathrm {gen}}$
. Then 
 $$ \begin{align*}\dim Y\le d^2 + n_{\mathcal{P}_{\max}} [F:\mathbb{Q}_p] + n_{\mathcal{P}_{\max}}-1 .\end{align*} $$
$$ \begin{align*}\dim Y\le d^2 + n_{\mathcal{P}_{\max}} [F:\mathbb{Q}_p] + n_{\mathcal{P}_{\max}}-1 .\end{align*} $$
In particular, 
 $d^2+ d^2[F:\mathbb {Q}_p]- \dim Y \ge 1+ l_{\mathcal {P}_{\max }} [F:\mathbb {Q}_p] \ge 1+2 [F:\mathbb {Q}_p]$
.
$d^2+ d^2[F:\mathbb {Q}_p]- \dim Y \ge 1+ l_{\mathcal {P}_{\max }} [F:\mathbb {Q}_p] \ge 1+2 [F:\mathbb {Q}_p]$
.
Proof. Proposition 3.15 implies that
 $$ \begin{align*}\dim Y \le d^2 -m + n_{\mathcal{P}_{\max}} [F:\mathbb{Q}_p]+ \sum_{i=1}^{k'} \begin{pmatrix} n_i^{\prime}\\ 2\end{pmatrix}.\end{align*} $$
$$ \begin{align*}\dim Y \le d^2 -m + n_{\mathcal{P}_{\max}} [F:\mathbb{Q}_p]+ \sum_{i=1}^{k'} \begin{pmatrix} n_i^{\prime}\\ 2\end{pmatrix}.\end{align*} $$
As already explained in the proof of Lemma 3.29, we have 
 $\sum _{i=1}^{k'} \begin {pmatrix} n_i^{\prime }\\ 2\end {pmatrix}\le n_{\mathcal {P}_{\max }}$
. This implies the assertion.
$\sum _{i=1}^{k'} \begin {pmatrix} n_i^{\prime }\\ 2\end {pmatrix}\le n_{\mathcal {P}_{\max }}$
. This implies the assertion.
Theorem 3.31. 
 $\dim \overline {X}^{\mathrm {gen}} \le d^2+ d^2[F:\mathbb {Q}_p]$
.
$\dim \overline {X}^{\mathrm {gen}} \le d^2+ d^2[F:\mathbb {Q}_p]$
.
Proof. Since 
 $\overline {X}^{\mathrm {ps}}= \{{\mathfrak m}_{R^{\mathrm {ps}}}\}\cup \bigcup _{\mathcal {P}} U_{\mathcal {P}}$
, we have
$\overline {X}^{\mathrm {ps}}= \{{\mathfrak m}_{R^{\mathrm {ps}}}\}\cup \bigcup _{\mathcal {P}} U_{\mathcal {P}}$
, we have 
 $\overline {X}^{\mathrm {gen}}= Y \cup \bigcup _{\mathcal {P}} Z_{\mathcal {P}}$
. Since these are closed in
$\overline {X}^{\mathrm {gen}}= Y \cup \bigcup _{\mathcal {P}} Z_{\mathcal {P}}$
. Since these are closed in 
 $\overline {X}^{\mathrm {gen}}$
, we have
$\overline {X}^{\mathrm {gen}}$
, we have 
 $$ \begin{align*}\dim \overline{X}^{\mathrm{gen}} = \max_{\mathcal{P}} \{ \dim Y, \dim Z_{\mathcal{P}}\}\le d^2+d^2[F:\mathbb{Q}_p],\end{align*} $$
$$ \begin{align*}\dim \overline{X}^{\mathrm{gen}} = \max_{\mathcal{P}} \{ \dim Y, \dim Z_{\mathcal{P}}\}\le d^2+d^2[F:\mathbb{Q}_p],\end{align*} $$
 Theorem 3.31 is the main input to Corollary 3.38, which proves Theorem 1.1. The missing ingredient is a description of the relationship between 
 $X^{\mathrm {gen}}$
 and
$X^{\mathrm {gen}}$
 and 
 $R_{\overline {\rho }}^{\square }$
, which is the subject of the next subsection.
$R_{\overline {\rho }}^{\square }$
, which is the subject of the next subsection.
3.5 Completions at maximal ideals and deformation problems
 Let 
 $Y\subset X^{\mathrm {gen}}$
 be the preimage of the closed point of
$Y\subset X^{\mathrm {gen}}$
 be the preimage of the closed point of 
 $X^{\mathrm {ps}}$
, let x be either a closed point of Y or a closed point of
$X^{\mathrm {ps}}$
, let x be either a closed point of Y or a closed point of 
 $X^{\mathrm {gen}}\setminus Y$
 and let y be its image in
$X^{\mathrm {gen}}\setminus Y$
 and let y be its image in 
 $\operatorname {\mathrm {Spec}} R^{\mathrm {ps}}$
. It follows from Lemmas 3.17 and 3.18 that
$\operatorname {\mathrm {Spec}} R^{\mathrm {ps}}$
. It follows from Lemmas 3.17 and 3.18 that 
 $\kappa (x)$
 is a finite extension of
$\kappa (x)$
 is a finite extension of 
 $\kappa (y)$
 and there are the following possibilities:
$\kappa (y)$
 and there are the following possibilities: 
- 
(1) if  $x\in Y$
, then $x\in Y$
, then $\kappa (x)$
 is a finite extension of k; $\kappa (x)$
 is a finite extension of k;
- 
(2) if  $x\in X^{\mathrm {gen}}[1/p]$
, then $x\in X^{\mathrm {gen}}[1/p]$
, then $\kappa (x)$
 is a finite extension of L; $\kappa (x)$
 is a finite extension of L;
- 
(3) if  $x\in \overline {X}^{\mathrm {gen}}\setminus Y$
, then $x\in \overline {X}^{\mathrm {gen}}\setminus Y$
, then $\kappa (x)$
 is a local field of characteristic p. $\kappa (x)$
 is a local field of characteristic p.
 The universal property of 
 $A^{\mathrm {gen}}$
 gives us a continuous Galois representation
$A^{\mathrm {gen}}$
 gives us a continuous Galois representation 
 $$ \begin{align*}\rho_x: G_F \rightarrow \operatorname{\mathrm{GL}}_d(\kappa(x)).\end{align*} $$
$$ \begin{align*}\rho_x: G_F \rightarrow \operatorname{\mathrm{GL}}_d(\kappa(x)).\end{align*} $$
In this section, we want to relate the completion of the local ring 
 $\mathcal {O}_{X^{\mathrm {gen}}, x}$
 to a deformation problem for
$\mathcal {O}_{X^{\mathrm {gen}}, x}$
 to a deformation problem for 
 $\rho _x$
.
$\rho _x$
.
 We will introduce some notation to formulate the deformation problem for 
 $\rho _x$
. More generally, let
$\rho _x$
. More generally, let 
 $\rho : G_F\rightarrow \operatorname {\mathrm {GL}}_d(\kappa )$
 be a continuous representation, where
$\rho : G_F\rightarrow \operatorname {\mathrm {GL}}_d(\kappa )$
 be a continuous representation, where 
 $\kappa $
 is either a finite extension of k, a finite extension of L or a local field of characteristic p containing k equipped with natural topology. We first define a ring of coefficients
$\kappa $
 is either a finite extension of k, a finite extension of L or a local field of characteristic p containing k equipped with natural topology. We first define a ring of coefficients 
 $\Lambda $
 over which the deformation problem is defined.
$\Lambda $
 over which the deformation problem is defined. 
- 
(1) If  $\kappa $
 is a finite field, then pick an unramified extension $\kappa $
 is a finite field, then pick an unramified extension $L'$
 of L with residue field $L'$
 of L with residue field $\kappa $
 and let $\kappa $
 and let $\Lambda := \mathcal {O}_{L'}$
 denote the ring of integers in $\Lambda := \mathcal {O}_{L'}$
 denote the ring of integers in $L'$
. $L'$
.
- 
(2) If  $\kappa $
 is a finite extension of L, then let $\kappa $
 is a finite extension of L, then let $\Lambda :=\kappa $
, let $\Lambda :=\kappa $
, let $\Lambda ^0$
 be the ring of integers in $\Lambda ^0$
 be the ring of integers in $\Lambda $
 and let $\Lambda $
 and let $t=\varpi $
. $t=\varpi $
.
- 
(3) If  $\kappa $
 is a local field of characteristic p, then let $\kappa $
 is a local field of characteristic p, then let $\mathcal {O}_{\kappa }$
 be the ring of integers in $\mathcal {O}_{\kappa }$
 be the ring of integers in $\kappa $
 and let $\kappa $
 and let $k'$
 be its residue field. Since $k'$
 be its residue field. Since $\mathrm {char}(\kappa )=p$
, by choosing a uniformizer, we obtain an isomorphism $\mathrm {char}(\kappa )=p$
, by choosing a uniformizer, we obtain an isomorphism . Let . Let $L'$
 be an unramified extension of L with residue field $L'$
 be an unramified extension of L with residue field $k'$
, let $k'$
, let and let and let $\Lambda $
 be the p-adic completion of $\Lambda $
 be the p-adic completion of $\Lambda ^0[1/t]$
. Then $\Lambda ^0[1/t]$
. Then $\Lambda $
 is a complete DVR with uniformiser $\Lambda $
 is a complete DVR with uniformiser $\varpi $
 and residue field $\varpi $
 and residue field $\kappa $
. We equip $\kappa $
. We equip $\Lambda ^0$
 with its $\Lambda ^0$
 with its $(\varpi , t)$
-adic topology. This induces a topology on $(\varpi , t)$
-adic topology. This induces a topology on $\Lambda ^0[1/t]$
 and $\Lambda ^0[1/t]$
 and $\Lambda ^0[1/t]/ p^n \Lambda ^0[1/t]$
 for all $\Lambda ^0[1/t]/ p^n \Lambda ^0[1/t]$
 for all $n\ge 1$
. We equip $n\ge 1$
. We equip $\Lambda = \varprojlim _{n} \Lambda ^0[1/t]/ p^n \Lambda ^0[1/t]$
 with the projective limit topology. $\Lambda = \varprojlim _{n} \Lambda ^0[1/t]/ p^n \Lambda ^0[1/t]$
 with the projective limit topology.
Remark 3.32. In case (3), if 
 $\Lambda '$
 is an
$\Lambda '$
 is an 
 $\mathcal {O}$
-algebra, which is a complete DVR with uniformiser
$\mathcal {O}$
-algebra, which is a complete DVR with uniformiser 
 $\varpi $
 and residue field
$\varpi $
 and residue field 
 $\kappa $
, then it follows from [Reference Bourbaki10, Ch. IX, §2.3, Prop. 4] that
$\kappa $
, then it follows from [Reference Bourbaki10, Ch. IX, §2.3, Prop. 4] that 
 $\Lambda '$
 is non-canonically isomorphic to
$\Lambda '$
 is non-canonically isomorphic to 
 $\Lambda $
. We will refer to
$\Lambda $
. We will refer to 
 $\Lambda '$
 (and
$\Lambda '$
 (and 
 $\Lambda $
) as an
$\Lambda $
) as an 
 $\mathcal {O}$
-Cohen ring of
$\mathcal {O}$
-Cohen ring of 
 $\kappa $
.
$\kappa $
.
 Let 
 ${\mathfrak A}_{\Lambda }$
 be the category of local Artinian
${\mathfrak A}_{\Lambda }$
 be the category of local Artinian 
 $\Lambda $
-algebras with residue field
$\Lambda $
-algebras with residue field 
 $\kappa $
. Let
$\kappa $
. Let 
 $(A, {\mathfrak m}_A)\in {\mathfrak A}_{\Lambda }$
.
$(A, {\mathfrak m}_A)\in {\mathfrak A}_{\Lambda }$
. 
- 
(1) In case (1), A is a finite  $\mathcal {O}/\varpi ^n$
-module for some $\mathcal {O}/\varpi ^n$
-module for some $n\ge 1$
, and we just put the discrete topology on A. $n\ge 1$
, and we just put the discrete topology on A.
- 
(2) In case (2), A is a finite dimensional L-vector space, and we put the p-adic topology on A. 
- 
(3) In case (3), A is a  $\Lambda ^0[1/t]/ \varpi ^n \Lambda ^0[1/t]$
-module of finite length for some $\Lambda ^0[1/t]/ \varpi ^n \Lambda ^0[1/t]$
-module of finite length for some $n\ge 1$
, and we put the induced topology on A. $n\ge 1$
, and we put the induced topology on A.
 Let 
 $D^{\square }_{\rho }(A)$
 be the set of continuous group homomorphisms
$D^{\square }_{\rho }(A)$
 be the set of continuous group homomorphisms 
 $\rho _A: G_F\rightarrow \operatorname {\mathrm {GL}}_d(A)$
, such that
$\rho _A: G_F\rightarrow \operatorname {\mathrm {GL}}_d(A)$
, such that 
 $\rho _A \ \pmod {{\mathfrak m}_A}=\rho $
.
$\rho _A \ \pmod {{\mathfrak m}_A}=\rho $
.
Proposition 3.33. The functor 
 $D^{\square }_{\rho }: {\mathfrak A}_{\Lambda } \rightarrow \mathrm {Sets}$
 is pro-represented by a complete local Noetherian
$D^{\square }_{\rho }: {\mathfrak A}_{\Lambda } \rightarrow \mathrm {Sets}$
 is pro-represented by a complete local Noetherian 
 $\Lambda $
-algebra
$\Lambda $
-algebra 
 $R^{\square }_{\rho }$
. Moreover, there is a presentation
$R^{\square }_{\rho }$
. Moreover, there is a presentation 

with 
 $r = \dim _{\kappa } Z^1(G_F, \operatorname {\mathrm {ad}} \rho )$
 and
$r = \dim _{\kappa } Z^1(G_F, \operatorname {\mathrm {ad}} \rho )$
 and 
 $s = \dim _{\kappa } H^2(G_F, \operatorname {\mathrm {ad}} \rho )$
.
$s = \dim _{\kappa } H^2(G_F, \operatorname {\mathrm {ad}} \rho )$
.
Proof. If 
 $\kappa $
 is a finite field, then this is a well-known consequence of the obstruction theory due to Mazur, [Reference Mazur37, Section 1.6]. (We revisit the argument in the proof of Proposition 4.3.) If
$\kappa $
 is a finite field, then this is a well-known consequence of the obstruction theory due to Mazur, [Reference Mazur37, Section 1.6]. (We revisit the argument in the proof of Proposition 4.3.) If 
 $\kappa $
 is a local field, then essentially the same argument works, except that one has to work harder to justify why the
$\kappa $
 is a local field, then essentially the same argument works, except that one has to work harder to justify why the 
 $2$
-cocycle constructed out of an obstruction to lifting is continuous. Lecture 6 in [Reference Conrad21] contains a very nice exposition of the result if
$2$
-cocycle constructed out of an obstruction to lifting is continuous. Lecture 6 in [Reference Conrad21] contains a very nice exposition of the result if 
 $\kappa $
 is a finite extension of L. The same argument works if
$\kappa $
 is a finite extension of L. The same argument works if 
 $\kappa $
 is a local field of characteristic p.
$\kappa $
 is a local field of characteristic p.
 If we let 
 $h^i:=\dim _{\kappa } H^i(G_F, \operatorname {\mathrm {ad}} \rho )$
, then
$h^i:=\dim _{\kappa } H^i(G_F, \operatorname {\mathrm {ad}} \rho )$
, then 
 $$ \begin{align} r-s= \dim_{\kappa} (\operatorname{\mathrm{ad}} \rho) -h^0 + h^1-h^2= d^2+d^2[F:\mathbb{Q}_p], \end{align} $$
$$ \begin{align} r-s= \dim_{\kappa} (\operatorname{\mathrm{ad}} \rho) -h^0 + h^1-h^2= d^2+d^2[F:\mathbb{Q}_p], \end{align} $$
where the last equality follows from Euler–Poincaré characteristic formula, which by [Reference Böckle and Juschka9, Theorem 3.4.1(c)] holds in all of the three settings under consideration.
Proposition 3.34. Let 
 $\mathfrak {q}$
 be the kernel of the map
$\mathfrak {q}$
 be the kernel of the map 
 $$ \begin{align*}\Lambda\otimes_{\mathcal{O}} A^{\mathrm{gen}} \rightarrow \kappa(x), \quad \lambda \otimes a \mapsto \bar{\lambda}\bar{a},\end{align*} $$
$$ \begin{align*}\Lambda\otimes_{\mathcal{O}} A^{\mathrm{gen}} \rightarrow \kappa(x), \quad \lambda \otimes a \mapsto \bar{\lambda}\bar{a},\end{align*} $$
where 
 $\bar {\lambda }$
 and
$\bar {\lambda }$
 and 
 $\bar {a}$
 denote the images of
$\bar {a}$
 denote the images of 
 $\lambda $
 and a in
$\lambda $
 and a in 
 $\kappa (x)$
. Then the completion of
$\kappa (x)$
. Then the completion of 
 $(\Lambda \otimes _{\mathcal {O}} A^{\mathrm {gen}})_{\mathfrak {q}}$
 with respect to the maximal ideal is naturally isomorphic to
$(\Lambda \otimes _{\mathcal {O}} A^{\mathrm {gen}})_{\mathfrak {q}}$
 with respect to the maximal ideal is naturally isomorphic to 
 $R^{\square }_{\rho _x}$
.
$R^{\square }_{\rho _x}$
.
Proof. We will prove the proposition, when 
 $\kappa (x)$
 is a local field of characteristic p. The other cases are similar and are left to the reader.
$\kappa (x)$
 is a local field of characteristic p. The other cases are similar and are left to the reader.
 Let 
 $\widehat {B}$
 be the completion of
$\widehat {B}$
 be the completion of 
 $(\Lambda \otimes _{\mathcal {O}} A^{\mathrm {gen}})_{\mathfrak {q}}$
. It follows from Lemma 3.36 below that
$(\Lambda \otimes _{\mathcal {O}} A^{\mathrm {gen}})_{\mathfrak {q}}$
. It follows from Lemma 3.36 below that 
 $\widehat {B}/\varpi \widehat {B}$
 (and hence
$\widehat {B}/\varpi \widehat {B}$
 (and hence 
 $\widehat {B}$
) is Noetherian. Thus,
$\widehat {B}$
) is Noetherian. Thus, 
 $\widehat {B}/\mathfrak {q}^n \widehat {B} \in {\mathfrak A}_{\Lambda }$
 for all
$\widehat {B}/\mathfrak {q}^n \widehat {B} \in {\mathfrak A}_{\Lambda }$
 for all 
 $n\ge 1$
. The composition
$n\ge 1$
. The composition 
 $$ \begin{align*}\Lambda\otimes_{\mathcal{O}} E\overset{\operatorname{\mathrm{id}}\otimes j}{\longrightarrow} \Lambda\otimes_{\mathcal{O}} M_d(A^{\mathrm{gen}})\rightarrow M_d( \widehat{B}/\mathfrak{q}^n \widehat{B})\end{align*} $$
$$ \begin{align*}\Lambda\otimes_{\mathcal{O}} E\overset{\operatorname{\mathrm{id}}\otimes j}{\longrightarrow} \Lambda\otimes_{\mathcal{O}} M_d(A^{\mathrm{gen}})\rightarrow M_d( \widehat{B}/\mathfrak{q}^n \widehat{B})\end{align*} $$
induces a continuous representation 
 $G_F \rightarrow \operatorname {\mathrm {GL}}_d(\widehat {B}/\mathfrak {q}^n \widehat {B})$
 by Lemma 3.2, which is a deformation of
$G_F \rightarrow \operatorname {\mathrm {GL}}_d(\widehat {B}/\mathfrak {q}^n \widehat {B})$
 by Lemma 3.2, which is a deformation of 
 $\rho _x$
 to
$\rho _x$
 to 
 $\widehat {B}/\mathfrak {q}^n \widehat {B}$
, and hence a map of local
$\widehat {B}/\mathfrak {q}^n \widehat {B}$
, and hence a map of local 
 $\Lambda $
-algebras
$\Lambda $
-algebras 
 $R^{\square }_{\rho _x}\rightarrow \widehat {B}/\mathfrak {q}^n \widehat {B}$
. By passing to the projective limit over n, we obtain a continuous representation
$R^{\square }_{\rho _x}\rightarrow \widehat {B}/\mathfrak {q}^n \widehat {B}$
. By passing to the projective limit over n, we obtain a continuous representation 
 $\hat {\rho }: G_F\rightarrow \operatorname {\mathrm {GL}}_d(\widehat {B})$
 and a map of local
$\hat {\rho }: G_F\rightarrow \operatorname {\mathrm {GL}}_d(\widehat {B})$
 and a map of local 
 $\Lambda $
-algebras
$\Lambda $
-algebras 
 $R^{\square }_{\rho _x}\rightarrow \widehat {B}$
.
$R^{\square }_{\rho _x}\rightarrow \widehat {B}$
.
 Let 
 $(A, {\mathfrak m}_A)\in {\mathfrak A}_{\Lambda }$
 and let
$(A, {\mathfrak m}_A)\in {\mathfrak A}_{\Lambda }$
 and let 
 $\rho : G_F\rightarrow \operatorname {\mathrm {GL}}_d(A)$
 be a continuous representation such that
$\rho : G_F\rightarrow \operatorname {\mathrm {GL}}_d(A)$
 be a continuous representation such that 
 $\rho \ \pmod {{\mathfrak m}_A}=\rho _x$
. We claim that there is a unique homomorphism of local
$\rho \ \pmod {{\mathfrak m}_A}=\rho _x$
. We claim that there is a unique homomorphism of local 
 $\Lambda $
-algebras
$\Lambda $
-algebras 
 $\varphi : \widehat {B}\rightarrow A$
, such that
$\varphi : \widehat {B}\rightarrow A$
, such that 
 $\rho $
 is equal to the composition
$\rho $
 is equal to the composition 
 $\operatorname {\mathrm {GL}}_d(\varphi )\circ \hat {\rho }$
. The claim implies that the map
$\operatorname {\mathrm {GL}}_d(\varphi )\circ \hat {\rho }$
. The claim implies that the map 
 $R^{\square }_{\rho _x}\rightarrow \widehat {B}$
 constructed above is an isomorphism.
$R^{\square }_{\rho _x}\rightarrow \widehat {B}$
 constructed above is an isomorphism.
 The proof of the claim is based on [Reference Kisin31, Proposition 9.5]. Following its proof, we may construct an ascending chain of local open 
 $\Lambda ^0$
-subalgebras
$\Lambda ^0$
-subalgebras 
 $A_n^0$
 of A for
$A_n^0$
 of A for 
 $n\ge 1$
, such that for all n, the following hold:
$n\ge 1$
, such that for all n, the following hold: 
 $A_n^0[1/t]=A$
, the image of
$A_n^0[1/t]=A$
, the image of 
 $A_n^0$
 under the projection
$A_n^0$
 under the projection 
 $b: A \rightarrow \kappa (x)$
 is equal to
$b: A \rightarrow \kappa (x)$
 is equal to 
 $\mathcal {O}_{\kappa (x)}$
 and
$\mathcal {O}_{\kappa (x)}$
 and 
 $\bigcup _{n\ge 1} A_n^0= b^{-1}(\mathcal {O}_{\kappa (x)})$
. Let
$\bigcup _{n\ge 1} A_n^0= b^{-1}(\mathcal {O}_{\kappa (x)})$
. Let 
 $M\in \operatorname {\mathrm {GL}}_d(\kappa (x))$
 be a matrix such that the image of
$M\in \operatorname {\mathrm {GL}}_d(\kappa (x))$
 be a matrix such that the image of 
 $G_F$
 under
$G_F$
 under 
 $M \rho _x M^{-1}$
 is contained in
$M \rho _x M^{-1}$
 is contained in 
 $\operatorname {\mathrm {GL}}_d(\mathcal {O}_{\kappa (x)})$
. Let
$\operatorname {\mathrm {GL}}_d(\mathcal {O}_{\kappa (x)})$
. Let 
 $x'\in X^{\mathrm {gen}}$
 correspond to the representation
$x'\in X^{\mathrm {gen}}$
 correspond to the representation 
 $M \rho _x M^{-1}$
. Then
$M \rho _x M^{-1}$
. Then 
 $\kappa (x')=\kappa (x)$
 and the image of
$\kappa (x')=\kappa (x)$
 and the image of 
 $x': A^{\mathrm {gen}}\rightarrow \kappa (x)$
 is contained in
$x': A^{\mathrm {gen}}\rightarrow \kappa (x)$
 is contained in 
 $\mathcal {O}_{\kappa (x)}$
. Let
$\mathcal {O}_{\kappa (x)}$
. Let 
 $z\in X^{\mathrm {gen}}$
 be the composition
$z\in X^{\mathrm {gen}}$
 be the composition 
 $z: A^{\mathrm {gen}}\overset {x'}\longrightarrow \mathcal {O}_{\kappa (x)}\rightarrow k'$
, where
$z: A^{\mathrm {gen}}\overset {x'}\longrightarrow \mathcal {O}_{\kappa (x)}\rightarrow k'$
, where 
 $k'$
 is the residue field of
$k'$
 is the residue field of 
 $\mathcal {O}_{\kappa (x)}$
, let
$\mathcal {O}_{\kappa (x)}$
, let 
 $\widetilde {M}\in \operatorname {\mathrm {GL}}_d(A)$
 be a matrix lifting M and let
$\widetilde {M}\in \operatorname {\mathrm {GL}}_d(A)$
 be a matrix lifting M and let 
 $\rho ':= \widetilde {M} \rho \widetilde {M}^{-1}$
. Since
$\rho ':= \widetilde {M} \rho \widetilde {M}^{-1}$
. Since 
 $G_F$
 is compact,
$G_F$
 is compact, 
 $\rho '(G_F)$
 will be contained in some
$\rho '(G_F)$
 will be contained in some 
 $\operatorname {\mathrm {GL}}_d(A^0_n)$
 for
$\operatorname {\mathrm {GL}}_d(A^0_n)$
 for 
 $n \gg 0$
. We may consider
$n \gg 0$
. We may consider 
 $\rho ': G_F \rightarrow \operatorname {\mathrm {GL}}_d(A^0_n)$
 as a deformation of
$\rho ': G_F \rightarrow \operatorname {\mathrm {GL}}_d(A^0_n)$
 as a deformation of 
 $\rho _z$
 to
$\rho _z$
 to 
 $A^0_n$
. Since the pseudo-character of
$A^0_n$
. Since the pseudo-character of 
 $\rho _z$
 is equal to
$\rho _z$
 is equal to 
 $\overline {D}\otimes _k k'$
 by Lemma 3.4, the pseudo-character of
$\overline {D}\otimes _k k'$
 by Lemma 3.4, the pseudo-character of 
 $\rho ':G_F\rightarrow \operatorname {\mathrm {GL}}_d(A^0_n)$
 is a deformation of
$\rho ':G_F\rightarrow \operatorname {\mathrm {GL}}_d(A^0_n)$
 is a deformation of 
 $\overline {D}\otimes _k k'$
 to
$\overline {D}\otimes _k k'$
 to 
 $A^0_n$
 and hence induces a map of local
$A^0_n$
 and hence induces a map of local 
 $\mathcal {O}$
-algebras
$\mathcal {O}$
-algebras 
 $R^{\mathrm {ps}}\rightarrow A_n^0$
. Thus,
$R^{\mathrm {ps}}\rightarrow A_n^0$
. Thus, 
 $\rho '$
 factors through the map
$\rho '$
 factors through the map 
 
, which will factor through the Cayley–Hamilton quotient
 
. It follows from [Reference Chenevier18, Section 1.22] or [Reference Wang-Erickson49, Lemma 1.1.8.6] that

After inverting t and conjugating by 
 $\widetilde {M}^{-1}$
, we obtain a map of
$\widetilde {M}^{-1}$
, we obtain a map of 
 $\Lambda ^0[1/t]$
-algebras
$\Lambda ^0[1/t]$
-algebras 
 $\Lambda ^0[1/t]\otimes _{\mathcal {O}} E \rightarrow M_d(A)$
, such that if we compose this map with the map induced by
$\Lambda ^0[1/t]\otimes _{\mathcal {O}} E \rightarrow M_d(A)$
, such that if we compose this map with the map induced by 
 
, then we get back 
 $\rho $
. Since A is an Artinian
$\rho $
. Since A is an Artinian 
 $\Lambda $
-algebra,
$\Lambda $
-algebra, 
 $\varpi ^n \Lambda ^0[1/t]$
 will be mapped to zero for
$\varpi ^n \Lambda ^0[1/t]$
 will be mapped to zero for 
 $n\gg 0$
, and thus the map extends to a map of
$n\gg 0$
, and thus the map extends to a map of 
 $\Lambda $
-algebras
$\Lambda $
-algebras 
 $\alpha :\Lambda \otimes _{\mathcal {O}} E\rightarrow M_d(A)$
. The universal property of
$\alpha :\Lambda \otimes _{\mathcal {O}} E\rightarrow M_d(A)$
. The universal property of 
 $j: E\rightarrow M_d(A^{\mathrm {gen}})$
 implies that there is a unique map of
$j: E\rightarrow M_d(A^{\mathrm {gen}})$
 implies that there is a unique map of 
 $\Lambda $
-algebras
$\Lambda $
-algebras 
 $\varphi : \widehat {B}\rightarrow A$
, such that
$\varphi : \widehat {B}\rightarrow A$
, such that 
 $M_d(\varphi )\circ (\operatorname {\mathrm {id}}\otimes j) = \alpha $
.
$M_d(\varphi )\circ (\operatorname {\mathrm {id}}\otimes j) = \alpha $
.
 It remains to show the uniqueness of the map 
 $\varphi $
, which is equivalent to showing that there is at most one map of
$\varphi $
, which is equivalent to showing that there is at most one map of 
 $\Lambda \otimes _{\mathcal {O}} R^{\mathrm {ps}}$
-algebras
$\Lambda \otimes _{\mathcal {O}} R^{\mathrm {ps}}$
-algebras 
 $\alpha : \Lambda \otimes _{\mathcal {O}} E\rightarrow M_d(A)$
 such that the composition with
$\alpha : \Lambda \otimes _{\mathcal {O}} E\rightarrow M_d(A)$
 such that the composition with 
 $G_F\rightarrow \Lambda \otimes _{\mathcal {O}} E$
 gives
$G_F\rightarrow \Lambda \otimes _{\mathcal {O}} E$
 gives 
 $\rho $
. It follows from the Cayley–Hamilton theorem in
$\rho $
. It follows from the Cayley–Hamilton theorem in 
 $M_d(A)$
 and [Reference Chenevier18, Corollary 1.14] that the map
$M_d(A)$
 and [Reference Chenevier18, Corollary 1.14] that the map 
 $\Lambda \otimes _{\mathcal {O}} R^{\mathrm {ps}}\rightarrow \Lambda \otimes _{\mathcal {O}} E\overset {\alpha }{\longrightarrow } A$
 is uniquely determined by
$\Lambda \otimes _{\mathcal {O}} R^{\mathrm {ps}}\rightarrow \Lambda \otimes _{\mathcal {O}} E\overset {\alpha }{\longrightarrow } A$
 is uniquely determined by 
 $\rho $
. Thus,
$\rho $
. Thus, 
 $\alpha $
 is uniquely determined on the image of
$\alpha $
 is uniquely determined on the image of 
 $\Lambda \otimes _{\mathcal {O}} R^{\mathrm {ps}}[G_F]$
 in
$\Lambda \otimes _{\mathcal {O}} R^{\mathrm {ps}}[G_F]$
 in 
 $\Lambda \otimes _{\mathcal {O}} E$
. The map
$\Lambda \otimes _{\mathcal {O}} E$
. The map 
 $R^{\mathrm {ps}}[G_F]\rightarrow E$
 is surjective, since the image is dense and closed as E is a finitely generated
$R^{\mathrm {ps}}[G_F]\rightarrow E$
 is surjective, since the image is dense and closed as E is a finitely generated 
 $R^{\mathrm {ps}}$
-module; hence,
$R^{\mathrm {ps}}$
-module; hence, 
 $\alpha $
 is uniquely determined by
$\alpha $
 is uniquely determined by 
 $\rho $
.
$\rho $
.
The following Lemma is a mild generalization of [Reference Böckle and Juschka9, Lemma 3.3.5].
Lemma 3.35. Let R be a complete local Noetherian k-algebra with residue field k, let A be a finitely generated R-algebra, let 
 ${\mathfrak p}\in \operatorname {\mathrm {Spec}} A$
 such that its image in
${\mathfrak p}\in \operatorname {\mathrm {Spec}} A$
 such that its image in 
 $\operatorname {\mathrm {Spec}} R$
 lies in
$\operatorname {\mathrm {Spec}} R$
 lies in 
 $P_1R$
, and let
$P_1R$
, and let 
 $\mathfrak {q}$
 be the kernel of the map
$\mathfrak {q}$
 be the kernel of the map 
 $$ \begin{align*}B:=\kappa({\mathfrak p})\otimes_k A \rightarrow \kappa({\mathfrak p}), \quad x\otimes a \mapsto x (a+{\mathfrak p}).\end{align*} $$
$$ \begin{align*}B:=\kappa({\mathfrak p})\otimes_k A \rightarrow \kappa({\mathfrak p}), \quad x\otimes a \mapsto x (a+{\mathfrak p}).\end{align*} $$
Then 
 . In particular,
. In particular, 
 $A_{{\mathfrak p}}$
 is regular (resp. complete intersection) if and only if
$A_{{\mathfrak p}}$
 is regular (resp. complete intersection) if and only if 
 $\hat {B}_{\mathfrak {q}}$
 is.
$\hat {B}_{\mathfrak {q}}$
 is.
Proof. Let 
 ${\mathfrak p}'$
 be the image of
${\mathfrak p}'$
 be the image of 
 ${\mathfrak p}$
 in
${\mathfrak p}$
 in 
 $\operatorname {\mathrm {Spec}} R$
. Since by assumption
$\operatorname {\mathrm {Spec}} R$
. Since by assumption 
 ${\mathfrak p}'\in P_1R$
, the residue field
${\mathfrak p}'\in P_1R$
, the residue field 
 $\kappa ({\mathfrak p}')$
 is a local field of characteristic p. Since A is finitely generated over R,
$\kappa ({\mathfrak p}')$
 is a local field of characteristic p. Since A is finitely generated over R, 
 $\kappa ({\mathfrak p})$
 is a finite extension of
$\kappa ({\mathfrak p})$
 is a finite extension of 
 $\kappa ({\mathfrak p}')$
 and thus is also a local field of characteristic p. The proof of [Reference Böckle and Juschka9, Lemma 3.3.4] goes through verbatim by replacing R with A everywhere.
$\kappa ({\mathfrak p}')$
 and thus is also a local field of characteristic p. The proof of [Reference Böckle and Juschka9, Lemma 3.3.4] goes through verbatim by replacing R with A everywhere.
Lemma 3.36. Let R be a complete local Noetherian 
 $\mathcal {O}$
-algebra with residue field k, let A be a finitely generated R-algebra, let
$\mathcal {O}$
-algebra with residue field k, let A be a finitely generated R-algebra, let 
 ${\mathfrak p}\in \operatorname {\mathrm {Spec}} A$
 such that
${\mathfrak p}\in \operatorname {\mathrm {Spec}} A$
 such that 
 $\kappa ({\mathfrak p})$
 is a local field of characteristic p and let
$\kappa ({\mathfrak p})$
 is a local field of characteristic p and let 
 $\mathfrak {q}$
 be the kernel of the map
$\mathfrak {q}$
 be the kernel of the map 
 $$ \begin{align*}B:=\Lambda\otimes_{\mathcal{O}} A \rightarrow \kappa({\mathfrak p}), \quad \lambda\otimes a \mapsto \bar{\lambda} (a+{\mathfrak p}).\end{align*} $$
$$ \begin{align*}B:=\Lambda\otimes_{\mathcal{O}} A \rightarrow \kappa({\mathfrak p}), \quad \lambda\otimes a \mapsto \bar{\lambda} (a+{\mathfrak p}).\end{align*} $$
Then 
 . In particular,
. In particular, 
 $A_{{\mathfrak p}}$
 is regular (resp. complete intersection) if and only if
$A_{{\mathfrak p}}$
 is regular (resp. complete intersection) if and only if 
 $\hat {B}_{\mathfrak {q}}$
 is.
$\hat {B}_{\mathfrak {q}}$
 is.
Proof. We first observe that 
 $\hat {B}_{\mathfrak {q}}$
 is flat over
$\hat {B}_{\mathfrak {q}}$
 is flat over 
 $\hat {A}_{{\mathfrak p}}$
. This can be seen as follows. Since
$\hat {A}_{{\mathfrak p}}$
. This can be seen as follows. Since 
 $\Lambda $
 is
$\Lambda $
 is 
 $\mathcal {O}$
-flat, B is A-flat. Since
$\mathcal {O}$
-flat, B is A-flat. Since 
 $B_{\mathfrak {q}}$
 is B-flat and
$B_{\mathfrak {q}}$
 is B-flat and 
 $\hat {B}_{\mathfrak {q}}$
 is
$\hat {B}_{\mathfrak {q}}$
 is 
 $B_{\mathfrak {q}}$
-flat, we conclude that
$B_{\mathfrak {q}}$
-flat, we conclude that 
 $\hat {B}_{\mathfrak {q}}$
 is A-flat. Thus,
$\hat {B}_{\mathfrak {q}}$
 is A-flat. Thus, 
 $\hat {B}_{\mathfrak {q}}\otimes _A \hat {A}_{{\mathfrak p}}$
 is
$\hat {B}_{\mathfrak {q}}\otimes _A \hat {A}_{{\mathfrak p}}$
 is 
 $\hat {A}_{{\mathfrak p}}$
-flat. This ring is isomorphic to
$\hat {A}_{{\mathfrak p}}$
-flat. This ring is isomorphic to 
 $\hat {B}_{\mathfrak {q}}\otimes _{A_{{\mathfrak p}}} \hat {A}_{{\mathfrak p}}$
. Since the map
$\hat {B}_{\mathfrak {q}}\otimes _{A_{{\mathfrak p}}} \hat {A}_{{\mathfrak p}}$
. Since the map 
 $A_{{\mathfrak p}}/ {\mathfrak p}^n A_{{\mathfrak p}}\rightarrow \hat {A}_{{\mathfrak p}}/ {\mathfrak p}^n \hat {A}_{{\mathfrak p}}$
 is an isomorphism for all
$A_{{\mathfrak p}}/ {\mathfrak p}^n A_{{\mathfrak p}}\rightarrow \hat {A}_{{\mathfrak p}}/ {\mathfrak p}^n \hat {A}_{{\mathfrak p}}$
 is an isomorphism for all 
 $n\ge 1$
,
$n\ge 1$
, 
 $\hat {B}_{\mathfrak {q}}$
 is a completion of
$\hat {B}_{\mathfrak {q}}$
 is a completion of 
 $\hat {B}_{\mathfrak {q}}\otimes _{A_{{\mathfrak p}}} \hat {A}_{{\mathfrak p}}$
 at
$\hat {B}_{\mathfrak {q}}\otimes _{A_{{\mathfrak p}}} \hat {A}_{{\mathfrak p}}$
 at 
 $\mathfrak {q}$
, which implies the claim.
$\mathfrak {q}$
, which implies the claim.
 It follows from Lemma 3.35 that the map 
 $A\rightarrow B$
,
$A\rightarrow B$
, 
 $a\mapsto 1\otimes a$
 induces a map of local rings
$a\mapsto 1\otimes a$
 induces a map of local rings 
 $\hat {A}_{{\mathfrak p}}\rightarrow \hat {B}_{\mathfrak {q}}$
, such that
$\hat {A}_{{\mathfrak p}}\rightarrow \hat {B}_{\mathfrak {q}}$
, such that 
 . By choosing
. By choosing 
 $b\in \hat {B}_{\mathfrak {q}}$
, which maps to T under this isomorphism, we obtain a map
$b\in \hat {B}_{\mathfrak {q}}$
, which maps to T under this isomorphism, we obtain a map 
 , which induces an isomorphism modulo
, which induces an isomorphism modulo 
 $\varpi $
. Thus,
$\varpi $
. Thus, 
 $\varphi $
 is a homomorphism of pseudo-compact
$\varphi $
 is a homomorphism of pseudo-compact 
 $\hat {A}_{{\mathfrak p}}$
-modules, which induces an isomorphism after applying
$\hat {A}_{{\mathfrak p}}$
-modules, which induces an isomorphism after applying 
 $\otimes _{\hat {A}_{{\mathfrak p}}} \kappa $
. Thus,
$\otimes _{\hat {A}_{{\mathfrak p}}} \kappa $
. Thus, 
 $(\operatorname {\mathrm {coker}} \varphi )\otimes _{\hat {A}_{{\mathfrak p}}} \kappa =0$
, and since
$(\operatorname {\mathrm {coker}} \varphi )\otimes _{\hat {A}_{{\mathfrak p}}} \kappa =0$
, and since 
 $\hat {B}_{\mathfrak {q}}$
 is
$\hat {B}_{\mathfrak {q}}$
 is 
 $\hat {A}_{{\mathfrak p}}$
-flat,
$\hat {A}_{{\mathfrak p}}$
-flat, 
 $(\ker \varphi )\otimes _{\hat {A}_{{\mathfrak p}}} \kappa =0$
. Topological Nakayama’s lemmaFootnote 5
 for pseudo-compact modules implies that
$(\ker \varphi )\otimes _{\hat {A}_{{\mathfrak p}}} \kappa =0$
. Topological Nakayama’s lemmaFootnote 5
 for pseudo-compact modules implies that 
 $\operatorname {\mathrm {coker}} \varphi $
 and
$\operatorname {\mathrm {coker}} \varphi $
 and 
 $\ker \varphi $
 are both zero.
$\ker \varphi $
 are both zero.
Lemma 3.37. Let R be a complete local Noetherian 
 $\mathcal {O}$
-algebra with residue field k, let A be a finitely generated R-algebra and let
$\mathcal {O}$
-algebra with residue field k, let A be a finitely generated R-algebra and let 
 ${\mathfrak p}\in \operatorname {\mathrm {Spec}} A$
 such that
${\mathfrak p}\in \operatorname {\mathrm {Spec}} A$
 such that 
 $\kappa ({\mathfrak p})$
 is either a finite extension of L or a finite extension of k. Let
$\kappa ({\mathfrak p})$
 is either a finite extension of L or a finite extension of k. Let 
 $\mathfrak {q}$
 be the kernel of the map
$\mathfrak {q}$
 be the kernel of the map 
 $$ \begin{align*}B:=\Lambda\otimes_{\mathcal{O}} A \rightarrow \kappa({\mathfrak p}), \quad \lambda\otimes a \mapsto \bar{\lambda} (a+{\mathfrak p}).\end{align*} $$
$$ \begin{align*}B:=\Lambda\otimes_{\mathcal{O}} A \rightarrow \kappa({\mathfrak p}), \quad \lambda\otimes a \mapsto \bar{\lambda} (a+{\mathfrak p}).\end{align*} $$
Then 
 $\hat {B}_{\mathfrak {q}}\cong \hat {A}_{{\mathfrak p}}$
.
$\hat {B}_{\mathfrak {q}}\cong \hat {A}_{{\mathfrak p}}$
.
Proof. The completion of 
 $\Lambda \otimes _{\mathcal {O}} \Lambda $
 with respect to the kernel of
$\Lambda \otimes _{\mathcal {O}} \Lambda $
 with respect to the kernel of 
 $\Lambda \otimes _{\mathcal {O}} \Lambda \rightarrow \Lambda $
,
$\Lambda \otimes _{\mathcal {O}} \Lambda \rightarrow \Lambda $
, 
 $x\otimes y\mapsto xy$
 is just
$x\otimes y\mapsto xy$
 is just 
 $\Lambda $
 (and that is why we do not get an extra variable T like in Lemma 3.35; see [Reference Böckle and Juschka9, Lemma 3.3.5].) The rest of the proof is the same as the proof of Lemma 3.35.
$\Lambda $
 (and that is why we do not get an extra variable T like in Lemma 3.35; see [Reference Böckle and Juschka9, Lemma 3.3.5].) The rest of the proof is the same as the proof of Lemma 3.35.
Corollary 3.38. Let x be either a closed point of Y or a closed point of 
 $X^{\mathrm {gen}}\setminus Y$
. Then the following hold:
$X^{\mathrm {gen}}\setminus Y$
. Then the following hold: 
- 
(1)  $R^{\square }_{\rho _x}$
 is a flat $R^{\square }_{\rho _x}$
 is a flat $\Lambda $
-algebra of relative dimension $\Lambda $
-algebra of relative dimension $d^2+ d^2[F:\mathbb {Q}_p]$
 and is complete intersection; $d^2+ d^2[F:\mathbb {Q}_p]$
 and is complete intersection;
- 
(2) if  $\mathrm {char}(\kappa (x))=p$
, then $\mathrm {char}(\kappa (x))=p$
, then $R^{\square }_{\rho _x}/\varpi $
 is complete intersection of dimension $R^{\square }_{\rho _x}/\varpi $
 is complete intersection of dimension $d^2+ d^2[F:\mathbb {Q}_p]$
. $d^2+ d^2[F:\mathbb {Q}_p]$
.
Proof. Let us assume that 
 $\kappa (x)$
 is a finite extension of k. It follows from Proposition 3.34 and Lemma 3.37 that
$\kappa (x)$
 is a finite extension of k. It follows from Proposition 3.34 and Lemma 3.37 that 
 $R^{\square }_{\rho _x}/\varpi \cong \widehat {\mathcal {O}}_{\overline {X}^{\mathrm {gen}}, x}$
, the completion of the local ring of
$R^{\square }_{\rho _x}/\varpi \cong \widehat {\mathcal {O}}_{\overline {X}^{\mathrm {gen}}, x}$
, the completion of the local ring of 
 $\overline {X}^{\mathrm {gen}}$
 at x with respect to the maximal ideal. We have
$\overline {X}^{\mathrm {gen}}$
 at x with respect to the maximal ideal. We have 
 $\dim \widehat {\mathcal {O}}_{\overline {X}^{\mathrm {gen}}, x}=\dim \mathcal {O}_{\overline {X}^{\mathrm {gen}}, x}\le \dim \overline {X}^{\mathrm {gen}}$
, and thus by Theorem 3.31, we obtain the bound
$\dim \widehat {\mathcal {O}}_{\overline {X}^{\mathrm {gen}}, x}=\dim \mathcal {O}_{\overline {X}^{\mathrm {gen}}, x}\le \dim \overline {X}^{\mathrm {gen}}$
, and thus by Theorem 3.31, we obtain the bound 
 $$ \begin{align*}\dim R^{\square}_{\rho_x}/\varpi \le \dim \overline{X}^{\mathrm{gen}} \le d^2+ d^2[F:\mathbb{Q}_p]= r-s,\end{align*} $$
$$ \begin{align*}\dim R^{\square}_{\rho_x}/\varpi \le \dim \overline{X}^{\mathrm{gen}} \le d^2+ d^2[F:\mathbb{Q}_p]= r-s,\end{align*} $$
where the last equality is (22). It follows from (21) that 
 $\dim R^{\square }_{\rho _x}/\varpi \ge r-s$
 and
$\dim R^{\square }_{\rho _x}/\varpi \ge r-s$
 and 
 $\dim R^{\square }_{\rho _x} \ge 1+r-s$
. Thus, the lower bounds of the dimensions are equalities, and
$\dim R^{\square }_{\rho _x} \ge 1+r-s$
. Thus, the lower bounds of the dimensions are equalities, and 
 $\varpi , f_1, \ldots , f_s$
 are a part of system of parameters in
$\varpi , f_1, \ldots , f_s$
 are a part of system of parameters in 
 . Thus, they form a regular sequence in
. Thus, they form a regular sequence in 
 and so
 and so 
 $R^{\square }_{\rho _x}$
 and
$R^{\square }_{\rho _x}$
 and 
 $R^{\square }_{\rho _x}/\varpi $
 are complete intersections of the claimed dimensions. Moreover, since
$R^{\square }_{\rho _x}/\varpi $
 are complete intersections of the claimed dimensions. Moreover, since 
 $\Lambda $
 is a DVR with uniformiser
$\Lambda $
 is a DVR with uniformiser 
 $\varpi $
, flatness is equivalent to
$\varpi $
, flatness is equivalent to 
 $\varpi $
-torsion equal to zero, and hence,
$\varpi $
-torsion equal to zero, and hence, 
 $R^{\square }_{\rho _x}$
 is flat over
$R^{\square }_{\rho _x}$
 is flat over 
 $\Lambda $
.
$\Lambda $
.
 Let us assume that 
 $\kappa (x)$
 is a local field of characteristic p. Proposition 3.34 and Lemma 3.35 imply that
$\kappa (x)$
 is a local field of characteristic p. Proposition 3.34 and Lemma 3.35 imply that 
 , and Lemma 3.21 applied with
, and Lemma 3.21 applied with 
 $W=\overline {X}^{\mathrm {gen}}$
 implies that
$W=\overline {X}^{\mathrm {gen}}$
 implies that 
 $\dim \widehat {\mathcal {O}}_{\overline {X}^{\mathrm {gen}}, x}\le \dim \overline {X}^{\mathrm {gen}}-1$
. Thus,
$\dim \widehat {\mathcal {O}}_{\overline {X}^{\mathrm {gen}}, x}\le \dim \overline {X}^{\mathrm {gen}}-1$
. Thus, 
 $\dim R^{\square }_{\rho _x}/\varpi \le \dim \overline {X}^{\mathrm {gen}}$
, and the same argument as above goes through.
$\dim R^{\square }_{\rho _x}/\varpi \le \dim \overline {X}^{\mathrm {gen}}$
, and the same argument as above goes through.
 If 
 $\kappa (x)$
 is a finite extension of L, then Proposition 3.34 and Lemma 3.37 imply that
$\kappa (x)$
 is a finite extension of L, then Proposition 3.34 and Lemma 3.37 imply that 
 $$ \begin{align*}R^{\square}_{\rho_x}\cong \widehat{\mathcal{O}}_{X^{\mathrm{gen}}, x}=\widehat{\mathcal{O}}_{X^{\mathrm{gen}}[1/p],x}.\end{align*} $$
$$ \begin{align*}R^{\square}_{\rho_x}\cong \widehat{\mathcal{O}}_{X^{\mathrm{gen}}, x}=\widehat{\mathcal{O}}_{X^{\mathrm{gen}}[1/p],x}.\end{align*} $$
Corollary 3.23 implies that 
 $\dim R^{\square }_{\rho _x}\le \dim X^{\mathrm {gen}}[1/p]\le \dim \overline {X}^{\mathrm {gen}}$
. Then the same argument goes through.
$\dim R^{\square }_{\rho _x}\le \dim X^{\mathrm {gen}}[1/p]\le \dim \overline {X}^{\mathrm {gen}}$
. Then the same argument goes through.
Corollary 3.39. Let x be either a closed point in Y or a closed point in 
 $X^{\mathrm {gen}}\setminus Y$
 and let
$X^{\mathrm {gen}}\setminus Y$
 and let 
 $\widehat {\mathcal {O}}_{X^{\mathrm {gen}}, x}$
 be the completion with respect to the maximal ideal of the local ring at x. If
$\widehat {\mathcal {O}}_{X^{\mathrm {gen}}, x}$
 be the completion with respect to the maximal ideal of the local ring at x. If 
 $\kappa (x)$
 is a finite extension of k or L, then
$\kappa (x)$
 is a finite extension of k or L, then 
 $\widehat {\mathcal {O}}_{X^{\mathrm {gen}}, x}\cong R^{\square }_{\rho _x}$
. If
$\widehat {\mathcal {O}}_{X^{\mathrm {gen}}, x}\cong R^{\square }_{\rho _x}$
. If 
 $\kappa (x)$
 is a local field of characteristic p, then
$\kappa (x)$
 is a local field of characteristic p, then 
 .
.
Proof. If 
 $\kappa (x)$
 is a finite extension of k or L, then the assertion follows from Proposition 3.34 and Lemma 3.37. If
$\kappa (x)$
 is a finite extension of k or L, then the assertion follows from Proposition 3.34 and Lemma 3.37. If 
 $\kappa (x)$
 is a local field of characteristic p, then the assertion follows from Proposition 3.34 and Lemma 3.36.
$\kappa (x)$
 is a local field of characteristic p, then the assertion follows from Proposition 3.34 and Lemma 3.36.
Corollary 3.40. The following hold:
- 
(1)  $A^{\mathrm {gen}}$
 is $A^{\mathrm {gen}}$
 is $\mathcal {O}$
-torsion free, is equi-dimensional of dimension $\mathcal {O}$
-torsion free, is equi-dimensional of dimension $1+ d^2+ d^2[F:\mathbb {Q}_p]$
 and is locally complete intersection; $1+ d^2+ d^2[F:\mathbb {Q}_p]$
 and is locally complete intersection;
- 
(2)  $A^{\mathrm {gen}}/\varpi $
 is equi-dimensional of dimension $A^{\mathrm {gen}}/\varpi $
 is equi-dimensional of dimension $d^2+d^2[F:\mathbb {Q}_p]$
 and is locally complete intersection. $d^2+d^2[F:\mathbb {Q}_p]$
 and is locally complete intersection.
Proof. Let us prove (1) as the proof of (2) is identical. Corollary 3.39 together with Corollary 3.38 implies that the local rings at closed points of 
 $X^{\mathrm {gen}}$
 are
$X^{\mathrm {gen}}$
 are 
 $\mathcal {O}$
-torsion free and complete intersection. This implies that
$\mathcal {O}$
-torsion free and complete intersection. This implies that 
 $A^{\mathrm {gen}}$
 is
$A^{\mathrm {gen}}$
 is 
 $\mathcal {O}$
-torsion free and
$\mathcal {O}$
-torsion free and 
 $A^{\mathrm {gen}}$
 is locally complete intersection by [48, Tag 09Q5].
$A^{\mathrm {gen}}$
 is locally complete intersection by [48, Tag 09Q5].
 Let Z be an irreducible component of 
 $X^{\mathrm {gen}}$
. Lemma 3.21 implies that there is a closed point
$X^{\mathrm {gen}}$
. Lemma 3.21 implies that there is a closed point 
 $x\in Z$
 such that x maps to the closed point of
$x\in Z$
 such that x maps to the closed point of 
 $X^{\mathrm {ps}}$
. Moreover,
$X^{\mathrm {ps}}$
. Moreover, 
 $\dim Z= \dim \mathcal {O}_{Z, x}$
. Since
$\dim Z= \dim \mathcal {O}_{Z, x}$
. Since 
 $\mathcal {O}_{X^{\mathrm {gen}}, x}$
 is complete intersection, it is equi-dimensional, and thus,
$\mathcal {O}_{X^{\mathrm {gen}}, x}$
 is complete intersection, it is equi-dimensional, and thus, 
 $\dim \mathcal {O}_{Z,x}=\dim \mathcal {O}_{X^{\mathrm {gen}}, x}= d^2+d^2[F:\mathbb {Q}_p]+1$
, where the last equality follows from Corollaries 3.38 and 3.39.
$\dim \mathcal {O}_{Z,x}=\dim \mathcal {O}_{X^{\mathrm {gen}}, x}= d^2+d^2[F:\mathbb {Q}_p]+1$
, where the last equality follows from Corollaries 3.38 and 3.39.
Proposition 3.41. Let 
 $x\in P_1 R^{\square }_{\overline {\rho }}$
, where
$x\in P_1 R^{\square }_{\overline {\rho }}$
, where 
 $R^{\square }_{\overline {\rho }}$
 is the framed deformation ring of
$R^{\square }_{\overline {\rho }}$
 is the framed deformation ring of 
 $\overline {\rho }: G_F \rightarrow \operatorname {\mathrm {GL}}_d(k')$
, where
$\overline {\rho }: G_F \rightarrow \operatorname {\mathrm {GL}}_d(k')$
, where 
 $k'$
 is finite extension of k. Let
$k'$
 is finite extension of k. Let 
 $\rho _x: G_F \rightarrow \operatorname {\mathrm {GL}}_d(\kappa (x))$
 be the representation obtained by specializing the universal framed deformation of
$\rho _x: G_F \rightarrow \operatorname {\mathrm {GL}}_d(\kappa (x))$
 be the representation obtained by specializing the universal framed deformation of 
 $\overline {\rho }$
 at x. Let
$\overline {\rho }$
 at x. Let 
 $\mathfrak {q}$
 be the kernel of the map
$\mathfrak {q}$
 be the kernel of the map 
 $$ \begin{align*}\Lambda\otimes_{\mathcal{O}} R^{\square}_{\overline{\rho}} \rightarrow \kappa(x), \quad \lambda \otimes a \mapsto \bar{\lambda}\bar{a},\end{align*} $$
$$ \begin{align*}\Lambda\otimes_{\mathcal{O}} R^{\square}_{\overline{\rho}} \rightarrow \kappa(x), \quad \lambda \otimes a \mapsto \bar{\lambda}\bar{a},\end{align*} $$
where 
 $\Lambda $
 is the ring defined at the beginning of the subsection. Then the completion of
$\Lambda $
 is the ring defined at the beginning of the subsection. Then the completion of 
 $(\Lambda \otimes _{\mathcal {O}} R^{\square }_{\overline {\rho }})_{\mathfrak {q}}$
 with respect to the maximal ideal is naturally isomorphic to
$(\Lambda \otimes _{\mathcal {O}} R^{\square }_{\overline {\rho }})_{\mathfrak {q}}$
 with respect to the maximal ideal is naturally isomorphic to 
 $R^{\square }_{\rho _x}$
.
$R^{\square }_{\rho _x}$
.
Proof. The proof is similar to the proof of Proposition 3.34, but easier, since the setting is much closer to the setting of [Reference Kisin31, Proposition 9.5] or [Reference Böckle and Juschka9, Theorem 3.3.1], where an analogous result is proved for versal deformation rings. We leave the details to the reader.
 Let x be a closed point of 
 $X^{\mathrm {gen}}\setminus Y$
, so that
$X^{\mathrm {gen}}\setminus Y$
, so that 
 $\kappa (x)$
 is a local field. Since
$\kappa (x)$
 is a local field. Since 
 $G_F$
 is compact, there is a matrix
$G_F$
 is compact, there is a matrix 
 $M\in \operatorname {\mathrm {GL}}_d(\kappa (x))$
, such that the image of
$M\in \operatorname {\mathrm {GL}}_d(\kappa (x))$
, such that the image of 
 $M \rho _x M^{-1}$
 is contained in
$M \rho _x M^{-1}$
 is contained in 
 $\operatorname {\mathrm {GL}}_d(\mathcal {O}_{\kappa (x)})$
. Let
$\operatorname {\mathrm {GL}}_d(\mathcal {O}_{\kappa (x)})$
. Let 
 $x':A^{\mathrm {gen}}\rightarrow \mathcal {O}_{\kappa (x)}$
 be the
$x':A^{\mathrm {gen}}\rightarrow \mathcal {O}_{\kappa (x)}$
 be the 
 $R^{\mathrm {ps}}$
-algebra homomorphism corresponding to the representation
$R^{\mathrm {ps}}$
-algebra homomorphism corresponding to the representation 
 $E\rightarrow M_d(\mathcal {O}_{\kappa (x)})$
,
$E\rightarrow M_d(\mathcal {O}_{\kappa (x)})$
, 
 $a\mapsto M \rho _x(a) M^{-1}$
. We will denote the corresponding Galois representation by
$a\mapsto M \rho _x(a) M^{-1}$
. We will denote the corresponding Galois representation by 
 $\rho _{x'}^0: G_F\rightarrow \operatorname {\mathrm {GL}}_d(\mathcal {O}_{\kappa (x)})$
 and let
$\rho _{x'}^0: G_F\rightarrow \operatorname {\mathrm {GL}}_d(\mathcal {O}_{\kappa (x)})$
 and let 
 $\rho _{x'}$
 be the composition
$\rho _{x'}$
 be the composition 
 $\rho _{x'}:G_F \overset {\rho _{x'}^0}{\longrightarrow } \operatorname {\mathrm {GL}}_d(\mathcal {O}_{\kappa (x)})\rightarrow \operatorname {\mathrm {GL}}_d(\kappa (x))$
. We note that
$\rho _{x'}:G_F \overset {\rho _{x'}^0}{\longrightarrow } \operatorname {\mathrm {GL}}_d(\mathcal {O}_{\kappa (x)})\rightarrow \operatorname {\mathrm {GL}}_d(\kappa (x))$
. We note that 
 $\kappa (x')=\kappa (x)$
 and let
$\kappa (x')=\kappa (x)$
 and let 
 $\Lambda $
 be the coefficient ring defined at the beginning of the subsection. Let
$\Lambda $
 be the coefficient ring defined at the beginning of the subsection. Let 
 $k'$
 be the residue field of
$k'$
 be the residue field of 
 $\mathcal {O}_{\kappa (x)}$
 and let
$\mathcal {O}_{\kappa (x)}$
 and let 
 $\rho _z: G_F\rightarrow \operatorname {\mathrm {GL}}_d(k')$
 be the representation corresponding to
$\rho _z: G_F\rightarrow \operatorname {\mathrm {GL}}_d(k')$
 be the representation corresponding to 
 $z: A^{\mathrm {gen}}\overset {x'}{\longrightarrow } \mathcal {O}_{\kappa (x)}\rightarrow k'$
. Then
$z: A^{\mathrm {gen}}\overset {x'}{\longrightarrow } \mathcal {O}_{\kappa (x)}\rightarrow k'$
. Then 
 $\rho ^0_{x'}$
 is a deformation of
$\rho ^0_{x'}$
 is a deformation of 
 $\rho _z$
 to
$\rho _z$
 to 
 $\mathcal {O}_{\kappa (x)}$
; thus, the map
$\mathcal {O}_{\kappa (x)}$
; thus, the map 
 $x': A^{\mathrm {gen}}\rightarrow \mathcal {O}_{\kappa (x)}$
 factors through
$x': A^{\mathrm {gen}}\rightarrow \mathcal {O}_{\kappa (x)}$
 factors through 
 $x': R^{\square }_{\rho _z}\rightarrow \mathcal {O}_{\kappa (x)}$
.
$x': R^{\square }_{\rho _z}\rightarrow \mathcal {O}_{\kappa (x)}$
.
Corollary 3.42. There is an isomorphism of local 
 $\Lambda $
-algebras between
$\Lambda $
-algebras between 
 $R^{\square }_{\rho _x}$
,
$R^{\square }_{\rho _x}$
, 
 $R^{\square }_{\rho _{x'}}$
 and the completion of
$R^{\square }_{\rho _{x'}}$
 and the completion of 
 $(\Lambda \otimes _{\mathcal {O}} R^{\square }_{\rho _z})_{\mathfrak {q}}$
 with respect to the maximal ideal, where
$(\Lambda \otimes _{\mathcal {O}} R^{\square }_{\rho _z})_{\mathfrak {q}}$
 with respect to the maximal ideal, where 
 $\mathfrak {q}$
 is as in Proposition 3.41 with respect to
$\mathfrak {q}$
 is as in Proposition 3.41 with respect to 
 $x': R^{\square }_{\rho _z}\rightarrow \mathcal {O}_{\kappa (x)}.$
$x': R^{\square }_{\rho _z}\rightarrow \mathcal {O}_{\kappa (x)}.$
Proof. Let 
 $\widetilde {M}$
 be any lift of M to
$\widetilde {M}$
 be any lift of M to 
 $M_d(\Lambda )$
. Since
$M_d(\Lambda )$
. Since 
 $\Lambda $
 is a local ring,
$\Lambda $
 is a local ring, 
 $\det \widetilde M$
 is a unit in
$\det \widetilde M$
 is a unit in 
 $\Lambda $
 and hence
$\Lambda $
 and hence 
 $\widetilde {M}\in \operatorname {\mathrm {GL}}_d(\Lambda )$
. Conjugation by
$\widetilde {M}\in \operatorname {\mathrm {GL}}_d(\Lambda )$
. Conjugation by 
 $\widetilde {M}$
 induces an isomorphism between the deformation problems for
$\widetilde {M}$
 induces an isomorphism between the deformation problems for 
 $\rho _x$
 and
$\rho _x$
 and 
 $\rho _{x'}$
 and hence between the deformation rings. Proposition 3.41 implies that these rings are also isomorphic to the completion of
$\rho _{x'}$
 and hence between the deformation rings. Proposition 3.41 implies that these rings are also isomorphic to the completion of 
 $(\Lambda \otimes _{\mathcal {O}} R^{\square }_{\rho _z})_{\mathfrak {q}}$
.
$(\Lambda \otimes _{\mathcal {O}} R^{\square }_{\rho _z})_{\mathfrak {q}}$
.
Remark 3.43. Corollary 3.42 enables us to study local properties of 
 $X^{\mathrm {gen}}$
 by studying the completions of local rings at closed points above
$X^{\mathrm {gen}}$
 by studying the completions of local rings at closed points above 
 ${\mathfrak m}_{R^{\mathrm {ps}}}$
. For example, if we could show that
${\mathfrak m}_{R^{\mathrm {ps}}}$
. For example, if we could show that 
 $R^{\square }_{\rho _z}$
 is regular, we could conclude that the local ring at
$R^{\square }_{\rho _z}$
 is regular, we could conclude that the local ring at 
 $x'$
,
$x'$
, 
 $(R^{\square }_{\rho _z})_{x'}$
 is regular, and hence that the completion
$(R^{\square }_{\rho _z})_{x'}$
 is regular, and hence that the completion 
 $\widehat {(R^{\square }_{\rho _z})}_{x'}$
 is regular. If
$\widehat {(R^{\square }_{\rho _z})}_{x'}$
 is regular. If 
 $\kappa (x)$
 is a local field of characteristic p, then Proposition 3.34, Corollary 3.42 and Lemma 3.36 imply that
$\kappa (x)$
 is a local field of characteristic p, then Proposition 3.34, Corollary 3.42 and Lemma 3.36 imply that 

If 
 $\kappa (x)$
 is a finite extension of L, then Proposition 3.34, Corollary 3.42 and Lemma 3.37 imply that
$\kappa (x)$
 is a finite extension of L, then Proposition 3.34, Corollary 3.42 and Lemma 3.37 imply that 
 $$ \begin{align*}\widehat{\mathcal{O}}_{X^{\mathrm{gen}}, x}\cong R^{\square}_{\rho_x}\cong R^{\square}_{\rho_{x'}}\cong \widehat{(R^{\square}_{\rho_z})}_{x'}.\end{align*} $$
$$ \begin{align*}\widehat{\mathcal{O}}_{X^{\mathrm{gen}}, x}\cong R^{\square}_{\rho_x}\cong R^{\square}_{\rho_{x'}}\cong \widehat{(R^{\square}_{\rho_z})}_{x'}.\end{align*} $$
Thus, in both cases we can deduce that 
 $\widehat {\mathcal {O}}_{X^{\mathrm {gen}}, x}$
, and hence
$\widehat {\mathcal {O}}_{X^{\mathrm {gen}}, x}$
, and hence 
 $\mathcal {O}_{X^{\mathrm {gen}}, x}$
, are regular. Thus, if we can show that
$\mathcal {O}_{X^{\mathrm {gen}}, x}$
, are regular. Thus, if we can show that 
 $R^{\square }_{\rho _z}$
 is regular for all closed points
$R^{\square }_{\rho _z}$
 is regular for all closed points 
 $z\in X^{\mathrm {gen}}$
 above
$z\in X^{\mathrm {gen}}$
 above 
 ${\mathfrak m}_{R^{\mathrm {ps}}}$
, then we can conclude that
${\mathfrak m}_{R^{\mathrm {ps}}}$
, then we can conclude that 
 $\mathcal {O}_{X^{\mathrm {gen}}, x}$
 is regular for all closed points
$\mathcal {O}_{X^{\mathrm {gen}}, x}$
 is regular for all closed points 
 $x\in X^{\mathrm {gen}}$
, and thus
$x\in X^{\mathrm {gen}}$
, and thus 
 $X^{\mathrm {gen}}$
 is regular.
$X^{\mathrm {gen}}$
 is regular.
 Of course, one may also reverse the logic of this argument: if 
 $X^{\mathrm {gen}}$
 is regular, then all its local rings and their completions are regular, and hence,
$X^{\mathrm {gen}}$
 is regular, then all its local rings and their completions are regular, and hence, 
 $R^{\square }_{\rho _z}$
 is regular for all closed points
$R^{\square }_{\rho _z}$
 is regular for all closed points 
 $z\in X^{\mathrm {gen}}$
 above
$z\in X^{\mathrm {gen}}$
 above 
 ${\mathfrak m}_{R^{\mathrm {ps}}}$
.
${\mathfrak m}_{R^{\mathrm {ps}}}$
.
Corollary 3.44. Let 
 $\rho : G_F\rightarrow \operatorname {\mathrm {GL}}_d(\kappa )$
 be a continuous representation with
$\rho : G_F\rightarrow \operatorname {\mathrm {GL}}_d(\kappa )$
 be a continuous representation with 
 $\kappa $
 a local field. Then the conclusion of Corollary 3.38 holds for
$\kappa $
 a local field. Then the conclusion of Corollary 3.38 holds for 
 $R^{\square }_{\rho }$
.
$R^{\square }_{\rho }$
.
Proof. After conjugation, we may assume that 
 $\rho (G_F)\subset \operatorname {\mathrm {GL}}_d(\mathcal {O}_{\kappa })$
. Let
$\rho (G_F)\subset \operatorname {\mathrm {GL}}_d(\mathcal {O}_{\kappa })$
. Let 
 $\overline {\rho }$
 be the representation obtained by reducing the matrix entries modulo a uniformizer of
$\overline {\rho }$
 be the representation obtained by reducing the matrix entries modulo a uniformizer of 
 $\mathcal {O}_{\kappa }$
 and let
$\mathcal {O}_{\kappa }$
 and let 
 $\overline {D}$
 be the associated pseudo-character. Corollary 3.38 applies to
$\overline {D}$
 be the associated pseudo-character. Corollary 3.38 applies to 
 $R^{\square }_{\overline {\rho }}$
. Since
$R^{\square }_{\overline {\rho }}$
. Since 
 $\rho $
 corresponds to an
$\rho $
 corresponds to an 
 $x\in P_1 R^{\square }_{\overline {\rho }}$
, Proposition 3.41 together with Lemmas 3.37, 3.36 allows us to bound the dimension of
$x\in P_1 R^{\square }_{\overline {\rho }}$
, Proposition 3.41 together with Lemmas 3.37, 3.36 allows us to bound the dimension of 
 $R^{\square }_{\rho }$
 from above. Then the proof of Corollary 3.38 carries over.
$R^{\square }_{\rho }$
 from above. Then the proof of Corollary 3.38 carries over.
Corollary 3.45. Every representation 
 $\overline {\rho }: G_F\rightarrow \operatorname {\mathrm {GL}}_d(k)$
 can be lifted to characteristic zero.
$\overline {\rho }: G_F\rightarrow \operatorname {\mathrm {GL}}_d(k)$
 can be lifted to characteristic zero.
Proof. It follows from Corollary 3.38 that 
 $R^{\square }_{\overline {\rho }}[1/p]$
 is non-zero. We may obtain a lift by specializing the universal framed deformation along any
$R^{\square }_{\overline {\rho }}[1/p]$
 is non-zero. We may obtain a lift by specializing the universal framed deformation along any 
 $\mathcal {O}$
-algebra homomorphism
$\mathcal {O}$
-algebra homomorphism 
 $x: R^{\square }\rightarrow \overline {\mathbb {Q}}_p$
.
$x: R^{\square }\rightarrow \overline {\mathbb {Q}}_p$
.
3.6 Bounding the maximally reducible semi-simple locus
 Writing 
 $\overline {D} = \prod _{i=1}^m \overline {D}_i$
 with
$\overline {D} = \prod _{i=1}^m \overline {D}_i$
 with 
 $\overline {D}_i$
 absolutely irreducible pseudo-characters, we now take
$\overline {D}_i$
 absolutely irreducible pseudo-characters, we now take 
 $\mathcal {P} = \mathcal {P}_{\max }$
 and consider the finite (by Lemma 3.24)
$\mathcal {P} = \mathcal {P}_{\max }$
 and consider the finite (by Lemma 3.24) 
 $R^{\mathrm {ps}}$
-algebra
$R^{\mathrm {ps}}$
-algebra 
 $R^{\mathrm {ps}}_{\underline {\Sigma }}$
, where
$R^{\mathrm {ps}}_{\underline {\Sigma }}$
, where 
 $\underline {\Sigma }$
 amounts to some choice of ordering of
$\underline {\Sigma }$
 amounts to some choice of ordering of 
 $\{1,\dots ,m\}$
. Note that if
$\{1,\dots ,m\}$
. Note that if 
 $\overline {\rho }_i:G_F\rightarrow \operatorname {\mathrm {GL}}_d(k)$
 is an (absolutely irreducible) representation with pseudo-character
$\overline {\rho }_i:G_F\rightarrow \operatorname {\mathrm {GL}}_d(k)$
 is an (absolutely irreducible) representation with pseudo-character 
 $\overline {D}_i$
, then
$\overline {D}_i$
, then 
 $$\begin{align*}R^{\mathrm{ps}}_{\underline{\Sigma}} \cong R_{\overline{\rho}_1} \operatorname{\mathrm{\widehat{\otimes}}}_{\mathcal{O}} \cdots \operatorname{\mathrm{\widehat{\otimes}}}_{\mathcal{O}} R_{\overline{\rho}_m}, \end{align*}$$
$$\begin{align*}R^{\mathrm{ps}}_{\underline{\Sigma}} \cong R_{\overline{\rho}_1} \operatorname{\mathrm{\widehat{\otimes}}}_{\mathcal{O}} \cdots \operatorname{\mathrm{\widehat{\otimes}}}_{\mathcal{O}} R_{\overline{\rho}_m}, \end{align*}$$
where 
 $R_{\overline {\rho }_i}$
 denotes the universal deformation ring of
$R_{\overline {\rho }_i}$
 denotes the universal deformation ring of 
 $\overline {\rho }_i$
. So let
$\overline {\rho }_i$
. So let 
 $\rho _i^{\mathrm {univ}}: G_F \to \operatorname {\mathrm {GL}}_{d_i}(R_{\overline {\rho }_i})$
 denote a representative of the strict equivalence class of the universal representation for each
$\rho _i^{\mathrm {univ}}: G_F \to \operatorname {\mathrm {GL}}_{d_i}(R_{\overline {\rho }_i})$
 denote a representative of the strict equivalence class of the universal representation for each 
 $i = 1,\dots ,m$
. If we let M denote the universal invertible matrix in
$i = 1,\dots ,m$
. If we let M denote the universal invertible matrix in 
 $\operatorname {\mathrm {GL}}_d(\mathcal {O}_{\operatorname {\mathrm {GL}}_d}(\operatorname {\mathrm {GL}}_d))$
, then the representation
$\operatorname {\mathrm {GL}}_d(\mathcal {O}_{\operatorname {\mathrm {GL}}_d}(\operatorname {\mathrm {GL}}_d))$
, then the representation 
 $$\begin{align*}M \times \mathrm{diag}(\rho_1^{\mathrm{univ}}, \dots, \rho_m^{\mathrm{univ}}) \times M^{-1}: G_F \to \operatorname{\mathrm{GL}}_d(R^{\mathrm{ps}}_{\underline{\Sigma}} \otimes_{\mathcal{O}} \mathcal{O}_{\operatorname{\mathrm{GL}}_d}(\operatorname{\mathrm{GL}}_d)) \end{align*}$$
$$\begin{align*}M \times \mathrm{diag}(\rho_1^{\mathrm{univ}}, \dots, \rho_m^{\mathrm{univ}}) \times M^{-1}: G_F \to \operatorname{\mathrm{GL}}_d(R^{\mathrm{ps}}_{\underline{\Sigma}} \otimes_{\mathcal{O}} \mathcal{O}_{\operatorname{\mathrm{GL}}_d}(\operatorname{\mathrm{GL}}_d)) \end{align*}$$
gives rise to a map of Cayley–Hamilton algebras 
 $E \to M_d(R^{\mathrm {ps}}_{\underline {\Sigma }} \otimes _{\mathcal {O}} \mathcal {O}_{\operatorname {\mathrm {GL}}_d}(\operatorname {\mathrm {GL}}_d))$
, which satisfies the universal property of
$E \to M_d(R^{\mathrm {ps}}_{\underline {\Sigma }} \otimes _{\mathcal {O}} \mathcal {O}_{\operatorname {\mathrm {GL}}_d}(\operatorname {\mathrm {GL}}_d))$
, which satisfies the universal property of 
 $A^{\mathrm {gen}}$
 and so defines a map of
$A^{\mathrm {gen}}$
 and so defines a map of 
 $R^{\mathrm {ps}}$
-schemes
$R^{\mathrm {ps}}$
-schemes 
 $$\begin{align*}\operatorname{\mathrm{GL}}_d \times_{\mathcal{O}} X^{\mathrm{ps}}_{\underline{\Sigma}} \to X^{\mathrm{gen}}, \end{align*}$$
$$\begin{align*}\operatorname{\mathrm{GL}}_d \times_{\mathcal{O}} X^{\mathrm{ps}}_{\underline{\Sigma}} \to X^{\mathrm{gen}}, \end{align*}$$
which descends to a map of 
 $R^{\mathrm {ps}}$
-schemes
$R^{\mathrm {ps}}$
-schemes 
 $$\begin{align*}\eta_{\underline{\Sigma}}: \operatorname{\mathrm{GL}}_d/Z_L \times_{\mathcal{O}} X^{\mathrm{ps}}_{\underline{\Sigma}} \to X^{\mathrm{gen}}, \end{align*}$$
$$\begin{align*}\eta_{\underline{\Sigma}}: \operatorname{\mathrm{GL}}_d/Z_L \times_{\mathcal{O}} X^{\mathrm{ps}}_{\underline{\Sigma}} \to X^{\mathrm{gen}}, \end{align*}$$
where 
 $L:=L_{\underline {\Sigma }}$
 denotes the standard Levi subgroup of
$L:=L_{\underline {\Sigma }}$
 denotes the standard Levi subgroup of 
 $\operatorname {\mathrm {GL}}_d$
 with blocks corresponding to
$\operatorname {\mathrm {GL}}_d$
 with blocks corresponding to 
 $\underline {\Sigma }$
, and
$\underline {\Sigma }$
, and 
 $Z_L$
 denotes its center.
$Z_L$
 denotes its center.
Definition 3.46. The maximally reducible semi-simple locus 
 $X^{\operatorname {\mathrm {mrs}}} \subset X^{\mathrm {gen}}$
 is the scheme-theoretic image of
$X^{\operatorname {\mathrm {mrs}}} \subset X^{\mathrm {gen}}$
 is the scheme-theoretic image of 
 $\eta _{\underline {\Sigma }}: \operatorname {\mathrm {GL}}_d/Z_L \times _{\mathcal {O}} X^{\mathrm {ps}}_{\underline {\Sigma }} \to X^{\mathrm {gen}}$
.
$\eta _{\underline {\Sigma }}: \operatorname {\mathrm {GL}}_d/Z_L \times _{\mathcal {O}} X^{\mathrm {ps}}_{\underline {\Sigma }} \to X^{\mathrm {gen}}$
.
Lemma 3.47. Let 
 $x \in X^{\mathrm {gen}}$
 and let y be the image of x in
$x \in X^{\mathrm {gen}}$
 and let y be the image of x in 
 $X^{\mathrm {ps}}$
. If y lies in
$X^{\mathrm {ps}}$
. If y lies in 
 $X^{\mathrm {ps}}_{\mathcal {P}_{\max }}$
 and
$X^{\mathrm {ps}}_{\mathcal {P}_{\max }}$
 and 
 $\rho _x$
 is semi-simple, then
$\rho _x$
 is semi-simple, then 
 $x\in X^{\operatorname {\mathrm {mrs}}}$
. Moreover, such points are dense in
$x\in X^{\operatorname {\mathrm {mrs}}}$
. Moreover, such points are dense in 
 $X^{\operatorname {\mathrm {mrs}}}$
.
$X^{\operatorname {\mathrm {mrs}}}$
.
Proof. We first note that if 
 $x\in X^{\mathrm {gen}}$
 maps to
$x\in X^{\mathrm {gen}}$
 maps to 
 $X^{\mathrm {ps}}_{\mathcal {P}_{\max }}$
 and
$X^{\mathrm {ps}}_{\mathcal {P}_{\max }}$
 and 
 $\rho _x$
 is semi-simple, then
$\rho _x$
 is semi-simple, then 
 $\rho _x\cong \rho _1\oplus \ldots \oplus \rho _m$
, with each
$\rho _x\cong \rho _1\oplus \ldots \oplus \rho _m$
, with each 
 $\rho _i$
 an irreducible representation of
$\rho _i$
 an irreducible representation of 
 $G_F$
 lifting
$G_F$
 lifting 
 $\overline {\rho }_i$
. By conjugating by an element of
$\overline {\rho }_i$
. By conjugating by an element of 
 $h\in \operatorname {\mathrm {GL}}_d(\kappa (x))$
, we may ensure that
$h\in \operatorname {\mathrm {GL}}_d(\kappa (x))$
, we may ensure that 
 $h^{-1} \rho _x(g) h= \mathrm {diag}(\rho _1(g), \ldots , \rho _m(g))$
 for all
$h^{-1} \rho _x(g) h= \mathrm {diag}(\rho _1(g), \ldots , \rho _m(g))$
 for all 
 $g\in G_F$
, and this implies that
$g\in G_F$
, and this implies that 
 $x\in X^{\operatorname {\mathrm {mrs}}}$
.
$x\in X^{\operatorname {\mathrm {mrs}}}$
.
 Since 
 $\eta _{\underline {\Sigma }}$
 is a map of affine schemes, it is affine and hence quasi-compact; see [48, Tag 01S5]. It follows from [48, Tag 01R8] that the set theoretic image of
$\eta _{\underline {\Sigma }}$
 is a map of affine schemes, it is affine and hence quasi-compact; see [48, Tag 01S5]. It follows from [48, Tag 01R8] that the set theoretic image of 
 $\eta _{\underline {\Sigma }}$
 is dense in
$\eta _{\underline {\Sigma }}$
 is dense in 
 $X^{\operatorname {\mathrm {mrs}}}$
.
$X^{\operatorname {\mathrm {mrs}}}$
.
Proposition 3.48. 
 $\dim X^{\operatorname {\mathrm {mrs}}} \leq 1+d^2 +[F:\mathbb {Q}_p] \sum _{i=1}^m d_i^2$
.
$\dim X^{\operatorname {\mathrm {mrs}}} \leq 1+d^2 +[F:\mathbb {Q}_p] \sum _{i=1}^m d_i^2$
.
Proof. The open subscheme 
 $U_{\max } = X^{\mathrm {ps}} \setminus \{{\mathfrak m}_{R^{\mathrm {ps}}}\} \subset \overline {X}^{\mathrm {ps}}$
 is Jacobson by Lemma 3.18, as is
$U_{\max } = X^{\mathrm {ps}} \setminus \{{\mathfrak m}_{R^{\mathrm {ps}}}\} \subset \overline {X}^{\mathrm {ps}}$
 is Jacobson by Lemma 3.18, as is 
 $V_{\max } := X^{\operatorname {\mathrm {mrs}}} \times _{X^{\mathrm {ps}}} U_{\max }$
. Let
$V_{\max } := X^{\operatorname {\mathrm {mrs}}} \times _{X^{\mathrm {ps}}} U_{\max }$
. Let 
 $Z_{\max }$
 denote the closure of
$Z_{\max }$
 denote the closure of 
 $V_{\max }$
 in
$V_{\max }$
 in 
 $X^{\operatorname {\mathrm {mrs}}}$
. The formation of scheme-theoretic images commutes with restriction to opens, so the map
$X^{\operatorname {\mathrm {mrs}}}$
. The formation of scheme-theoretic images commutes with restriction to opens, so the map 
 $$\begin{align*}(\operatorname{\mathrm{GL}}_d/Z_L \times_{\mathcal{O}} X^{\mathrm{ps}}_{\underline{\Sigma}}) \times_{X^{\mathrm{ps}}} U_{\max} \to V_{\max} \end{align*}$$
$$\begin{align*}(\operatorname{\mathrm{GL}}_d/Z_L \times_{\mathcal{O}} X^{\mathrm{ps}}_{\underline{\Sigma}}) \times_{X^{\mathrm{ps}}} U_{\max} \to V_{\max} \end{align*}$$
is a dominant map of Jacobson Noetherian excellent schemes. Applying Lemma 3.14, we see that
 $$\begin{align*}\dim V_{\max} \leq \dim ((\operatorname{\mathrm{GL}}_d/Z_L\times_{\mathcal{O}} X^{\mathrm{ps}}_{\underline{\Sigma}}) \times_{X^{\mathrm{ps}}} U_{\max}). \end{align*}$$
$$\begin{align*}\dim V_{\max} \leq \dim ((\operatorname{\mathrm{GL}}_d/Z_L\times_{\mathcal{O}} X^{\mathrm{ps}}_{\underline{\Sigma}}) \times_{X^{\mathrm{ps}}} U_{\max}). \end{align*}$$
Since 
 $X^{\operatorname {\mathrm {mrs}}}$
 is by definition a nonempty closed
$X^{\operatorname {\mathrm {mrs}}}$
 is by definition a nonempty closed 
 $\operatorname {\mathrm {GL}}_d$
-invariant subscheme of
$\operatorname {\mathrm {GL}}_d$
-invariant subscheme of 
 $X^{\mathrm {gen}}$
, Lemma 3.21 implies that every irreducible component of
$X^{\mathrm {gen}}$
, Lemma 3.21 implies that every irreducible component of 
 $X^{\operatorname {\mathrm {mrs}}}$
 has a point in common with the preimage of
$X^{\operatorname {\mathrm {mrs}}}$
 has a point in common with the preimage of 
 ${\mathfrak m}_{R^{\mathrm {ps}}}$
 in
${\mathfrak m}_{R^{\mathrm {ps}}}$
 in 
 $X^{\operatorname {\mathrm {mrs}}}$
. Therefore, Lemma 3.18 (5) implies that
$X^{\operatorname {\mathrm {mrs}}}$
. Therefore, Lemma 3.18 (5) implies that 
 $$\begin{align*}\dim Z_{\max} = \dim V_{\max} + 1. \end{align*}$$
$$\begin{align*}\dim Z_{\max} = \dim V_{\max} + 1. \end{align*}$$
Furthermore, 
 $\operatorname {\mathrm {GL}}_d/Z_L$
 is flat over
$\operatorname {\mathrm {GL}}_d/Z_L$
 is flat over 
 $\operatorname {\mathrm {Spec}} \mathcal {O}$
 with geometrically irreducible fibres, so the projection
$\operatorname {\mathrm {Spec}} \mathcal {O}$
 with geometrically irreducible fibres, so the projection 
 $\operatorname {\mathrm {GL}}_d/Z_L\times _{\mathcal {O}} X^{\mathrm {ps}}_{\underline {\Sigma }}\rightarrow X^{\mathrm {ps}}_{\underline {\Sigma }}$
 is a flat (and hence open) map with irreducible fibres. It follows from [48, Tag 037A] that this map induces a bijection between the sets of irreducible components. Since
$\operatorname {\mathrm {GL}}_d/Z_L\times _{\mathcal {O}} X^{\mathrm {ps}}_{\underline {\Sigma }}\rightarrow X^{\mathrm {ps}}_{\underline {\Sigma }}$
 is a flat (and hence open) map with irreducible fibres. It follows from [48, Tag 037A] that this map induces a bijection between the sets of irreducible components. Since 
 $R^{\mathrm {ps}}_{\underline {\Sigma }}$
 is a local ring, we deduce that
$R^{\mathrm {ps}}_{\underline {\Sigma }}$
 is a local ring, we deduce that 
 $\operatorname {\mathrm {GL}}_d/Z_L\times _{\mathcal {O}} X^{\mathrm {ps}}_{\underline {\Sigma }}$
 satisfies the assumptions of Lemma 3.18 (5), and thus, Lemma 3.18 (5) implies that
$\operatorname {\mathrm {GL}}_d/Z_L\times _{\mathcal {O}} X^{\mathrm {ps}}_{\underline {\Sigma }}$
 satisfies the assumptions of Lemma 3.18 (5), and thus, Lemma 3.18 (5) implies that 
 $$\begin{align*}\dim \operatorname{\mathrm{GL}}_d/Z_L\times_{\mathcal{O}} X^{\mathrm{ps}}_{\underline{\Sigma}} = \dim ((\operatorname{\mathrm{GL}}_d/Z_L \times_{\mathcal{O}} X^{\mathrm{ps}}_{\underline{\Sigma}}) \times_{X^{\mathrm{ps}}} U_{\max}) + 1. \end{align*}$$
$$\begin{align*}\dim \operatorname{\mathrm{GL}}_d/Z_L\times_{\mathcal{O}} X^{\mathrm{ps}}_{\underline{\Sigma}} = \dim ((\operatorname{\mathrm{GL}}_d/Z_L \times_{\mathcal{O}} X^{\mathrm{ps}}_{\underline{\Sigma}}) \times_{X^{\mathrm{ps}}} U_{\max}) + 1. \end{align*}$$
Since 
 $\dim X^{\mathrm {ps}}_{\underline {\Sigma }}= 1+\sum _{i=1}^m (1+d_i^2[F:\mathbb {Q}_p])$
 and the relative dimension of
$\dim X^{\mathrm {ps}}_{\underline {\Sigma }}= 1+\sum _{i=1}^m (1+d_i^2[F:\mathbb {Q}_p])$
 and the relative dimension of 
 $\operatorname {\mathrm {GL}}_d/Z_L$
 over
$\operatorname {\mathrm {GL}}_d/Z_L$
 over 
 $\mathcal {O}$
 is
$\mathcal {O}$
 is 
 $d^2-m$
, we get that
$d^2-m$
, we get that 
 $$ \begin{align*}\dim Z_{\max}\le \dim \operatorname{\mathrm{GL}}_d/Z_L\times_{\mathcal{O}} X^{\mathrm{ps}}_{\underline{\Sigma}}=1+d^2 + [F:\mathbb{Q}_p]\sum_{i=1}^m d_i^2.\end{align*} $$
$$ \begin{align*}\dim Z_{\max}\le \dim \operatorname{\mathrm{GL}}_d/Z_L\times_{\mathcal{O}} X^{\mathrm{ps}}_{\underline{\Sigma}}=1+d^2 + [F:\mathbb{Q}_p]\sum_{i=1}^m d_i^2.\end{align*} $$
 Let 
 $Y^{\operatorname {\mathrm {mrs}}}$
 be the scheme theoretic image of
$Y^{\operatorname {\mathrm {mrs}}}$
 be the scheme theoretic image of 
 $\operatorname {\mathrm {GL}}_d/ Z_L \times _{\mathcal {O}} \{{\mathfrak m}_{R^{\mathrm {ps}}}\}\rightarrow Y$
. Since Y is of finite type over k, the same argument as above shows that
$\operatorname {\mathrm {GL}}_d/ Z_L \times _{\mathcal {O}} \{{\mathfrak m}_{R^{\mathrm {ps}}}\}\rightarrow Y$
. Since Y is of finite type over k, the same argument as above shows that 
 $$ \begin{align*}\dim Y^{\operatorname{\mathrm{mrs}}} \le \dim (\operatorname{\mathrm{GL}}_d/ Z_L \times_{\mathcal{O}} \{{\mathfrak m}_{R^{\mathrm{ps}}}\})= d^2-m.\end{align*} $$
$$ \begin{align*}\dim Y^{\operatorname{\mathrm{mrs}}} \le \dim (\operatorname{\mathrm{GL}}_d/ Z_L \times_{\mathcal{O}} \{{\mathfrak m}_{R^{\mathrm{ps}}}\})= d^2-m.\end{align*} $$
 Now 
 $Z_{\max }\cup Y^{\operatorname {\mathrm {mrs}}}$
 is a closed subscheme of
$Z_{\max }\cup Y^{\operatorname {\mathrm {mrs}}}$
 is a closed subscheme of 
 $X^{\mathrm {gen}}$
 containing the image of
$X^{\mathrm {gen}}$
 containing the image of 
 $\eta _{\underline {\Sigma }}$
. It follows from Lemma 3.47 that
$\eta _{\underline {\Sigma }}$
. It follows from Lemma 3.47 that 
 $Z_{\max }\cup Y^{\operatorname {\mathrm {mrs}}}$
 will contain
$Z_{\max }\cup Y^{\operatorname {\mathrm {mrs}}}$
 will contain 
 $X^{\operatorname {\mathrm {mrs}}}$
. Hence,
$X^{\operatorname {\mathrm {mrs}}}$
. Hence, 
 $$ \begin{align*}\dim X^{\operatorname{\mathrm{mrs}}}\le \max\{ \dim Z_{\max}, \dim Y^{\operatorname{\mathrm{mrs}}}\}= \dim Z_{\max}.\\[-39pt]\end{align*} $$
$$ \begin{align*}\dim X^{\operatorname{\mathrm{mrs}}}\le \max\{ \dim Z_{\max}, \dim Y^{\operatorname{\mathrm{mrs}}}\}= \dim Z_{\max}.\\[-39pt]\end{align*} $$
Corollary 3.49. 
 $ \dim \overline {X}^{\operatorname {\mathrm {mrs}}} =\dim X^{\operatorname {\mathrm {mrs}}}-1\leq d^2 + [F:\mathbb {Q}_p]\sum _{i=1}^m d_i^2$
.
$ \dim \overline {X}^{\operatorname {\mathrm {mrs}}} =\dim X^{\operatorname {\mathrm {mrs}}}-1\leq d^2 + [F:\mathbb {Q}_p]\sum _{i=1}^m d_i^2$
.
Proof. It follows from Corollary 3.38 that 
 $R^{\mathrm {ps}}_{\underline {\Sigma }}$
 is
$R^{\mathrm {ps}}_{\underline {\Sigma }}$
 is 
 $\mathcal {O}$
-torsion free, which implies that
$\mathcal {O}$
-torsion free, which implies that 
 $\operatorname {\mathrm {GL}}_d/Z_L\times _{\mathcal {O}} X^{\mathrm {ps}}_{\underline {\Sigma }}$
 is flat over
$\operatorname {\mathrm {GL}}_d/Z_L\times _{\mathcal {O}} X^{\mathrm {ps}}_{\underline {\Sigma }}$
 is flat over 
 $\operatorname {\mathrm {Spec}} \mathcal {O}$
, and the same applies for
$\operatorname {\mathrm {Spec}} \mathcal {O}$
, and the same applies for 
 $X^{\operatorname {\mathrm {mrs}}}$
. (Here, we are simply saying that a subring of
$X^{\operatorname {\mathrm {mrs}}}$
. (Here, we are simply saying that a subring of 
 $\mathcal {O}$
-torsion free ring is
$\mathcal {O}$
-torsion free ring is 
 $\mathcal {O}$
-torsion free.) Thus, for all
$\mathcal {O}$
-torsion free.) Thus, for all 
 $x\in \overline {X}^{\operatorname {\mathrm {mrs}}}$
,
$x\in \overline {X}^{\operatorname {\mathrm {mrs}}}$
, 
 $\varpi $
 is a regular element in
$\varpi $
 is a regular element in 
 $\mathcal {O}_{X^{\operatorname {\mathrm {mrs}}}, x}$
 and so
$\mathcal {O}_{X^{\operatorname {\mathrm {mrs}}}, x}$
 and so 
 $\dim \mathcal {O}_{\overline {X}^{\operatorname {\mathrm {mrs}}}, x}= \dim \mathcal {O}_{X^{\operatorname {\mathrm {mrs}}}, x}-1$
. This implies
$\dim \mathcal {O}_{\overline {X}^{\operatorname {\mathrm {mrs}}}, x}= \dim \mathcal {O}_{X^{\operatorname {\mathrm {mrs}}}, x}-1$
. This implies 
 $\dim \overline {X}^{\operatorname {\mathrm {mrs}}}= \dim X^{\operatorname {\mathrm {mrs}}}-1$
, and the inequality follows from Proposition 3.48.
$\dim \overline {X}^{\operatorname {\mathrm {mrs}}}= \dim X^{\operatorname {\mathrm {mrs}}}-1$
, and the inequality follows from Proposition 3.48.
Remark 3.50. One could study the closure of the reducible semi-simple locus corresponding to more general partitions using a similar argument. We do not pursue this here, since we need the bound only for 
 $d = 2$
 and
$d = 2$
 and 
 $F=\mathbb {Q}_2$
 when we apply it to Case 3 in the proof of Proposition 4.13 below.
$F=\mathbb {Q}_2$
 when we apply it to Case 3 in the proof of Proposition 4.13 below.
3.7 Density of the irreducible locus
 Let us first unravel the definitions of 
 $U_{\mathcal {P}_{\min }}$
 and
$U_{\mathcal {P}_{\min }}$
 and 
 $V_{\mathcal {P}_{\min }}$
 in Section 3.4. We have that
$V_{\mathcal {P}_{\min }}$
 in Section 3.4. We have that 
 $U_{\mathcal {P}_{\min }}$
 is an open subscheme of
$U_{\mathcal {P}_{\min }}$
 is an open subscheme of 
 $\overline {X}^{\mathrm {ps}}$
 such that the closed points of
$\overline {X}^{\mathrm {ps}}$
 such that the closed points of 
 $U_{\mathcal {P}_{\min }}$
 are in bijection with
$U_{\mathcal {P}_{\min }}$
 are in bijection with 
 ${\mathfrak p}\in P_1(R^{\mathrm {ps}}/\varpi )$
, such that the specialization of the universal pseudo-character along
${\mathfrak p}\in P_1(R^{\mathrm {ps}}/\varpi )$
, such that the specialization of the universal pseudo-character along 
 $R^{\mathrm {ps}}\rightarrow \kappa ({\mathfrak p})$
 is absolutely irreducible. Now
$R^{\mathrm {ps}}\rightarrow \kappa ({\mathfrak p})$
 is absolutely irreducible. Now 
 $V_{\mathcal {P}_{\min }}$
 is the preimage of
$V_{\mathcal {P}_{\min }}$
 is the preimage of 
 $U_{\mathcal {P}_{\min }}$
 in
$U_{\mathcal {P}_{\min }}$
 in 
 $\overline {X}^{\mathrm {gen}}$
, so that it is an open subscheme of
$\overline {X}^{\mathrm {gen}}$
, so that it is an open subscheme of 
 $\overline {X}^{\mathrm {gen}}$
 and its closed points are in bijection
$\overline {X}^{\mathrm {gen}}$
 and its closed points are in bijection 
 $\mathfrak {q} \in \overline {X}^{\mathrm {gen}}$
, which map to
$\mathfrak {q} \in \overline {X}^{\mathrm {gen}}$
, which map to 
 $P_1(R^{\mathrm {ps}}/\varpi )$
 in
$P_1(R^{\mathrm {ps}}/\varpi )$
 in 
 $\overline {X}^{\mathrm {ps}}$
, such that the representation
$\overline {X}^{\mathrm {ps}}$
, such that the representation 
 $$ \begin{align*}E\overset{j}{\rightarrow} M_d(A^{\mathrm{gen}})\rightarrow M_d(\kappa(\mathfrak{q}))\end{align*} $$
$$ \begin{align*}E\overset{j}{\rightarrow} M_d(A^{\mathrm{gen}})\rightarrow M_d(\kappa(\mathfrak{q}))\end{align*} $$
is absolutely irreducible.
Proposition 3.51. 
 $V_{\mathcal {P}_{\min }}$
 is dense in
$V_{\mathcal {P}_{\min }}$
 is dense in 
 $\overline {X}^{\mathrm {gen}}$
.
$\overline {X}^{\mathrm {gen}}$
.
Proof. We have
 $$ \begin{align*}\overline{X}^{\mathrm{gen}}\setminus V_{\mathcal{P}_{\min}}= Y \cup \bigcup_{\mathcal{P}_{\min}< \mathcal{P}} Z_{\mathcal{P}},\end{align*} $$
$$ \begin{align*}\overline{X}^{\mathrm{gen}}\setminus V_{\mathcal{P}_{\min}}= Y \cup \bigcup_{\mathcal{P}_{\min}< \mathcal{P}} Z_{\mathcal{P}},\end{align*} $$
and it follows from Lemmas 3.29, 3.30 that 
 $\overline {X}^{\mathrm {gen}}\setminus V_{\mathcal {P}_{\min }}$
 has positive codimension in
$\overline {X}^{\mathrm {gen}}\setminus V_{\mathcal {P}_{\min }}$
 has positive codimension in 
 $\overline {X}^{\mathrm {gen}}$
. Since
$\overline {X}^{\mathrm {gen}}$
. Since 
 $\overline {X}$
 is equi-dimensional by Corollary 3.40, we conclude that
$\overline {X}$
 is equi-dimensional by Corollary 3.40, we conclude that 
 $V_{\mathcal {P}_{\min }}$
 is dense in
$V_{\mathcal {P}_{\min }}$
 is dense in 
 $\overline {X}^{\mathrm {gen}}$
. In particular, the inequality in Proposition 3.28 is an equality.
$\overline {X}^{\mathrm {gen}}$
. In particular, the inequality in Proposition 3.28 is an equality.
 We will now prove a stronger version of the above result. Following [Reference Böckle and Juschka9, Definition 5.1.2], we call 
 $y\in U_{\mathcal {P}_{\min }}$
 special if either
$y\in U_{\mathcal {P}_{\min }}$
 special if either 
 $\zeta _p\not \in F$
 and
$\zeta _p\not \in F$
 and 
 $D_y= D_y(1)$
 or
$D_y= D_y(1)$
 or 
 $\zeta _p\in F$
 and the restriction
$\zeta _p\in F$
 and the restriction 
 $D_y$
 to
$D_y$
 to 
 $G_{F'}$
 is reducible for some degree p Galois extension
$G_{F'}$
 is reducible for some degree p Galois extension 
 $F'$
 of F. Otherwise, y is called non-special. According to [Reference Böckle and Juschka9, Lemma 5.1.3], there is a closed subscheme
$F'$
 of F. Otherwise, y is called non-special. According to [Reference Böckle and Juschka9, Lemma 5.1.3], there is a closed subscheme 
 $U^{\operatorname {\mathrm {spcl}}}$
 of
$U^{\operatorname {\mathrm {spcl}}}$
 of 
 $U_{\mathcal {P}_{\min }}$
 such that the closed points of
$U_{\mathcal {P}_{\min }}$
 such that the closed points of 
 $U^{\operatorname {\mathrm {spcl}}}$
 are precisely the closed special points of
$U^{\operatorname {\mathrm {spcl}}}$
 are precisely the closed special points of 
 $U_{\mathcal {P}_{\min }}$
. Let
$U_{\mathcal {P}_{\min }}$
. Let 
 $V^{\operatorname {\mathrm {spcl}}}$
 denote the preimage of
$V^{\operatorname {\mathrm {spcl}}}$
 denote the preimage of 
 $U^{\operatorname {\mathrm {spcl}}}$
 in
$U^{\operatorname {\mathrm {spcl}}}$
 in 
 $\overline {X}^{\mathrm {gen}}$
 and let
$\overline {X}^{\mathrm {gen}}$
 and let 
 $Z^{\operatorname {\mathrm {spcl}}}$
 denote the closure of
$Z^{\operatorname {\mathrm {spcl}}}$
 denote the closure of 
 $V^{\operatorname {\mathrm {spcl}}}$
.
$V^{\operatorname {\mathrm {spcl}}}$
.
 Similarly, let 
 $U^{\mathrm {Kirr}}\subset U_{\mathcal {P}_{\min }}$
 be the Kummer-irreducible locus defined in Appendix A. Let
$U^{\mathrm {Kirr}}\subset U_{\mathcal {P}_{\min }}$
 be the Kummer-irreducible locus defined in Appendix A. Let 
 $U^{\mathrm {Kred}}$
 denote its complement in
$U^{\mathrm {Kred}}$
 denote its complement in 
 $U_{\mathcal {P}_{\min }}$
, let
$U_{\mathcal {P}_{\min }}$
, let 
 $V^{\mathrm {Kred}}$
 be the preimage of
$V^{\mathrm {Kred}}$
 be the preimage of 
 $U^{\mathrm {Kred}}$
 in
$U^{\mathrm {Kred}}$
 in 
 $\overline {X}^{\mathrm {gen}}$
 and let
$\overline {X}^{\mathrm {gen}}$
 and let 
 $Z^{\mathrm {Kred}}$
 denote the closure of
$Z^{\mathrm {Kred}}$
 denote the closure of 
 $V^{\mathrm {Kred}}$
. We have
$V^{\mathrm {Kred}}$
. We have 
 $V^{\operatorname {\mathrm {spcl}}} \subseteq V^{\mathrm {Kred}}$
 with equality if
$V^{\operatorname {\mathrm {spcl}}} \subseteq V^{\mathrm {Kred}}$
 with equality if 
 $\zeta _p\in F$
, and thus,
$\zeta _p\in F$
, and thus, 
 $Z^{\operatorname {\mathrm {spcl}}}\subseteq Z^{\mathrm {Kred}}$
.
$Z^{\operatorname {\mathrm {spcl}}}\subseteq Z^{\mathrm {Kred}}$
.
Lemma 3.52. We have
 $$ \begin{align*}\dim \overline{X}^{\mathrm{gen}}- \dim Z^{\operatorname{\mathrm{spcl}}} \ge \frac{1}{2}[F:\mathbb{Q}_p]d^2, \quad \dim \overline{X}^{\mathrm{gen}} - \dim Z^{\mathrm{Kred}} \ge [F:\mathbb{Q}_p]d.\end{align*} $$
$$ \begin{align*}\dim \overline{X}^{\mathrm{gen}}- \dim Z^{\operatorname{\mathrm{spcl}}} \ge \frac{1}{2}[F:\mathbb{Q}_p]d^2, \quad \dim \overline{X}^{\mathrm{gen}} - \dim Z^{\mathrm{Kred}} \ge [F:\mathbb{Q}_p]d.\end{align*} $$
Proof. It follows from [Reference Böckle and Juschka9, Theorem 5.4.1 (a)] that the dimension of the Zariski closure of 
 $U^{\operatorname {\mathrm {spcl}}}$
 in
$U^{\operatorname {\mathrm {spcl}}}$
 in 
 $\overline {X}^{\mathrm {ps}}$
 is at most
$\overline {X}^{\mathrm {ps}}$
 is at most 
 $1+ \frac {1}{2}[F:\mathbb {Q}_p]d^2$
. If
$1+ \frac {1}{2}[F:\mathbb {Q}_p]d^2$
. If 
 $y \in U^{\operatorname {\mathrm {spcl}}}$
, then its fibre
$y \in U^{\operatorname {\mathrm {spcl}}}$
, then its fibre 
 $X_y^{\mathrm {gen}}$
 has dimension
$X_y^{\mathrm {gen}}$
 has dimension 
 $d^2-1$
 by Corollary 3.16. Thus, Lemma 3.18 implies that
$d^2-1$
 by Corollary 3.16. Thus, Lemma 3.18 implies that 
 $$ \begin{align*}\dim Z^{\operatorname{\mathrm{spcl}}} \le d^2+ \frac{1}{2}[F:\mathbb{Q}_p]d^2.\end{align*} $$
$$ \begin{align*}\dim Z^{\operatorname{\mathrm{spcl}}} \le d^2+ \frac{1}{2}[F:\mathbb{Q}_p]d^2.\end{align*} $$
Since 
 $\dim \overline {X}^{\mathrm {gen}}= d^2+d^2[F:\mathbb {Q}_p]$
 by Corollary 3.40, the assertion follows. Similarly, Proposition A.9 implies that the dimension of the closure of
$\dim \overline {X}^{\mathrm {gen}}= d^2+d^2[F:\mathbb {Q}_p]$
 by Corollary 3.40, the assertion follows. Similarly, Proposition A.9 implies that the dimension of the closure of 
 $U^{\mathrm {Kred}}$
 in
$U^{\mathrm {Kred}}$
 in 
 $\overline {X}^{\mathrm {ps}}$
 is at most
$\overline {X}^{\mathrm {ps}}$
 is at most 
 $1+ (d^2-d)[F:\mathbb {Q}_p]$
. The same argument gives the required bound for the codimension of
$1+ (d^2-d)[F:\mathbb {Q}_p]$
. The same argument gives the required bound for the codimension of 
 $Z^{\mathrm {Kred}}$
.
$Z^{\mathrm {Kred}}$
.
 Let 
 $U^{{\mathrm {n}\text{-}\mathrm {spcl}}}:= U_{\mathcal {P}_{\min }}\setminus U^{{\mathrm {spcl}}}$
 and let
$U^{{\mathrm {n}\text{-}\mathrm {spcl}}}:= U_{\mathcal {P}_{\min }}\setminus U^{{\mathrm {spcl}}}$
 and let 
 $V^{{\mathrm {n}\text{-}\mathrm {spcl}}}$
 the preimage of
$V^{{\mathrm {n}\text{-}\mathrm {spcl}}}$
 the preimage of 
 $U^{ {\mathrm {n}\text{-}\mathrm {spcl}}}$
 in
$U^{ {\mathrm {n}\text{-}\mathrm {spcl}}}$
 in 
 $\overline {X}^{\mathrm {gen}}$
. Let
$\overline {X}^{\mathrm {gen}}$
. Let 
 $V^{\mathrm {Kirr}}$
 be the preimage of
$V^{\mathrm {Kirr}}$
 be the preimage of 
 $U^{\mathrm {Kirr}}$
 in
$U^{\mathrm {Kirr}}$
 in 
 $\overline {X}^{\mathrm {gen}}$
. We have an inclusion
$\overline {X}^{\mathrm {gen}}$
. We have an inclusion 
 $V^{\mathrm {Kirr}}\subset V^{{\mathrm {n}\text{-}\mathrm {spcl}}}$
, and the subschemes coincide if
$V^{\mathrm {Kirr}}\subset V^{{\mathrm {n}\text{-}\mathrm {spcl}}}$
, and the subschemes coincide if 
 $\zeta _p\in F$
.
$\zeta _p\in F$
.
Proposition 3.53. 
 $V^{\mathrm {Kirr}}$
 is Zariski dense in
$V^{\mathrm {Kirr}}$
 is Zariski dense in 
 $\overline {X}^{\mathrm {gen}}$
. Moreover, the following hold:
$\overline {X}^{\mathrm {gen}}$
. Moreover, the following hold: 
- 
(1) if  $d=2$
, then $d=2$
, then $\dim \overline {X}^{\mathrm {gen}} - \dim (\overline {X}^{\mathrm {gen}}\setminus V^{\mathrm {Kirr}})\ge [F:\mathbb {Q}_p]$
; $\dim \overline {X}^{\mathrm {gen}} - \dim (\overline {X}^{\mathrm {gen}}\setminus V^{\mathrm {Kirr}})\ge [F:\mathbb {Q}_p]$
;
- 
(2) if  $d>2$
, then $d>2$
, then $\dim \overline {X}^{\mathrm {gen}} - \dim (\overline {X}^{\mathrm {gen}}\setminus V^{\mathrm {Kirr}})\ge 1+[F:\mathbb {Q}_p]$
. $\dim \overline {X}^{\mathrm {gen}} - \dim (\overline {X}^{\mathrm {gen}}\setminus V^{\mathrm {Kirr}})\ge 1+[F:\mathbb {Q}_p]$
.
- 
(3) if  $d> 1$
 is arbitrary but $d> 1$
 is arbitrary but $\overline {D}$
 is absolutely irreducible (i.e., $\overline {D}$
 is absolutely irreducible (i.e., $m = 1$
), then $m = 1$
), then $$ \begin{align*}\dim \overline {X}^{\mathrm {gen}} - \dim (\overline {X}^{\mathrm {gen}}\setminus V^{\mathrm {Kirr}}) \ge d[F:\mathbb {Q}_p].\end{align*} $$ $$ \begin{align*}\dim \overline {X}^{\mathrm {gen}} - \dim (\overline {X}^{\mathrm {gen}}\setminus V^{\mathrm {Kirr}}) \ge d[F:\mathbb {Q}_p].\end{align*} $$
Proof. Since 
 $V_{\mathcal {P}_{\min }}$
 is dense in
$V_{\mathcal {P}_{\min }}$
 is dense in 
 $\overline {X}^{\mathrm {gen}}$
 by Proposition 3.51, we have
$\overline {X}^{\mathrm {gen}}$
 by Proposition 3.51, we have 
 $\overline {X}^{\mathrm {gen}}= Z_{\mathcal {P}_{\min }}= Z^{\mathrm {Kred}}\cup Z^{\mathrm {Kirr}}$
, where
$\overline {X}^{\mathrm {gen}}= Z_{\mathcal {P}_{\min }}= Z^{\mathrm {Kred}}\cup Z^{\mathrm {Kirr}}$
, where 
 $Z^{\mathrm {Kirr}}$
 is the closure of
$Z^{\mathrm {Kirr}}$
 is the closure of 
 $V^{\mathrm {Kirr}}$
. Since
$V^{\mathrm {Kirr}}$
. Since 
 $\dim Z^{\mathrm {Kred}}< \dim \overline {X}^{\mathrm {gen}}$
 by Lemma 3.52 and
$\dim Z^{\mathrm {Kred}}< \dim \overline {X}^{\mathrm {gen}}$
 by Lemma 3.52 and 
 $\overline {X}^{\mathrm {gen}}$
 is equi-dimensional, we get that
$\overline {X}^{\mathrm {gen}}$
 is equi-dimensional, we get that 
 $\overline {X}^{\mathrm {gen}}= Z^{\mathrm {Kirr}}$
. Moreover,
$\overline {X}^{\mathrm {gen}}= Z^{\mathrm {Kirr}}$
. Moreover, 
 $$ \begin{align*}\overline{X}^{\mathrm{gen}}\setminus V^{\mathrm{Kirr}}= Y\cup Z^{\mathrm{Kred}} \cup \bigcup_{\mathcal{P}_{\min}< \mathcal{P}} Z_{\mathcal{P}},\end{align*} $$
$$ \begin{align*}\overline{X}^{\mathrm{gen}}\setminus V^{\mathrm{Kirr}}= Y\cup Z^{\mathrm{Kred}} \cup \bigcup_{\mathcal{P}_{\min}< \mathcal{P}} Z_{\mathcal{P}},\end{align*} $$
and claims (1) and (2) follow from the dimension estimates in Lemmas 3.30, 3.29, 3.52. If 
 $\overline {D}$
 is absolutely irreducible, then
$\overline {D}$
 is absolutely irreducible, then 
 $\{\mathcal {P} : \mathcal {P}_{\min } < \mathcal {P}\} = \emptyset $
, and claim (3) follows from Lemmas 3.30 and 3.52.
$\{\mathcal {P} : \mathcal {P}_{\min } < \mathcal {P}\} = \emptyset $
, and claim (3) follows from Lemmas 3.30 and 3.52.
 We now want to transfer the density results from 
 $\overline {X}^{\mathrm {gen}}$
 to
$\overline {X}^{\mathrm {gen}}$
 to 
 $R^{\square }_{\overline {\rho }}/\varpi $
.
$R^{\square }_{\overline {\rho }}/\varpi $
.
Lemma 3.54. Let 
 $A\rightarrow B$
 be a flat ring homomorphism, let U be an open subscheme of
$A\rightarrow B$
 be a flat ring homomorphism, let U be an open subscheme of 
 $\operatorname {\mathrm {Spec}} A$
 and let V be the preimage of U in
$\operatorname {\mathrm {Spec}} A$
 and let V be the preimage of U in 
 $\operatorname {\mathrm {Spec}} B$
. If U is dense in
$\operatorname {\mathrm {Spec}} B$
. If U is dense in 
 $\operatorname {\mathrm {Spec}} A$
, then V is dense in
$\operatorname {\mathrm {Spec}} A$
, then V is dense in 
 $\operatorname {\mathrm {Spec}} B$
.
$\operatorname {\mathrm {Spec}} B$
.
Proof. Let 
 $\mathfrak {q}$
 be a minimal prime of B and let
$\mathfrak {q}$
 be a minimal prime of B and let 
 ${\mathfrak p}$
 be its image in
${\mathfrak p}$
 be its image in 
 $\operatorname {\mathrm {Spec}} A$
. Since the map is flat, it satisfies going down, and so
$\operatorname {\mathrm {Spec}} A$
. Since the map is flat, it satisfies going down, and so 
 ${\mathfrak p}$
 is a minimal prime of A. Since U is dense, it will contain
${\mathfrak p}$
 is a minimal prime of A. Since U is dense, it will contain 
 ${\mathfrak p}$
; hence, V will contain
${\mathfrak p}$
; hence, V will contain 
 $\mathfrak {q}$
. Thus, V contains all the minimal primes of B and so is dense in
$\mathfrak {q}$
. Thus, V contains all the minimal primes of B and so is dense in 
 $\operatorname {\mathrm {Spec}} B$
.
$\operatorname {\mathrm {Spec}} B$
.
Proposition 3.55. Let 
 $(\operatorname {\mathrm {Spec}} (R^{\square }_{\overline {\rho }}/\varpi ))^{\mathrm {Kirr}}$
 be the preimage of
$(\operatorname {\mathrm {Spec}} (R^{\square }_{\overline {\rho }}/\varpi ))^{\mathrm {Kirr}}$
 be the preimage of 
 $V^{\mathrm {Kirr}}$
 in
$V^{\mathrm {Kirr}}$
 in 
 $\operatorname {\mathrm {Spec}} (R^{\square }_{\overline {\rho }}/\varpi )$
. Then
$\operatorname {\mathrm {Spec}} (R^{\square }_{\overline {\rho }}/\varpi )$
. Then 
 $(\operatorname {\mathrm {Spec}} (R^{\square }_{\overline {\rho }}/\varpi ))^{\mathrm {Kirr}}$
 is dense in
$(\operatorname {\mathrm {Spec}} (R^{\square }_{\overline {\rho }}/\varpi ))^{\mathrm {Kirr}}$
 is dense in 
 $\operatorname {\mathrm {Spec}} (R^{\square }_{\overline {\rho }}/\varpi )$
.
$\operatorname {\mathrm {Spec}} (R^{\square }_{\overline {\rho }}/\varpi )$
.
Proof. The map 
 $A^{\mathrm {gen}}/\varpi \rightarrow R^{\square }_{\overline {\rho }}/\varpi $
 is flat since it is a localization followed by a completion. The assertion follows from Lemma 3.54 and Proposition 3.53.
$A^{\mathrm {gen}}/\varpi \rightarrow R^{\square }_{\overline {\rho }}/\varpi $
 is flat since it is a localization followed by a completion. The assertion follows from Lemma 3.54 and Proposition 3.53.
Remark 3.56. Since 
 $(\operatorname {\mathrm {Spec}} (R^{\square }_{\overline {\rho }}/\varpi ))^{\mathrm {Kirr}}$
 is also the preimage of
$(\operatorname {\mathrm {Spec}} (R^{\square }_{\overline {\rho }}/\varpi ))^{\mathrm {Kirr}}$
 is also the preimage of 
 $U^{\mathrm {Kirr}}$
 in
$U^{\mathrm {Kirr}}$
 in 
 $\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}/\varpi $
, we may characterise it as an open subscheme of
$\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}/\varpi $
, we may characterise it as an open subscheme of 
 $\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}/\varpi $
, such that its closed points are in bijection with
$\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}/\varpi $
, such that its closed points are in bijection with 
 $x\in P_1 (R^{\square }_{\overline {\rho }}/\varpi )$
, which map to
$x\in P_1 (R^{\square }_{\overline {\rho }}/\varpi )$
, which map to 
 $P_1 (R^{\mathrm {ps}}/\varpi )$
 in
$P_1 (R^{\mathrm {ps}}/\varpi )$
 in 
 $\operatorname {\mathrm {Spec}} R^{\mathrm {ps}}$
 and for which the representation
$\operatorname {\mathrm {Spec}} R^{\mathrm {ps}}$
 and for which the representation 
 $$ \begin{align*}\rho_{x}: G_F \rightarrow \operatorname{\mathrm{GL}}_d(R^{\square}_{\overline{\rho}}/\varpi)\rightarrow \operatorname{\mathrm{GL}}_d(\kappa(x))\end{align*} $$
$$ \begin{align*}\rho_{x}: G_F \rightarrow \operatorname{\mathrm{GL}}_d(R^{\square}_{\overline{\rho}}/\varpi)\rightarrow \operatorname{\mathrm{GL}}_d(\kappa(x))\end{align*} $$
remains absolutely irreducible after restriction to 
 $G_{F'}$
 for all degree p Galois extensions
$G_{F'}$
 for all degree p Galois extensions 
 $F'$
 of
$F'$
 of 
 $F(\zeta _p)$
. Lemma A.2 implies that
$F(\zeta _p)$
. Lemma A.2 implies that 
 $H^2(G_F, {\operatorname {ad}^0}\rho _x)=0$
 for such x.
$H^2(G_F, {\operatorname {ad}^0}\rho _x)=0$
 for such x.
 We will now prove similar results for the generic fibres. For each partition 
 $\mathcal {P}$
 as in Section 3.4, let
$\mathcal {P}$
 as in Section 3.4, let 
 $X^{\mathrm {ps}}_{\mathcal {P}}$
 be the scheme theoretic image of
$X^{\mathrm {ps}}_{\mathcal {P}}$
 be the scheme theoretic image of 
 $X^{\mathrm {ps}}$
 inside
$X^{\mathrm {ps}}$
 inside 
 $X^{\mathrm {ps}}_{\underline {\Sigma }}$
 and let
$X^{\mathrm {ps}}_{\underline {\Sigma }}$
 and let 
 $X^{\mathrm {gen}}_{\mathcal {P}}$
 be the preimage of
$X^{\mathrm {gen}}_{\mathcal {P}}$
 be the preimage of 
 $X^{\mathrm {ps}}_{\mathcal {P}}$
 in
$X^{\mathrm {ps}}_{\mathcal {P}}$
 in 
 $X^{\mathrm {gen}}$
. We warn the reader that, contrary to our usual notational conventions, it is not clear that
$X^{\mathrm {gen}}$
. We warn the reader that, contrary to our usual notational conventions, it is not clear that 
 $\overline {X}^{\mathrm {ps}}_{\mathcal {P}}$
 considered in Section 3.4 is the special fibre of
$\overline {X}^{\mathrm {ps}}_{\mathcal {P}}$
 considered in Section 3.4 is the special fibre of 
 $X^{\mathrm {ps}}_{\mathcal {P}}$
. However, the following still holds.
$X^{\mathrm {ps}}_{\mathcal {P}}$
. However, the following still holds.
Lemma 3.57. 
 $\dim X^{\mathrm {gen}}_{\mathcal {P}}[1/p] \le \dim \overline {X}^{\mathrm {gen}}_{\mathcal {P}}$
.
$\dim X^{\mathrm {gen}}_{\mathcal {P}}[1/p] \le \dim \overline {X}^{\mathrm {gen}}_{\mathcal {P}}$
.
Proof. Let 
 $\mathfrak a_{\mathcal {P}}$
 be the
$\mathfrak a_{\mathcal {P}}$
 be the 
 $R^{\mathrm {ps}}$
-annihilator of
$R^{\mathrm {ps}}$
-annihilator of 
 $R^{\mathrm {ps}}_{\underline {\Sigma }}$
 and let
$R^{\mathrm {ps}}_{\underline {\Sigma }}$
 and let 
 $\mathfrak b_{\mathcal {P}}$
 be the
$\mathfrak b_{\mathcal {P}}$
 be the 
 $R^{\mathrm {ps}}$
-annihilator of
$R^{\mathrm {ps}}$
-annihilator of 
 $R^{\mathrm {ps}}_{\underline {\Sigma }}/\varpi $
. We may write
$R^{\mathrm {ps}}_{\underline {\Sigma }}/\varpi $
. We may write 
 $$ \begin{align*}X^{\mathrm{gen}}_{\mathcal{P}}= \operatorname{\mathrm{Spec}} A^{\mathrm{gen}}/ \mathfrak a_{\mathcal{P}} A^{\mathrm{gen}}, \quad \overline{X}^{\mathrm{gen}}_{\mathcal{P}}=\operatorname{\mathrm{Spec}} A^{\mathrm{gen}}/\mathfrak b_{\mathcal{P}} A^{\mathrm{gen}}.\end{align*} $$
$$ \begin{align*}X^{\mathrm{gen}}_{\mathcal{P}}= \operatorname{\mathrm{Spec}} A^{\mathrm{gen}}/ \mathfrak a_{\mathcal{P}} A^{\mathrm{gen}}, \quad \overline{X}^{\mathrm{gen}}_{\mathcal{P}}=\operatorname{\mathrm{Spec}} A^{\mathrm{gen}}/\mathfrak b_{\mathcal{P}} A^{\mathrm{gen}}.\end{align*} $$
Since 
 $R^{\mathrm {ps}}_{\underline {\Sigma }}$
 is a finite
$R^{\mathrm {ps}}_{\underline {\Sigma }}$
 is a finite 
 $R^{\mathrm {ps}}$
-module by Lemma 3.24, we have
$R^{\mathrm {ps}}$
-module by Lemma 3.24, we have 
 $\sqrt {\mathfrak b_{\mathcal {P}}}= \sqrt {(\mathfrak a_{\mathcal {P}}, \varpi )}$
. In particular, the special fibre of
$\sqrt {\mathfrak b_{\mathcal {P}}}= \sqrt {(\mathfrak a_{\mathcal {P}}, \varpi )}$
. In particular, the special fibre of 
 $X^{\mathrm {gen}}_{\mathcal {P}}$
 has dimension equal to
$X^{\mathrm {gen}}_{\mathcal {P}}$
 has dimension equal to 
 $\dim \overline {X}^{\mathrm {gen}}_{\mathcal {P}}$
. The assertion follows from Lemma 3.23.
$\dim \overline {X}^{\mathrm {gen}}_{\mathcal {P}}$
. The assertion follows from Lemma 3.23.
Proposition 3.58. Let
 $$ \begin{align*}V^{\mathrm{irr}}:= X^{\mathrm{gen}}[1/p]\setminus \bigcup_{\mathcal{P}_{\min}< \mathcal{P}} X^{\mathrm{gen}}_{\mathcal{P}}[1/p].\end{align*} $$
$$ \begin{align*}V^{\mathrm{irr}}:= X^{\mathrm{gen}}[1/p]\setminus \bigcup_{\mathcal{P}_{\min}< \mathcal{P}} X^{\mathrm{gen}}_{\mathcal{P}}[1/p].\end{align*} $$
Then 
 $V^{\mathrm {irr}}$
 is an open dense subset of
$V^{\mathrm {irr}}$
 is an open dense subset of 
 $X^{\mathrm {gen}}[1/p]$
. Moreover, the following hold:
$X^{\mathrm {gen}}[1/p]$
. Moreover, the following hold: 
- 
(1) if  $d=2$
, then $d=2$
, then $\dim X^{\mathrm {gen}}[1/p] - \dim (X^{\mathrm {gen}}[1/p]\setminus V^{\mathrm {irr}})\ge [F:\mathbb {Q}_p]$
; $\dim X^{\mathrm {gen}}[1/p] - \dim (X^{\mathrm {gen}}[1/p]\setminus V^{\mathrm {irr}})\ge [F:\mathbb {Q}_p]$
;
- 
(2) if  $d>2$
, then $d>2$
, then $\dim X^{\mathrm {gen}}[1/p] - \dim (X^{\mathrm {gen}}[1/p]\setminus V^{\mathrm {irr}})\ge 1+[F:\mathbb {Q}_p]$
; $\dim X^{\mathrm {gen}}[1/p] - \dim (X^{\mathrm {gen}}[1/p]\setminus V^{\mathrm {irr}})\ge 1+[F:\mathbb {Q}_p]$
;
- 
(3) if  $d> 1$
 is arbitrary but $d> 1$
 is arbitrary but $\overline {D}$
 is absolutely irreducible (i.e., $\overline {D}$
 is absolutely irreducible (i.e., $m = 1$
), then $m = 1$
), then $X^{\mathrm {gen}}[1/p]=V^{\mathrm {irr}}$
. $X^{\mathrm {gen}}[1/p]=V^{\mathrm {irr}}$
.
Proof. It follows from Corollary 3.40 that 
 $\dim X^{\mathrm {gen}}[1/p]= d^2+d^2[F:\mathbb {Q}_p]=\dim \overline {X}^{\mathrm {gen}}$
. Lemmas 3.57 and 3.29 together with (18) imply that for
$\dim X^{\mathrm {gen}}[1/p]= d^2+d^2[F:\mathbb {Q}_p]=\dim \overline {X}^{\mathrm {gen}}$
. Lemmas 3.57 and 3.29 together with (18) imply that for 
 $\mathcal {P}> \mathcal {P}_{\min }$
 we have
$\mathcal {P}> \mathcal {P}_{\min }$
 we have 
 $$ \begin{align} \dim X^{\mathrm{gen}}[1/p]- \dim X^{\mathrm{gen}}_{\mathcal{P}}[1/p]\ge \dim \overline{X}^{\mathrm{gen}} - \dim \overline{X}^{\mathrm{gen}}_{\mathcal{P}}. \end{align} $$
$$ \begin{align} \dim X^{\mathrm{gen}}[1/p]- \dim X^{\mathrm{gen}}_{\mathcal{P}}[1/p]\ge \dim \overline{X}^{\mathrm{gen}} - \dim \overline{X}^{\mathrm{gen}}_{\mathcal{P}}. \end{align} $$
It follows from (18) that 
 $\overline {X}^{\mathrm {gen}}\setminus V^{\mathrm {Kirr}} = Y \cup Z^{\mathrm {Kred}} \cup \bigcup _{\mathcal {P}_{\min }< \mathcal {P}} \overline {X}^{\mathrm {gen}}_{\mathcal {P}}$
. Thus, it follows from (23) and the definition of
$\overline {X}^{\mathrm {gen}}\setminus V^{\mathrm {Kirr}} = Y \cup Z^{\mathrm {Kred}} \cup \bigcup _{\mathcal {P}_{\min }< \mathcal {P}} \overline {X}^{\mathrm {gen}}_{\mathcal {P}}$
. Thus, it follows from (23) and the definition of 
 $V^{\mathrm {irr}}$
 that
$V^{\mathrm {irr}}$
 that 
 $$ \begin{align} \dim X^{\mathrm{gen}}[1/p] -\dim (X^{\mathrm{gen}}[1/p]\setminus V^{\mathrm{irr}}) \ge \dim \overline{X}^{\mathrm{gen}}- \dim ( \overline{X}^{\mathrm{gen}}\setminus V^{\mathrm{Kirr}}), \end{align} $$
$$ \begin{align} \dim X^{\mathrm{gen}}[1/p] -\dim (X^{\mathrm{gen}}[1/p]\setminus V^{\mathrm{irr}}) \ge \dim \overline{X}^{\mathrm{gen}}- \dim ( \overline{X}^{\mathrm{gen}}\setminus V^{\mathrm{Kirr}}), \end{align} $$
and the lower bounds for the codimension of 
 $X^{\mathrm {gen}}[1/p]\setminus V^{\mathrm {irr}}$
 follow from Proposition 3.53.
$X^{\mathrm {gen}}[1/p]\setminus V^{\mathrm {irr}}$
 follow from Proposition 3.53.
 Thus, the dimension of the closure of 
 $V^{\mathrm {irr}}$
 is equal to
$V^{\mathrm {irr}}$
 is equal to 
 $\dim X^{\mathrm {gen}}[1/p]$
. Since
$\dim X^{\mathrm {gen}}[1/p]$
. Since 
 $A^{\mathrm {gen}}$
 is
$A^{\mathrm {gen}}$
 is 
 $\mathcal {O}$
-torsion free and equi-dimensional by Corollary 3.40 (1),
$\mathcal {O}$
-torsion free and equi-dimensional by Corollary 3.40 (1), 
 $X^{\mathrm {gen}}[1/p]$
 is equi-dimensional, and so
$X^{\mathrm {gen}}[1/p]$
 is equi-dimensional, and so 
 $V^{\mathrm {irr}}$
 is dense in
$V^{\mathrm {irr}}$
 is dense in 
 $X^{\mathrm {gen}}[1/p]$
.
$X^{\mathrm {gen}}[1/p]$
.
 If 
 $\overline {D}$
 is absolutely irreducible, then
$\overline {D}$
 is absolutely irreducible, then 
 $\rho _x$
 is absolutely irreducible for all closed points
$\rho _x$
 is absolutely irreducible for all closed points 
 $x\in X^{\mathrm {gen}}[1/p]$
 and so
$x\in X^{\mathrm {gen}}[1/p]$
 and so 
 $X^{\mathrm {gen}}[1/p]= V^{\mathrm {irr}}$
.
$X^{\mathrm {gen}}[1/p]= V^{\mathrm {irr}}$
.
Corollary 3.59. Let 
 $(\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p])^{\mathrm {irr}}$
 be the preimage of
$(\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p])^{\mathrm {irr}}$
 be the preimage of 
 $V^{\mathrm {irr}}$
 in
$V^{\mathrm {irr}}$
 in 
 $\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]$
. Then
$\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]$
. Then 
 $(\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p])^{\mathrm {irr}}$
 is dense in
$(\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p])^{\mathrm {irr}}$
 is dense in 
 $\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]$
.
$\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]$
.
Proof. As explained in the proof of Proposition 3.55, the map 
 $A^{\mathrm {gen}} \rightarrow R^{\square }_{\overline {\rho }}$
 is flat. Hence, the localization
$A^{\mathrm {gen}} \rightarrow R^{\square }_{\overline {\rho }}$
 is flat. Hence, the localization 
 $A^{\mathrm {gen}}[1/p]\rightarrow R^{\square }_{\overline {\rho }}[1/p]$
 is also flat. The assertion follows from Lemma 3.54 and Proposition 3.58.
$A^{\mathrm {gen}}[1/p]\rightarrow R^{\square }_{\overline {\rho }}[1/p]$
 is also flat. The assertion follows from Lemma 3.54 and Proposition 3.58.
Remark 3.60. Similarly to Remark 3.56, we may characterize 
 $(\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p])^{\mathrm {irr}}$
 as an open subscheme of
$(\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p])^{\mathrm {irr}}$
 as an open subscheme of 
 $\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]$
 such that its closed points correspond to maximal ideals
$\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]$
 such that its closed points correspond to maximal ideals 
 ${\mathfrak p}$
 of
${\mathfrak p}$
 of 
 $R^{\square }_{\overline {\rho }}[1/p]$
 for which the representation
$R^{\square }_{\overline {\rho }}[1/p]$
 for which the representation 
 $$ \begin{align*}\rho_{{\mathfrak p}}: G_F\rightarrow \operatorname{\mathrm{GL}}_d(R^{\square}_{\overline{\rho}}[1/p])\rightarrow \operatorname{\mathrm{GL}}_d(\kappa({\mathfrak p}))\end{align*} $$
$$ \begin{align*}\rho_{{\mathfrak p}}: G_F\rightarrow \operatorname{\mathrm{GL}}_d(R^{\square}_{\overline{\rho}}[1/p])\rightarrow \operatorname{\mathrm{GL}}_d(\kappa({\mathfrak p}))\end{align*} $$
is absolutely irreducible.
Corollary 3.61. The characteristic zero lift of 
 $\overline {\rho }$
 in Corollary 3.45 may be chosen to be absolutely irreducible.
$\overline {\rho }$
 in Corollary 3.45 may be chosen to be absolutely irreducible.
Proof. It follows from Corollary 3.45 that 
 $\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]$
 is nonempty, and Corollary 3.59 implies that
$\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]$
 is nonempty, and Corollary 3.59 implies that 
 $(\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p])^{\mathrm {irr}}$
 is nonempty. A closed point in
$(\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p])^{\mathrm {irr}}$
 is nonempty. A closed point in 
 $(\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p])^{\mathrm {irr}}$
 gives the desired lift of
$(\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p])^{\mathrm {irr}}$
 gives the desired lift of 
 $\overline {\rho }$
 to characteristic zero.
$\overline {\rho }$
 to characteristic zero.
Corollary 3.62. Let 
 $\Sigma \subset {\mathrm {m}\text{-}\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]$
 be dense in
$\Sigma \subset {\mathrm {m}\text{-}\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]$
 be dense in 
 $\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]$
. Then
$\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]$
. Then 
 $$ \begin{align*}\Sigma^{\mathrm{irr}}:=\Sigma \cap (\operatorname{\mathrm{Spec}} R^{\square}_{\overline{\rho}}[1/p])^{\mathrm{irr}}\end{align*} $$
$$ \begin{align*}\Sigma^{\mathrm{irr}}:=\Sigma \cap (\operatorname{\mathrm{Spec}} R^{\square}_{\overline{\rho}}[1/p])^{\mathrm{irr}}\end{align*} $$
is also dense in 
 $\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]$
.
$\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]$
.
Proof. It follows from the proof of Proposition 3.58 that 
 $\Sigma \setminus \Sigma ^{\mathrm {irr}}$
 is contained in a closed subset of
$\Sigma \setminus \Sigma ^{\mathrm {irr}}$
 is contained in a closed subset of 
 $\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]$
 of positive codimension. Since
$\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]$
 of positive codimension. Since 
 $\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]$
 is equi-dimensional,
$\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}[1/p]$
 is equi-dimensional, 
 $\Sigma ^{\mathrm {irr}}$
 is dense.
$\Sigma ^{\mathrm {irr}}$
 is dense.
4 Irreducible components
 The aim of this section is to determine the irreducible components of 
 $\operatorname {\mathrm {Spec}} R_{\overline {\rho }}^{\square }$
 for any
$\operatorname {\mathrm {Spec}} R_{\overline {\rho }}^{\square }$
 for any 
 $\overline {\rho }: G_F \to \operatorname {\mathrm {GL}}_d(k)$
 and study their geometry. It is instructive to consider first the one-dimensional case. Let
$\overline {\rho }: G_F \to \operatorname {\mathrm {GL}}_d(k)$
 and study their geometry. It is instructive to consider first the one-dimensional case. Let 
 $\bar {\psi }: G_F\rightarrow k^{\times }$
 denote any continuous character and write
$\bar {\psi }: G_F\rightarrow k^{\times }$
 denote any continuous character and write 
 $\psi ^{\mathrm {univ}}: G_F\rightarrow \operatorname {\mathrm {GL}}_1(R_{\bar {\psi }})$
 for its universal deformation. Local class field theory gives a group homomorphism
$\psi ^{\mathrm {univ}}: G_F\rightarrow \operatorname {\mathrm {GL}}_1(R_{\bar {\psi }})$
 for its universal deformation. Local class field theory gives a group homomorphism 
 $$\begin{align*}\mu\rightarrow F^{\times} \overset{\operatorname{\mathrm{Art}}_F}{\longrightarrow} G_F^{\mathrm{ab}}\overset{\psi^{\mathrm{univ}}}{\longrightarrow} \operatorname{\mathrm{GL}}_1(R_{\bar{\psi}}), \end{align*}$$
$$\begin{align*}\mu\rightarrow F^{\times} \overset{\operatorname{\mathrm{Art}}_F}{\longrightarrow} G_F^{\mathrm{ab}}\overset{\psi^{\mathrm{univ}}}{\longrightarrow} \operatorname{\mathrm{GL}}_1(R_{\bar{\psi}}), \end{align*}$$
where 
 $\mu :=\mu _{p^{\infty }}(F)$
 is the subgroup of p-power roots of unity in F. We note that
$\mu :=\mu _{p^{\infty }}(F)$
 is the subgroup of p-power roots of unity in F. We note that 
 $\mu $
 is a finite cyclic p-group. The map induces a homomorphism of
$\mu $
 is a finite cyclic p-group. The map induces a homomorphism of 
 $\mathcal {O}$
-algebras
$\mathcal {O}$
-algebras 
 $\mathcal {O}[\mu ]\rightarrow R_{\bar {\psi }}$
, where
$\mathcal {O}[\mu ]\rightarrow R_{\bar {\psi }}$
, where 
 $\mathcal {O}[\mu ]$
 is the group algebra of
$\mathcal {O}[\mu ]$
 is the group algebra of 
 $\mu $
 over
$\mu $
 over 
 $\mathcal {O}$
.
$\mathcal {O}$
.
Lemma 4.1. 
 
Proof. It follows from local class field theory that the pro-p completion of 
 $G_F^{\mathrm {ab}}$
 is isomorphic to
$G_F^{\mathrm {ab}}$
 is isomorphic to 
 $\mu _{p^{\infty }}(F)\times \mathbb {Z}_p^{[F:\mathbb {Q}_p]+1}$
, and the assertion follows from [Reference Gouvêa27, Proposition 3.13].
$\mu _{p^{\infty }}(F)\times \mathbb {Z}_p^{[F:\mathbb {Q}_p]+1}$
, and the assertion follows from [Reference Gouvêa27, Proposition 3.13].
 It follows immediately from Lemma 4.1 that the set of irreducible components of 
 $\operatorname {\mathrm {Spec}} R_{\bar {\psi }}$
 is in bijection with the group of characters
$\operatorname {\mathrm {Spec}} R_{\bar {\psi }}$
 is in bijection with the group of characters 
 $\chi : \mu \rightarrow \mathcal {O}^{\times }$
, and the irreducible component corresponding to
$\chi : \mu \rightarrow \mathcal {O}^{\times }$
, and the irreducible component corresponding to 
 $\chi $
 is given by
$\chi $
 is given by 
 $R_{\bar {\psi }}\otimes _{\mathcal {O}[\mu ], \chi } \mathcal {O}$
, which is formally smooth over
$R_{\bar {\psi }}\otimes _{\mathcal {O}[\mu ], \chi } \mathcal {O}$
, which is formally smooth over 
 $\mathcal {O}$
.
$\mathcal {O}$
.
 Let us return to the general case 
 $\overline {\rho }: G_F \to \operatorname {\mathrm {GL}}_d(k)$
. Mapping a deformation of
$\overline {\rho }: G_F \to \operatorname {\mathrm {GL}}_d(k)$
. Mapping a deformation of 
 $\overline {\rho }$
 to its determinant induces a natural map
$\overline {\rho }$
 to its determinant induces a natural map 
 $R_{\det \overline {\rho }} \to R^{\square }_{\overline {\rho }}$
, which makes
$R_{\det \overline {\rho }} \to R^{\square }_{\overline {\rho }}$
, which makes 
 $R^{\square }_{\overline {\rho }}$
 into an
$R^{\square }_{\overline {\rho }}$
 into an 
 $\mathcal {O}[\mu ]$
-algebra by applying the above discussion to
$\mathcal {O}[\mu ]$
-algebra by applying the above discussion to 
 $\bar {\psi }=\det \overline {\rho }$
. The algebra
$\bar {\psi }=\det \overline {\rho }$
. The algebra 
 $\mathcal {O}[\mu ][1/p]$
 is semi-simple and its maximal ideals are in bijection with characters
$\mathcal {O}[\mu ][1/p]$
 is semi-simple and its maximal ideals are in bijection with characters 
 $\chi : \mu \rightarrow \mathcal {O}^{\times }$
. We thus have
$\chi : \mu \rightarrow \mathcal {O}^{\times }$
. We thus have 
 $$ \begin{align} R^{\square}_{\overline{\rho}}[1/p] \cong \prod_{\chi: \mu \rightarrow \mathcal{O}^{\times}} R^{\square, \chi}_{\overline{\rho}}[1/p], \end{align} $$
$$ \begin{align} R^{\square}_{\overline{\rho}}[1/p] \cong \prod_{\chi: \mu \rightarrow \mathcal{O}^{\times}} R^{\square, \chi}_{\overline{\rho}}[1/p], \end{align} $$
where 
 $R^{\square , \chi }_{\overline {\rho }}:= R^{\square }_{\overline {\rho }}\otimes _{\mathcal {O}[\mu ], \chi } \mathcal {O}$
. So our goal is to show that the rings
$R^{\square , \chi }_{\overline {\rho }}:= R^{\square }_{\overline {\rho }}\otimes _{\mathcal {O}[\mu ], \chi } \mathcal {O}$
. So our goal is to show that the rings 
 $R^{\square , \chi }_{\overline {\rho }}$
 are
$R^{\square , \chi }_{\overline {\rho }}$
 are 
 $\mathcal {O}$
-torsion free integral domains, which we do by showing in Corollary 4.19 that they are normal. Since we already know that
$\mathcal {O}$
-torsion free integral domains, which we do by showing in Corollary 4.19 that they are normal. Since we already know that 
 $R^{\square }_{\overline {\rho }}$
 is
$R^{\square }_{\overline {\rho }}$
 is 
 $\mathcal {O}$
-torsion free by Corollary 3.38, this implies that the map
$\mathcal {O}$
-torsion free by Corollary 3.38, this implies that the map 
 $R_{\det \overline {\rho }}\rightarrow R^{\square }_{\overline {\rho }}$
 induces a bijection between the sets of irreducible components, which answers affirmatively a question raised by GB–Juschka in [Reference Böckle and Juschka8]. Along the way, we will also determine the irreducible components of
$R_{\det \overline {\rho }}\rightarrow R^{\square }_{\overline {\rho }}$
 induces a bijection between the sets of irreducible components, which answers affirmatively a question raised by GB–Juschka in [Reference Böckle and Juschka8]. Along the way, we will also determine the irreducible components of 
 $A^{\mathrm {gen}}$
 and
$A^{\mathrm {gen}}$
 and 
 $R^{\mathrm {ps}}$
.
$R^{\mathrm {ps}}$
.
Warning 4.2. We emphasize that 
 $R_{\overline {\rho }}^{\square ,\chi }$
 is not a ‘fixed determinant deformation ring’ in the usual sense but is rather constructed by fixing the value of the determinant only on the subgroup
$R_{\overline {\rho }}^{\square ,\chi }$
 is not a ‘fixed determinant deformation ring’ in the usual sense but is rather constructed by fixing the value of the determinant only on the subgroup 
 $\operatorname {\mathrm {Art}}_F(\mu )\subset G_F^{\mathrm {ab}}$
: the ring
$\operatorname {\mathrm {Art}}_F(\mu )\subset G_F^{\mathrm {ab}}$
: the ring 
 $R_{\overline {\rho }}^{\square ,\chi }$
 represents the closed subfunctor
$R_{\overline {\rho }}^{\square ,\chi }$
 represents the closed subfunctor 
 $D_{\overline {\rho }}^{\square , \chi }\subset D^{\square }_{\overline {\rho }}$
 given by
$D_{\overline {\rho }}^{\square , \chi }\subset D^{\square }_{\overline {\rho }}$
 given by 
 $$ \begin{align*}D_{\overline{\rho}}^{\square, \chi}(A)=\{\rho_A\in D^{\square}_{\overline{\rho}}(A): \det \rho_A(\operatorname{\mathrm{Art}}_F(x))= \chi(x), \forall x\in \mu\}.\end{align*} $$
$$ \begin{align*}D_{\overline{\rho}}^{\square, \chi}(A)=\{\rho_A\in D^{\square}_{\overline{\rho}}(A): \det \rho_A(\operatorname{\mathrm{Art}}_F(x))= \chi(x), \forall x\in \mu\}.\end{align*} $$
Proposition 4.3. There is an isomorphism

where 
 $r := \dim _k Z^1(G_F, \operatorname {\mathrm {ad}}^0\overline {\rho })$
 and
$r := \dim _k Z^1(G_F, \operatorname {\mathrm {ad}}^0\overline {\rho })$
 and 
 $t := \dim _k H^2(G_F,{\operatorname {ad}^0}{\overline {\rho }})$
 such that the elements
$t := \dim _k H^2(G_F,{\operatorname {ad}^0}{\overline {\rho }})$
 such that the elements 
 $f_1,\ldots ,f_t$
 form a regular sequence in
$f_1,\ldots ,f_t$
 form a regular sequence in 
 
. Moreover,
 $$ \begin{align*}r-t= (d^2-1)([F:\mathbb{Q}_p]+1).\end{align*} $$
$$ \begin{align*}r-t= (d^2-1)([F:\mathbb{Q}_p]+1).\end{align*} $$
Proof. This argument is a modification of Kisin’s method of presenting global deformation rings over local ones in [Reference Kisin32, Section 4]. Kisin’s argument is an important refinement of Mazur’s obstruction theory in [Reference Mazur37, Section 1.6].
 The exact sequence 
 $0\rightarrow \operatorname {\mathrm {ad}}^0\overline {\rho } \rightarrow \operatorname {\mathrm {ad}} \overline {\rho } \overset {\operatorname {\mathrm {tr}}}{\rightarrow } k \rightarrow 0$
 of Galois representations induces an exact sequence of abelian groups:
$0\rightarrow \operatorname {\mathrm {ad}}^0\overline {\rho } \rightarrow \operatorname {\mathrm {ad}} \overline {\rho } \overset {\operatorname {\mathrm {tr}}}{\rightarrow } k \rightarrow 0$
 of Galois representations induces an exact sequence of abelian groups: 
 $$ \begin{align*}0 \rightarrow Z^1(G_F, \operatorname{\mathrm{ad}}^0\overline{\rho})\rightarrow Z^1(G_F, \operatorname{\mathrm{ad}}\overline{\rho}) \overset{Z^1(\operatorname{\mathrm{tr}})}{\longrightarrow} Z^1(G_F, k),\end{align*} $$
$$ \begin{align*}0 \rightarrow Z^1(G_F, \operatorname{\mathrm{ad}}^0\overline{\rho})\rightarrow Z^1(G_F, \operatorname{\mathrm{ad}}\overline{\rho}) \overset{Z^1(\operatorname{\mathrm{tr}})}{\longrightarrow} Z^1(G_F, k),\end{align*} $$
and hence, 
 $r=\dim _k \ker (Z^1(\operatorname {\mathrm {tr}}))$
. The map
$r=\dim _k \ker (Z^1(\operatorname {\mathrm {tr}}))$
. The map 
 $Z^1(\operatorname {\mathrm {tr}}): Z^1(G_F, \operatorname {\mathrm {ad}}\overline {\rho }) \to Z^1(G_F, k)$
 is the induced map on Zariski tangent spaces of the map of deformation rings
$Z^1(\operatorname {\mathrm {tr}}): Z^1(G_F, \operatorname {\mathrm {ad}}\overline {\rho }) \to Z^1(G_F, k)$
 is the induced map on Zariski tangent spaces of the map of deformation rings 
 $R_{\det \overline {\rho }} \to R^{\square }_{\overline {\rho }}$
, and thus lifts to a surjection
$R_{\det \overline {\rho }} \to R^{\square }_{\overline {\rho }}$
, and thus lifts to a surjection 

We set 
 $J := \ker \widetilde {\phi }$
. By Nakayama’s lemma, we need to show that
$J := \ker \widetilde {\phi }$
. By Nakayama’s lemma, we need to show that 
 $\dim _k J/\widetilde {{\mathfrak m}} J \le t$
.
$\dim _k J/\widetilde {{\mathfrak m}} J \le t$
.
 The module 
 $J/\widetilde {{\mathfrak m}} J$
 appears as the kernel in the sequence
$J/\widetilde {{\mathfrak m}} J$
 appears as the kernel in the sequence 
 $$ \begin{align} 0 \to J/\widetilde{{\mathfrak m}} J \to {\widetilde R}/\widetilde{{\mathfrak m}} J \to {\widetilde R}/J \cong R^{\square}_{\overline{\rho}} \to 0. \end{align} $$
$$ \begin{align} 0 \to J/\widetilde{{\mathfrak m}} J \to {\widetilde R}/\widetilde{{\mathfrak m}} J \to {\widetilde R}/J \cong R^{\square}_{\overline{\rho}} \to 0. \end{align} $$
In view of the above sequence, we shall construct a homomorphism
 $$\begin{align*}\alpha: \operatorname{\mathrm{Hom}}_k(J/\widetilde{{\mathfrak m}} J,k) \to \ker (H^2(\operatorname{\mathrm{tr}})\colon H^2(G_F,\operatorname{\mathrm{ad}} \overline{\rho}) \to H^2(G_F,k)) \end{align*}$$
$$\begin{align*}\alpha: \operatorname{\mathrm{Hom}}_k(J/\widetilde{{\mathfrak m}} J,k) \to \ker (H^2(\operatorname{\mathrm{tr}})\colon H^2(G_F,\operatorname{\mathrm{ad}} \overline{\rho}) \to H^2(G_F,k)) \end{align*}$$
and show that the kernel of 
 $\alpha $
 injects into
$\alpha $
 injects into 
 $\operatorname {\mathrm {coker}}(H^1(\operatorname {\mathrm {tr}}))$
. This will imply the existence of the presentation in the statement of the Proposition, since then
$\operatorname {\mathrm {coker}}(H^1(\operatorname {\mathrm {tr}}))$
. This will imply the existence of the presentation in the statement of the Proposition, since then 
 $$ \begin{align} \dim_k J/\widetilde{{\mathfrak m}} J\le \dim_k \ker (H^2(\operatorname{\mathrm{tr}}) )+ \dim_k \operatorname{\mathrm{coker}} (H^1(\operatorname{\mathrm{tr}}) ) = \dim_k H^2(G_F,{\operatorname{ad}^0} \overline{\rho}), \end{align} $$
$$ \begin{align} \dim_k J/\widetilde{{\mathfrak m}} J\le \dim_k \ker (H^2(\operatorname{\mathrm{tr}}) )+ \dim_k \operatorname{\mathrm{coker}} (H^1(\operatorname{\mathrm{tr}}) ) = \dim_k H^2(G_F,{\operatorname{ad}^0} \overline{\rho}), \end{align} $$
where the last equality comes from the long exact cohomology sequence that arises from 
 $0 \to {\operatorname {ad}^0} \overline {\rho } \to \operatorname {\mathrm {ad}} \overline {\rho } \to k \to 0$
.
$0 \to {\operatorname {ad}^0} \overline {\rho } \to \operatorname {\mathrm {ad}} \overline {\rho } \to k \to 0$
.
 Fix 
 $u \in \operatorname {\mathrm {Hom}}_k(J/\widetilde {{\mathfrak m}} J, k)$
. The pushout under u of the sequence (26) yields
$u \in \operatorname {\mathrm {Hom}}_k(J/\widetilde {{\mathfrak m}} J, k)$
. The pushout under u of the sequence (26) yields 
 $$ \begin{align*} 0\to I_u\to R_u\stackrel{\phi_u}\to R^{\square}_{\overline{\rho}}\to 0, \end{align*} $$
$$ \begin{align*} 0\to I_u\to R_u\stackrel{\phi_u}\to R^{\square}_{\overline{\rho}}\to 0, \end{align*} $$
where 
 $I_u = k$
. The surjection of profinite groups
$I_u = k$
. The surjection of profinite groups 
 $\operatorname {\mathrm {GL}}_d(R_u)\twoheadrightarrow \operatorname {\mathrm {GL}}_d(R^{\square }_{\overline {\rho }})$
 has a continuous section by [Reference Ribes and Zalesskii45, Proposition 2.2.2] (which is not necessarily a group homomorphism). Thus, there is a continuous function
$\operatorname {\mathrm {GL}}_d(R_u)\twoheadrightarrow \operatorname {\mathrm {GL}}_d(R^{\square }_{\overline {\rho }})$
 has a continuous section by [Reference Ribes and Zalesskii45, Proposition 2.2.2] (which is not necessarily a group homomorphism). Thus, there is a continuous function 
 $\widetilde {\rho }_u: G_F\rightarrow \operatorname {\mathrm {GL}}_d(R_u)$
 such that the diagram of sets
$\widetilde {\rho }_u: G_F\rightarrow \operatorname {\mathrm {GL}}_d(R_u)$
 such that the diagram of sets

 commutes. The kernel 
 $1+M_d(I_u)$
 of
$1+M_d(I_u)$
 of 
 $\operatorname {\mathrm {GL}}_d(\phi _u)$
 can be identified with
$\operatorname {\mathrm {GL}}_d(\phi _u)$
 can be identified with 
 $\operatorname {\mathrm {ad}} \overline {\rho }\otimes _k I_u$
, and so the set-theoretic lift yields a continuous
$\operatorname {\mathrm {ad}} \overline {\rho }\otimes _k I_u$
, and so the set-theoretic lift yields a continuous 
 $2$
-cocycle
$2$
-cocycle 
 $$\begin{align*}c_u \in Z^2(G_F,\operatorname{\mathrm{ad}} \overline{\rho}) \otimes_k I_u \end{align*}$$
$$\begin{align*}c_u \in Z^2(G_F,\operatorname{\mathrm{ad}} \overline{\rho}) \otimes_k I_u \end{align*}$$
given by 
 $1 + c_u(g_1,g_2) = \widetilde {\rho }_u(g_1g_2)\widetilde {\rho }_u(g_2)^{-1}\widetilde {\rho }_u(g_1)^{-1}$
. The class
$1 + c_u(g_1,g_2) = \widetilde {\rho }_u(g_1g_2)\widetilde {\rho }_u(g_2)^{-1}\widetilde {\rho }_u(g_1)^{-1}$
. The class 
 $$ \begin{align*} [c_u] \in H^2(G_F,\operatorname{\mathrm{ad}} \overline{\rho})\otimes_k I_u \end{align*} $$
$$ \begin{align*} [c_u] \in H^2(G_F,\operatorname{\mathrm{ad}} \overline{\rho})\otimes_k I_u \end{align*} $$
is independent of the chosen lifting since any other lift 
 $\widetilde {\rho }_u^{\prime }$
 gives rise to a class
$\widetilde {\rho }_u^{\prime }$
 gives rise to a class 
 $c_u^{\prime } \in Z^2(G_F, \operatorname {\mathrm {ad}}\overline {\rho }) \otimes _k I_u$
, which differs from
$c_u^{\prime } \in Z^2(G_F, \operatorname {\mathrm {ad}}\overline {\rho }) \otimes _k I_u$
, which differs from 
 $c_u$
 by a coboundary in
$c_u$
 by a coboundary in 
 $B^2(G_F, \operatorname {\mathrm {ad}}\overline {\rho }) \otimes _k I_u$
, so the representation
$B^2(G_F, \operatorname {\mathrm {ad}}\overline {\rho }) \otimes _k I_u$
, so the representation 
 $\rho ^{\square }$
 can be lifted to a homomorphism
$\rho ^{\square }$
 can be lifted to a homomorphism 
 $G_F \to \operatorname {\mathrm {GL}}_d(R_u)$
 if and only if
$G_F \to \operatorname {\mathrm {GL}}_d(R_u)$
 if and only if 
 $[c_u]=0$
. The existence of the homomorphisms
$[c_u]=0$
. The existence of the homomorphisms 
 $R_{\det \overline {\rho }}\to R_u \to R^{\square }_{\overline {\rho }}$
 together with the universality of
$R_{\det \overline {\rho }}\to R_u \to R^{\square }_{\overline {\rho }}$
 together with the universality of 
 $R_{\det \overline {\rho }}$
 imply that the image of
$R_{\det \overline {\rho }}$
 imply that the image of 
 $[c_u]$
 in
$[c_u]$
 in 
 $H^2(G_F, k)$
 is zero. We define
$H^2(G_F, k)$
 is zero. We define 
 $\alpha $
 as the homomorphism
$\alpha $
 as the homomorphism 
 $u\mapsto [c_u]$
.
$u\mapsto [c_u]$
.
 To analyze the kernel of 
 $\alpha $
, let u be such that
$\alpha $
, let u be such that 
 $[c_u]=0$
, so that
$[c_u]=0$
, so that 
 $\rho ^{\square }$
 can be lifted to
$\rho ^{\square }$
 can be lifted to 
 $R_u$
. By the universality of
$R_u$
. By the universality of 
 $R^{\square }_{\overline {\rho }}$
, we obtain a splitting
$R^{\square }_{\overline {\rho }}$
, we obtain a splitting 
 $s_u$
 of
$s_u$
 of 
 $\phi _u$
. One deduces that the map from
$\phi _u$
. One deduces that the map from 
 $I_u$
 to the kernel of the surjective map
$I_u$
 to the kernel of the surjective map 
 $$\begin{align*}t_u: {\mathfrak m}_{R_u}/({\mathfrak m}_{R_u}^2 + \varpi R_u)\to {\mathfrak m}^{\square}/(({\mathfrak m}^{\square})^2 + \varpi R^{\square}_{\overline{\rho}}) \end{align*}$$
$$\begin{align*}t_u: {\mathfrak m}_{R_u}/({\mathfrak m}_{R_u}^2 + \varpi R_u)\to {\mathfrak m}^{\square}/(({\mathfrak m}^{\square})^2 + \varpi R^{\square}_{\overline{\rho}}) \end{align*}$$
of mod 
 $\varpi $
 cotangent spaces is an isomorphism.
$\varpi $
 cotangent spaces is an isomorphism.
 The map 
 $t_u$
, in turn, is induced from the homomorphism
$t_u$
, in turn, is induced from the homomorphism 
 $\widetilde {R}/\widetilde {{\mathfrak m}} J \to R^{\square }_{\overline {\rho }}$
 by pushout and from the analogous surjection
$\widetilde {R}/\widetilde {{\mathfrak m}} J \to R^{\square }_{\overline {\rho }}$
 by pushout and from the analogous surjection 
 $$\begin{align*}\widetilde {t} : \widetilde{{\mathfrak m}}/(\widetilde {{\mathfrak m}}^2+\varpi \widetilde {R})\to {{\mathfrak m}}^{\square}/(({\mathfrak m}^{\square})^2+\varpi R^{\square}_{\overline{\rho}}). \end{align*}$$
$$\begin{align*}\widetilde {t} : \widetilde{{\mathfrak m}}/(\widetilde {{\mathfrak m}}^2+\varpi \widetilde {R})\to {{\mathfrak m}}^{\square}/(({\mathfrak m}^{\square})^2+\varpi R^{\square}_{\overline{\rho}}). \end{align*}$$
Via our identification 
 $I_u\cong \ker t_u$
, the pushout along u induces a surjective homomorphism
$I_u\cong \ker t_u$
, the pushout along u induces a surjective homomorphism 
 $\gamma _u: \ker (\widetilde {t})\to I_u \cong k$
 of k-vector spaces. One easily verifies that
$\gamma _u: \ker (\widetilde {t})\to I_u \cong k$
 of k-vector spaces. One easily verifies that 
 $u \mapsto \gamma _u$
 induces an injective k-linear map
$u \mapsto \gamma _u$
 induces an injective k-linear map 
 $$\begin{align*}\ker(\alpha) \hookrightarrow \operatorname{\mathrm{Hom}}_k(\ker(\widetilde t),k). \end{align*}$$
$$\begin{align*}\ker(\alpha) \hookrightarrow \operatorname{\mathrm{Hom}}_k(\ker(\widetilde t),k). \end{align*}$$
Upon identifying 
 $\ker (\widetilde t)^*$
 with
$\ker (\widetilde t)^*$
 with 
 $\operatorname {\mathrm {coker}}(H^1(\operatorname {\mathrm {tr}}))$
, the proof of the bound (27) is complete.
$\operatorname {\mathrm {coker}}(H^1(\operatorname {\mathrm {tr}}))$
, the proof of the bound (27) is complete.
 It remains to show that 
 $f_1,\ldots ,f_t$
 is a regular sequence. We may write
$f_1,\ldots ,f_t$
 is a regular sequence. We may write 
 
, where m is the order of 
 $\mu $
. By Lemma 4.1, we get a presentation
$\mu $
. By Lemma 4.1, we get a presentation 

By the same argument as in (22), the Euler–Poincaré characteristic formula implies that 
 $r-t= \dim _k(\operatorname {\mathrm {ad}}^0\overline {\rho }) ([F:\mathbb {Q}_p]+1)= (d^2-1)([F:\mathbb {Q}_p]+1)$
, and thus it follows from Corollary 3.38 that
$r-t= \dim _k(\operatorname {\mathrm {ad}}^0\overline {\rho }) ([F:\mathbb {Q}_p]+1)= (d^2-1)([F:\mathbb {Q}_p]+1)$
, and thus it follows from Corollary 3.38 that 
 $$ \begin{align} \dim R^{\square}_{\overline{\rho}}= [F:\mathbb{Q}_p]+2+r-t. \end{align} $$
$$ \begin{align} \dim R^{\square}_{\overline{\rho}}= [F:\mathbb{Q}_p]+2+r-t. \end{align} $$
This implies that 
 $(1+z)^{m}-1,f_1,\ldots ,f_t$
 can be extended to a system of parameters in a regular ring
$(1+z)^{m}-1,f_1,\ldots ,f_t$
 can be extended to a system of parameters in a regular ring 
 
. Thus, 
 $(1+z)^{m}-1,f_1,\ldots ,f_t$
 is a regular sequence in S and so
$(1+z)^{m}-1,f_1,\ldots ,f_t$
 is a regular sequence in S and so 
 $f_1,\ldots ,f_t$
 is a regular sequence in
$f_1,\ldots ,f_t$
 is a regular sequence in 
 
.
Remark 4.4. The Proposition also holds for continuous representations 
 $\overline {\rho }: G_F \rightarrow \operatorname {\mathrm {GL}}_d(\kappa )$
, where
$\overline {\rho }: G_F \rightarrow \operatorname {\mathrm {GL}}_d(\kappa )$
, where 
 $\kappa $
 is a local field, with essentially the same proof. The only difference is that one has to work harder to show the existence of the continuous section
$\kappa $
 is a local field, with essentially the same proof. The only difference is that one has to work harder to show the existence of the continuous section 
 $\tilde {\rho }_u$
, as the groups
$\tilde {\rho }_u$
, as the groups 
 $\operatorname {\mathrm {GL}}_d(R_u)$
 and
$\operatorname {\mathrm {GL}}_d(R_u)$
 and 
 $\operatorname {\mathrm {GL}}_d(R^{\square }_{\overline {\rho }})$
 are not profinite anymore. The existence of such a section is well explained in [Reference Conrad21, Lecture 6].
$\operatorname {\mathrm {GL}}_d(R^{\square }_{\overline {\rho }})$
 are not profinite anymore. The existence of such a section is well explained in [Reference Conrad21, Lecture 6].
Corollary 4.5. For each character 
 $\chi : \mu _{p^{\infty }}(F) \to \mathcal {O}^{\times }$
 and each closed point
$\chi : \mu _{p^{\infty }}(F) \to \mathcal {O}^{\times }$
 and each closed point 
 $x\in X^{\mathrm {gen}}$
 above
$x\in X^{\mathrm {gen}}$
 above 
 ${\mathfrak m}_{R^{\mathrm {ps}}}$
, the following hold:
${\mathfrak m}_{R^{\mathrm {ps}}}$
, the following hold: 
- 
(1)  $R^{\square , \chi }_{\rho _x}$
 is $R^{\square , \chi }_{\rho _x}$
 is $\mathcal {O}$
-torsion free of dimension $\mathcal {O}$
-torsion free of dimension $1+d^2+ d^2[F:\mathbb {Q}_p]$
 and is complete intersection; $1+d^2+ d^2[F:\mathbb {Q}_p]$
 and is complete intersection;
- 
(2)  $R^{\square ,\chi }_{\rho _x}/\varpi $
 is complete intersection of dimension $R^{\square ,\chi }_{\rho _x}/\varpi $
 is complete intersection of dimension $d^2+ d^2[F:\mathbb {Q}_p]$
. $d^2+ d^2[F:\mathbb {Q}_p]$
.
Proof. Without loss of generality, we may assume that the residue field of x is equal to k. Proposition 4.3 gives the presentation

where 
 $R_{\det \rho _x}^{\chi }:= R_{\det \rho _x}\otimes _{\mathcal {O}[\mu ],\chi } \mathcal {O}$
. Since
$R_{\det \rho _x}^{\chi }:= R_{\det \rho _x}\otimes _{\mathcal {O}[\mu ],\chi } \mathcal {O}$
. Since 
 $R_{\det \rho _x}^{\chi }$
 is formally smooth over
$R_{\det \rho _x}^{\chi }$
 is formally smooth over 
 $\mathcal {O}$
 of dimension
$\mathcal {O}$
 of dimension 
 $[F:\mathbb {Q}_p]+2$
 by Lemma 4.1, it is enough to show that
$[F:\mathbb {Q}_p]+2$
 by Lemma 4.1, it is enough to show that 
 $$ \begin{align*}\dim R^{\square,\chi}_{\rho_x}/\varpi \le [F:\mathbb{Q}_p]+1+ r-t.\end{align*} $$
$$ \begin{align*}\dim R^{\square,\chi}_{\rho_x}/\varpi \le [F:\mathbb{Q}_p]+1+ r-t.\end{align*} $$
Then the same argument as in the proof of Proposition 4.3 shows that the sequence 
 $\varpi , f_1, \ldots , f_t$
 is regular in
$\varpi , f_1, \ldots , f_t$
 is regular in 
 
. Since 
 $R^{\square , \chi }_{\rho _x}$
 is a quotient of
$R^{\square , \chi }_{\rho _x}$
 is a quotient of 
 $R^{\square }_{\rho _x}$
 and
$R^{\square }_{\rho _x}$
 and 
 $R^{\square }_{\rho _x}$
 is
$R^{\square }_{\rho _x}$
 is 
 $\mathcal {O}$
-torsion free by Corollary 3.38, we have
$\mathcal {O}$
-torsion free by Corollary 3.38, we have 
 $\dim R^{\square , \chi }_{\rho _x}/\varpi \le \dim R^{\square }_{\rho _x}/\varpi =\dim R^{\square }_{\rho _x}-1$
, and the desired inequality follows from (28).
$\dim R^{\square , \chi }_{\rho _x}/\varpi \le \dim R^{\square }_{\rho _x}/\varpi =\dim R^{\square }_{\rho _x}-1$
, and the desired inequality follows from (28).
 The restriction of a pseudo-character 
 $D: A[G_F] \rightarrow A$
 to G defines a continuous group homomorphism
$D: A[G_F] \rightarrow A$
 to G defines a continuous group homomorphism 
 $\det D: G_F \rightarrow A^{\times }$
; see [Reference Böckle and Juschka9, Definition 4.1.5]. Moreover, if D is associated to a representation
$\det D: G_F \rightarrow A^{\times }$
; see [Reference Böckle and Juschka9, Definition 4.1.5]. Moreover, if D is associated to a representation 
 $\rho : G_F \rightarrow \operatorname {\mathrm {GL}}_d(A)$
, then
$\rho : G_F \rightarrow \operatorname {\mathrm {GL}}_d(A)$
, then 
 $\det D=\det \rho $
. This induces a map of deformation rings
$\det D=\det \rho $
. This induces a map of deformation rings 
 $R_{\det \overline {D}}\rightarrow R^{\mathrm {ps}}$
 and makes
$R_{\det \overline {D}}\rightarrow R^{\mathrm {ps}}$
 and makes 
 $R^{\mathrm {ps}}$
 into an
$R^{\mathrm {ps}}$
 into an 
 $\mathcal {O}[\mu ]$
-algebra.
$\mathcal {O}[\mu ]$
-algebra.
 Since 
 $A^{\mathrm {gen}}$
 is an
$A^{\mathrm {gen}}$
 is an 
 $R^{\mathrm {ps}}$
-algebra, we may define
$R^{\mathrm {ps}}$
-algebra, we may define 
 $$ \begin{align*}A^{\mathrm{gen},\chi} := A^{\mathrm{gen}} \otimes_{\mathcal{O}[\mu],\chi} \mathcal{O}, \quad X^{\mathrm{gen},\chi}:=\operatorname{\mathrm{Spec}} A^{\mathrm{gen}, \chi},\end{align*} $$
$$ \begin{align*}A^{\mathrm{gen},\chi} := A^{\mathrm{gen}} \otimes_{\mathcal{O}[\mu],\chi} \mathcal{O}, \quad X^{\mathrm{gen},\chi}:=\operatorname{\mathrm{Spec}} A^{\mathrm{gen}, \chi},\end{align*} $$
and we let 
 $\overline {X}^{\mathrm {gen},\chi }$
 denote its special fibre. Note that since a character of
$\overline {X}^{\mathrm {gen},\chi }$
 denote its special fibre. Note that since a character of 
 $G_F^{\mathrm {ab}}$
 valued in a characteristic p field is trivial after pulling back to
$G_F^{\mathrm {ab}}$
 valued in a characteristic p field is trivial after pulling back to 
 $\mu _{p^{\infty }}(F)$
, we have that
$\mu _{p^{\infty }}(F)$
, we have that 
 $\overline {X}^{\mathrm {gen},\chi } = \overline {X}^{\mathrm {gen}, \mathbf 1}$
 for all
$\overline {X}^{\mathrm {gen},\chi } = \overline {X}^{\mathrm {gen}, \mathbf 1}$
 for all 
 $\chi $
, where
$\chi $
, where 
 $\mathbf 1$
 is the trivial character. Moreover, the reduced subschemes of
$\mathbf 1$
 is the trivial character. Moreover, the reduced subschemes of 
 $\overline {X}^{\mathrm {gen}}$
 and
$\overline {X}^{\mathrm {gen}}$
 and 
 $\overline {X}^{\mathrm {gen}, \chi }$
 coincide and so
$\overline {X}^{\mathrm {gen}, \chi }$
 coincide and so 
 $$ \begin{align*}\dim \overline{X}^{\mathrm{gen}, \chi}=\dim \overline{X}^{\mathrm{gen}} =d^2+d^2[F:\mathbb{Q}_p],\end{align*} $$
$$ \begin{align*}\dim \overline{X}^{\mathrm{gen}, \chi}=\dim \overline{X}^{\mathrm{gen}} =d^2+d^2[F:\mathbb{Q}_p],\end{align*} $$
where the last equality is given by Corollary 3.40.
Corollary 4.6. For each character 
 $\chi : \mu _{p^{\infty }}(F) \to \mathcal {O}^{\times }$
, the following hold:
$\chi : \mu _{p^{\infty }}(F) \to \mathcal {O}^{\times }$
, the following hold: 
- 
(1)  $A^{\mathrm {gen}, \chi }$
 is $A^{\mathrm {gen}, \chi }$
 is $\mathcal {O}$
-torsion free, equi-dimensional of dimension $\mathcal {O}$
-torsion free, equi-dimensional of dimension $1+ d^2+ d^2[F:\mathbb {Q}_p]$
 and is locally complete intersection; $1+ d^2+ d^2[F:\mathbb {Q}_p]$
 and is locally complete intersection;
- 
(2)  $A^{\mathrm {gen}, \chi }/\varpi $
 is equi-dimensional of dimension $A^{\mathrm {gen}, \chi }/\varpi $
 is equi-dimensional of dimension $d^2+d^2[F:\mathbb {Q}_p]$
 and is locally complete intersection. $d^2+d^2[F:\mathbb {Q}_p]$
 and is locally complete intersection.
Proof. We claim that the local rings at closed points of 
 $X^{\mathrm {gen}, \chi }$
 are
$X^{\mathrm {gen}, \chi }$
 are 
 $\mathcal {O}$
-torsion free and complete intersection. Given the claim, the proof is the same as in Corollary 3.40.
$\mathcal {O}$
-torsion free and complete intersection. Given the claim, the proof is the same as in Corollary 3.40.
 We will prove the claim using the strategy outlined in Remark 3.43. We already know from Corollary 4.5 that 
 $R^{\square , \chi }_{\rho _x}$
 is
$R^{\square , \chi }_{\rho _x}$
 is 
 $\mathcal {O}$
-torsion free and complete intersection of dimension
$\mathcal {O}$
-torsion free and complete intersection of dimension 
 $d^2+d^2[F:\mathbb {Q}_p]+1$
 whenever
$d^2+d^2[F:\mathbb {Q}_p]+1$
 whenever 
 $x\in X^{\mathrm {gen}, \chi }$
 is a closed point with
$x\in X^{\mathrm {gen}, \chi }$
 is a closed point with 
 $\kappa (x)/k$
 a finite extension. By applying
$\kappa (x)/k$
 a finite extension. By applying 
 $\otimes _{\mathcal {O}[\mu ], \chi } \mathcal {O}$
, we obtain the
$\otimes _{\mathcal {O}[\mu ], \chi } \mathcal {O}$
, we obtain the 
 $\chi $
-versions of Propositions 3.34 and 3.41 and Corollary 3.42.
$\chi $
-versions of Propositions 3.34 and 3.41 and Corollary 3.42.
 Let x be a closed point of 
 $X^{\mathrm {gen}, \chi }$
. If
$X^{\mathrm {gen}, \chi }$
. If 
 $\kappa (x)$
 is a finite extension of k, then
$\kappa (x)$
 is a finite extension of k, then 
 $\widehat {\mathcal {O}}_{X^{\mathrm {gen},\chi },x}\cong R^{\square , \chi }_{\rho _x}$
 by Proposition 3.34, and hence,
$\widehat {\mathcal {O}}_{X^{\mathrm {gen},\chi },x}\cong R^{\square , \chi }_{\rho _x}$
 by Proposition 3.34, and hence, 
 $\mathcal {O}_{X^{\mathrm {gen},\chi },x}$
 is complete intersection. Otherwise, let
$\mathcal {O}_{X^{\mathrm {gen},\chi },x}$
 is complete intersection. Otherwise, let 
 $x'$
 and z be as in Corollary 3.42. In particular, z is a closed point of
$x'$
 and z be as in Corollary 3.42. In particular, z is a closed point of 
 $X^{\mathrm {gen}, \chi }$
, and
$X^{\mathrm {gen}, \chi }$
, and 
 $\kappa (z)$
 is a finite extension of k. It follows from the argument explained in Remark 3.43 that if
$\kappa (z)$
 is a finite extension of k. It follows from the argument explained in Remark 3.43 that if 
 $\kappa (x)$
 is a local field of characteristic p, then
$\kappa (x)$
 is a local field of characteristic p, then 

and if 
 $\kappa (x)$
 is a finite extension of L, then
$\kappa (x)$
 is a finite extension of L, then 
 $$ \begin{align*}\widehat{\mathcal{O}}_{X^{\mathrm{gen},\chi}, x}\cong R^{\square,\chi}_{\rho_x}\cong R^{\square,\chi}_{\rho_{x'}}\cong \widehat{(R^{\square,\chi}_{\rho_z})}_{x'}.\end{align*} $$
$$ \begin{align*}\widehat{\mathcal{O}}_{X^{\mathrm{gen},\chi}, x}\cong R^{\square,\chi}_{\rho_x}\cong R^{\square,\chi}_{\rho_{x'}}\cong \widehat{(R^{\square,\chi}_{\rho_z})}_{x'}.\end{align*} $$
Since 
 $R^{\square ,\chi }_{\rho _z}$
 is complete intersection, it follows from [48, Tag 09Q4] that the local ring
$R^{\square ,\chi }_{\rho _z}$
 is complete intersection, it follows from [48, Tag 09Q4] that the local ring 
 $(R^{\square ,\chi }_{\rho _z})_{x'}$
 (and hence its completion) is also complete intersection. The isomorphisms above imply that
$(R^{\square ,\chi }_{\rho _z})_{x'}$
 (and hence its completion) is also complete intersection. The isomorphisms above imply that 
 $\widehat {\mathcal {O}}_{X^{\mathrm {gen},\chi }, x}$
 is complete intersection. Hence,
$\widehat {\mathcal {O}}_{X^{\mathrm {gen},\chi }, x}$
 is complete intersection. Hence, 
 $\mathcal {O}_{X^{\mathrm {gen},\chi }, x}$
 is complete intersection; see [48, Tag 09Q3].
$\mathcal {O}_{X^{\mathrm {gen},\chi }, x}$
 is complete intersection; see [48, Tag 09Q3].
Remark 4.7. Alternatively, one could first prove a version of Proposition 4.3 for deformation rings of 
 $\overline {\rho }: G_F\rightarrow \operatorname {\mathrm {GL}}_d(\kappa (x))$
 to Artinian
$\overline {\rho }: G_F\rightarrow \operatorname {\mathrm {GL}}_d(\kappa (x))$
 to Artinian 
 $\Lambda $
-algebra as in Section 3.5 for any closed point of
$\Lambda $
-algebra as in Section 3.5 for any closed point of 
 $x\in X^{\mathrm {gen}}$
 by changing
$x\in X^{\mathrm {gen}}$
 by changing 
 $\mathcal {O}$
 to
$\mathcal {O}$
 to 
 $\Lambda $
 and k to
$\Lambda $
 and k to 
 $\kappa (x)$
 everywhere. The Euler–Poincaré characteristic formula still holds in this setting; see [Reference Böckle and Juschka9, Theorem 3.4.1(c)]. Then deduce Corollary 4.5 in this more general setting using the same proof and then obtain Corollary 4.6 by repeating verbatim the proof of Corollary 3.40.
$\kappa (x)$
 everywhere. The Euler–Poincaré characteristic formula still holds in this setting; see [Reference Böckle and Juschka9, Theorem 3.4.1(c)]. Then deduce Corollary 4.5 in this more general setting using the same proof and then obtain Corollary 4.6 by repeating verbatim the proof of Corollary 3.40.
 In the Lemmas below, 
 $\kappa $
 is either a finite extension of k, a finite extension of L or a local field of characteristic p containing k. The ring
$\kappa $
 is either a finite extension of k, a finite extension of L or a local field of characteristic p containing k. The ring 
 $\Lambda $
 is defined exactly as in the beginning of Section 3.5. If
$\Lambda $
 is defined exactly as in the beginning of Section 3.5. If 
 $\mathrm {char}(\kappa )=0$
, then
$\mathrm {char}(\kappa )=0$
, then 
 $\Lambda =\kappa $
, and if
$\Lambda =\kappa $
, and if 
 $\mathrm {char}(\kappa )=p$
, then
$\mathrm {char}(\kappa )=p$
, then 
 $\Lambda $
 is an
$\Lambda $
 is an 
 $\mathcal {O}$
-algebra, which is a complete DVR with uniformiser
$\mathcal {O}$
-algebra, which is a complete DVR with uniformiser 
 $\varpi $
 and residue field
$\varpi $
 and residue field 
 $\kappa $
. As in Section 3.5, we consider deformation problems of
$\kappa $
. As in Section 3.5, we consider deformation problems of 
 $\rho : G_F\rightarrow \operatorname {\mathrm {GL}}_d(\kappa )$
 to local Artinian
$\rho : G_F\rightarrow \operatorname {\mathrm {GL}}_d(\kappa )$
 to local Artinian 
 $\Lambda $
-algebras with residue field
$\Lambda $
-algebras with residue field 
 $\kappa $
.
$\kappa $
.
Lemma 4.8. Let 
 $\rho : G_F \to \operatorname {\mathrm {GL}}_d(\kappa )$
 be a continuous representation, where
$\rho : G_F \to \operatorname {\mathrm {GL}}_d(\kappa )$
 be a continuous representation, where 
 $\kappa $
 is either a finite extension of k, a local field of characteristic p or a finite extension of L. If
$\kappa $
 is either a finite extension of k, a local field of characteristic p or a finite extension of L. If 
 $H^2(G_F, {\operatorname {ad}^0}\rho )=0$
, then for all characters
$H^2(G_F, {\operatorname {ad}^0}\rho )=0$
, then for all characters 
 $\chi : \mu _{p^{\infty }}(F)\rightarrow \mathcal {O}^{\times }$
, the ring
$\chi : \mu _{p^{\infty }}(F)\rightarrow \mathcal {O}^{\times }$
, the ring 
 $R^{\square , \chi }_{\rho }$
 is formally smooth over
$R^{\square , \chi }_{\rho }$
 is formally smooth over 
 $\Lambda $
.
$\Lambda $
.
Proof. It follows from the proof of [Reference Böckle and Juschka9, Lemma 3.4.2], where an analogous statement is proved for the deformation functors without the framing and for Artinian 
 $\kappa $
-algebras, that the map
$\kappa $
-algebras, that the map 
 $$ \begin{align*}R_{\det \rho}\rightarrow R^{\square}_{\rho},\end{align*} $$
$$ \begin{align*}R_{\det \rho}\rightarrow R^{\square}_{\rho},\end{align*} $$
induced by sending a deformation of 
 $\rho $
 to an Artinian
$\rho $
 to an Artinian 
 $\Lambda $
-algebra to its determinant, is formally smooth. By applying
$\Lambda $
-algebra to its determinant, is formally smooth. By applying 
 $\otimes _{\mathcal {O}[\mu ], \chi } \mathcal {O}$
, we deduce that the map
$\otimes _{\mathcal {O}[\mu ], \chi } \mathcal {O}$
, we deduce that the map 
 $$ \begin{align*}R_{\det \rho}^{\chi}\rightarrow R^{\square, \chi}_{\rho}\end{align*} $$
$$ \begin{align*}R_{\det \rho}^{\chi}\rightarrow R^{\square, \chi}_{\rho}\end{align*} $$
is formally smooth.
 Since the group 
 $G_F^{\mathrm {ab}}/\operatorname {\mathrm {Art}}_F(\mu _{p^{\infty }}(F))$
 is p-torsion free, the ring
$G_F^{\mathrm {ab}}/\operatorname {\mathrm {Art}}_F(\mu _{p^{\infty }}(F))$
 is p-torsion free, the ring 
 $R_{\det \rho }^{\chi }$
 is formally smooth over
$R_{\det \rho }^{\chi }$
 is formally smooth over 
 $\Lambda $
. Hence,
$\Lambda $
. Hence, 
 $R^{\square , \chi }_{\rho }$
 is formally smooth over
$R^{\square , \chi }_{\rho }$
 is formally smooth over 
 $\Lambda $
. (Alternatively, one could prove Proposition 4.3 for
$\Lambda $
. (Alternatively, one could prove Proposition 4.3 for 
 $\rho $
 – see Remark 4.4 – and then obtain the Lemma as a Corollary.)
$\rho $
 – see Remark 4.4 – and then obtain the Lemma as a Corollary.)
 Recall that in Section 3.7 we have defined an open subscheme 
 $U^{{\mathrm {n}\text{-}\mathrm {spcl}}}$
 of
$U^{{\mathrm {n}\text{-}\mathrm {spcl}}}$
 of 
 $\overline {X}^{\mathrm {ps}}\setminus \{{\mathfrak m}_{R^{\mathrm {ps}}}\}$
 and defined
$\overline {X}^{\mathrm {ps}}\setminus \{{\mathfrak m}_{R^{\mathrm {ps}}}\}$
 and defined 
 $V^{{\mathrm {n}\text{-}\mathrm {spcl}}}$
 to be a preimage of
$V^{{\mathrm {n}\text{-}\mathrm {spcl}}}$
 to be a preimage of 
 $U^{{\mathrm {n}\text{-}\mathrm {spcl}}}$
 in
$U^{{\mathrm {n}\text{-}\mathrm {spcl}}}$
 in 
 $\overline {X}^{\mathrm {gen}}$
. We will refer to
$\overline {X}^{\mathrm {gen}}$
. We will refer to 
 $V^{{\mathrm {n}\text{-}\mathrm {spcl}}}$
 as the absolutely irreducible non-special locus.
$V^{{\mathrm {n}\text{-}\mathrm {spcl}}}$
 as the absolutely irreducible non-special locus.
Proposition 4.9. For each character 
 $\chi : \mu _{p^{\infty }}(F) \rightarrow \mathcal {O}^{\times }$
, the absolutely irreducible non-special locus in
$\chi : \mu _{p^{\infty }}(F) \rightarrow \mathcal {O}^{\times }$
, the absolutely irreducible non-special locus in 
 $\overline {X}^{\mathrm {gen}, \chi }$
 is regular.
$\overline {X}^{\mathrm {gen}, \chi }$
 is regular.
Proof. It is enough to show that localization of 
 $A^{\mathrm {gen}, \chi }/\varpi $
 at x is a regular ring for every closed point x in
$A^{\mathrm {gen}, \chi }/\varpi $
 at x is a regular ring for every closed point x in 
 $V^{{\mathrm {n}\text{-}\mathrm {spcl}}}\cap \overline {X}^{\mathrm {gen}, \chi }$
. It follows from Lemma 3.35 applied with
$V^{{\mathrm {n}\text{-}\mathrm {spcl}}}\cap \overline {X}^{\mathrm {gen}, \chi }$
. It follows from Lemma 3.35 applied with 
 $R=R^{\mathrm {ps}, \chi }/\varpi $
 and
$R=R^{\mathrm {ps}, \chi }/\varpi $
 and 
 $A=A^{\mathrm {gen}, \chi }/\varpi $
 that it is enough to show that the completion of
$A=A^{\mathrm {gen}, \chi }/\varpi $
 that it is enough to show that the completion of 
 $\kappa (x)\otimes _{\mathcal {O}} A^{\mathrm {gen}, \chi }$
 at the kernel of the map of
$\kappa (x)\otimes _{\mathcal {O}} A^{\mathrm {gen}, \chi }$
 at the kernel of the map of 
 $\kappa (x)$
-algebras
$\kappa (x)$
-algebras 
 $\kappa (x)\otimes _{\mathcal {O}} A^{\mathrm {gen}, \chi }\rightarrow \kappa (x)$
 is regular. Proposition 3.34 implies that we may identify this ring with deformation ring
$\kappa (x)\otimes _{\mathcal {O}} A^{\mathrm {gen}, \chi }\rightarrow \kappa (x)$
 is regular. Proposition 3.34 implies that we may identify this ring with deformation ring 
 $R^{\square , \chi }_{\rho _x}/\varpi $
. If
$R^{\square , \chi }_{\rho _x}/\varpi $
. If 
 $\zeta _p\in F$
, then since x is non-special
$\zeta _p\in F$
, then since x is non-special 
 $H^2(G_F, {\operatorname {ad}^0}\rho _x)=0$
 (see [Reference Böckle and Juschka9, Lemma 5.1.1]), Lemma 4.8 implies that
$H^2(G_F, {\operatorname {ad}^0}\rho _x)=0$
 (see [Reference Böckle and Juschka9, Lemma 5.1.1]), Lemma 4.8 implies that 
 $R^{\square , \chi }_{\rho _x}/\varpi $
 is formally smooth over
$R^{\square , \chi }_{\rho _x}/\varpi $
 is formally smooth over 
 $\kappa (x)$
. If
$\kappa (x)$
. If 
 $\zeta _p\not \in F$
, then
$\zeta _p\not \in F$
, then 
 $\mu $
 is trivial, so that
$\mu $
 is trivial, so that 
 $R^{\square , \chi }_{\rho _x}= R^{\square }_{\rho _x}$
, and
$R^{\square , \chi }_{\rho _x}= R^{\square }_{\rho _x}$
, and 
 $H^2(G_F, \operatorname {\mathrm {ad}}\rho _x)=0$
; see [Reference Böckle and Juschka9, Lemma 5.1.1]. It follows from (21) that
$H^2(G_F, \operatorname {\mathrm {ad}}\rho _x)=0$
; see [Reference Böckle and Juschka9, Lemma 5.1.1]. It follows from (21) that 
 $R^{\square }_{\rho _x}/\varpi $
 is formally smooth over
$R^{\square }_{\rho _x}/\varpi $
 is formally smooth over 
 $\kappa (x)$
.
$\kappa (x)$
.
Proposition 4.10. For each character 
 $\chi : \mu _{p^{\infty }}(F) \rightarrow \mathcal {O}^{\times }$
, the absolutely irreducible locus in
$\chi : \mu _{p^{\infty }}(F) \rightarrow \mathcal {O}^{\times }$
, the absolutely irreducible locus in 
 $X^{\mathrm {gen}, \chi }[1/p]$
 is regular.
$X^{\mathrm {gen}, \chi }[1/p]$
 is regular.
Proof. Let x be a closed point in 
 $X^{\mathrm {gen}, \chi }[1/p]$
 and let
$X^{\mathrm {gen}, \chi }[1/p]$
 and let 
 $\rho _x: G_F\rightarrow \operatorname {\mathrm {GL}}_d(\kappa (x))$
 be the corresponding Galois representation. We claim that if
$\rho _x: G_F\rightarrow \operatorname {\mathrm {GL}}_d(\kappa (x))$
 be the corresponding Galois representation. We claim that if 
 $\rho _x$
 is absolutely irreducible, then
$\rho _x$
 is absolutely irreducible, then 
 $H^2(G_F, {\operatorname {ad}^0} \rho _x)=0$
. Since
$H^2(G_F, {\operatorname {ad}^0} \rho _x)=0$
. Since 
 $\kappa (x)$
 is a finite extension of L,
$\kappa (x)$
 is a finite extension of L, 
 ${\operatorname {ad}^0} \rho _x$
 is a direct summand of
${\operatorname {ad}^0} \rho _x$
 is a direct summand of 
 $\operatorname {\mathrm {ad}} \rho _x$
, and thus it is enough to show that
$\operatorname {\mathrm {ad}} \rho _x$
, and thus it is enough to show that 
 $H^2(G_F, \operatorname {\mathrm {ad}} \rho _x)=0$
. By local Tate duality, it is enough to show that
$H^2(G_F, \operatorname {\mathrm {ad}} \rho _x)=0$
. By local Tate duality, it is enough to show that 
 $H^0(G_F, \operatorname {\mathrm {ad}} \rho _x(1))=0$
. Since
$H^0(G_F, \operatorname {\mathrm {ad}} \rho _x(1))=0$
. Since 
 $\rho _x$
 is absolutely irreducible, non-vanishing of this group is equivalent to
$\rho _x$
 is absolutely irreducible, non-vanishing of this group is equivalent to 
 $\rho _x\cong \rho _x(1)$
. By considering determinants, we would obtain that the d-th power of the cyclotomic character is trivial, yielding a contradiction.
$\rho _x\cong \rho _x(1)$
. By considering determinants, we would obtain that the d-th power of the cyclotomic character is trivial, yielding a contradiction.
 Given the claim, the rest of the proof is the same as the proof of Proposition 4.9 since Lemma 3.37 implies that 
 $\widehat {\mathcal {O}}_{X^{\mathrm {gen},\chi }, x}\cong R^{\square , \chi }_{\rho _x}$
.
$\widehat {\mathcal {O}}_{X^{\mathrm {gen},\chi }, x}\cong R^{\square , \chi }_{\rho _x}$
.
Lemma 4.11. Assume that 
 $F=\mathbb {Q}_p$
 and
$F=\mathbb {Q}_p$
 and 
 $d=2$
. Let
$d=2$
. Let 
 $\kappa $
 be either a finite extension of L or a finite or local field of characteristic p. If
$\kappa $
 be either a finite extension of L or a finite or local field of characteristic p. If 
 $\mathrm {char}(\kappa )=p$
, then we further assume that
$\mathrm {char}(\kappa )=p$
, then we further assume that 
 $p>2$
. Let
$p>2$
. Let 
 $\rho : G_{\mathbb {Q}_p}\rightarrow \operatorname {\mathrm {GL}}_2(\kappa )$
 be a continuous representation with semi-simplification isomorphic to a direct sum of characters
$\rho : G_{\mathbb {Q}_p}\rightarrow \operatorname {\mathrm {GL}}_2(\kappa )$
 be a continuous representation with semi-simplification isomorphic to a direct sum of characters 
 $\psi _1 \oplus \psi _2$
 satisfying
$\psi _1 \oplus \psi _2$
 satisfying 
 $\psi _1\neq \psi _2(1)$
 and
$\psi _1\neq \psi _2(1)$
 and 
 $\psi _2\neq \psi _1(1)$
. Then
$\psi _2\neq \psi _1(1)$
. Then 
 $$ \begin{align*}H^2(G_{\mathbb{Q}_p}, \operatorname{\mathrm{ad}} \rho)=H^2(G_F, {\operatorname{ad}^0}\rho)=0.\end{align*} $$
$$ \begin{align*}H^2(G_{\mathbb{Q}_p}, \operatorname{\mathrm{ad}} \rho)=H^2(G_F, {\operatorname{ad}^0}\rho)=0.\end{align*} $$
In particular, 
 $R^{\square , \chi }_{\rho }$
 is formally smooth over
$R^{\square , \chi }_{\rho }$
 is formally smooth over 
 $\Lambda $
.
$\Lambda $
.
Proof. Since 
 $\mathrm {char}(\kappa )\neq 2$
,
$\mathrm {char}(\kappa )\neq 2$
, 
 ${\operatorname {ad}^0}\rho $
 is a direct summand
${\operatorname {ad}^0}\rho $
 is a direct summand 
 $\operatorname {\mathrm {ad}} \rho $
, and thus it is enough to show that
$\operatorname {\mathrm {ad}} \rho $
, and thus it is enough to show that 
 $H^2(G_{\mathbb {Q}_p}, \operatorname {\mathrm {ad}} \rho )=0$
. By local Tate duality (see [Reference Böckle and Juschka9, Theorem 3.4.1(b)]), it is enough to show that
$H^2(G_{\mathbb {Q}_p}, \operatorname {\mathrm {ad}} \rho )=0$
. By local Tate duality (see [Reference Böckle and Juschka9, Theorem 3.4.1(b)]), it is enough to show that 
 $H^0(G_{\mathbb {Q}_p}, \operatorname {\mathrm {ad}} \rho (1))=0$
. Non-vanishing of this group would imply that
$H^0(G_{\mathbb {Q}_p}, \operatorname {\mathrm {ad}} \rho (1))=0$
. Non-vanishing of this group would imply that 
 $\psi _i\psi _j^{-1}(1)$
 is a trivial character for some
$\psi _i\psi _j^{-1}(1)$
 is a trivial character for some 
 $i, j\in \{1,2\}$
. If
$i, j\in \{1,2\}$
. If 
 $i=j$
, then this would imply
$i=j$
, then this would imply 
 $\chi _{\mathrm {cyc}}\otimes _{\mathbb {Z}_p} \kappa $
 is trivial, which is not the case as
$\chi _{\mathrm {cyc}}\otimes _{\mathbb {Z}_p} \kappa $
 is trivial, which is not the case as 
 $\mathrm {char}(\kappa )\neq 2$
. If
$\mathrm {char}(\kappa )\neq 2$
. If 
 $i\neq j$
, then this does not hold by assumption.
$i\neq j$
, then this does not hold by assumption.
The last assertion follows from Lemma 4.8.
Lemma 4.12. Assume that 
 $p=2$
,
$p=2$
, 
 $F=\mathbb Q_2$
 and
$F=\mathbb Q_2$
 and 
 $d=2$
. Let
$d=2$
. Let 
 $\kappa $
 be a finite or local field of characteristic
$\kappa $
 be a finite or local field of characteristic 
 $2$
 and let
$2$
 and let 
 $\rho : G_{\mathbb Q_2}\rightarrow \operatorname {\mathrm {GL}}_2(\kappa )$
 be a continuous representation, which is a non-split extension of distinct characters.
$\rho : G_{\mathbb Q_2}\rightarrow \operatorname {\mathrm {GL}}_2(\kappa )$
 be a continuous representation, which is a non-split extension of distinct characters.
 Then 
 $H^2(G_{\mathbb Q_2}, {\operatorname {ad}^0} \rho )=0$
. In particular,
$H^2(G_{\mathbb Q_2}, {\operatorname {ad}^0} \rho )=0$
. In particular, 
 $R^{\square , \chi }_{\rho }$
 is formally smooth over
$R^{\square , \chi }_{\rho }$
 is formally smooth over 
 $\Lambda $
.
$\Lambda $
.
Proof. After twisting, we may assume that we can choose a basis of the underlying vector space of 
 $\rho $
, such that with respect to that basis,
$\rho $
, such that with respect to that basis, 
 $$ \begin{align*}\rho(g)=\begin{pmatrix} 1 & b(g)\\ 0 & \psi(g)\end{pmatrix}, \quad \forall g\in G_{\mathbb Q_2},\end{align*} $$
$$ \begin{align*}\rho(g)=\begin{pmatrix} 1 & b(g)\\ 0 & \psi(g)\end{pmatrix}, \quad \forall g\in G_{\mathbb Q_2},\end{align*} $$
where 
 $\psi : G_{\mathbb Q_2}\rightarrow \kappa ^{\times }$
 is a nontrivial character. We use the same basis to identify
$\psi : G_{\mathbb Q_2}\rightarrow \kappa ^{\times }$
 is a nontrivial character. We use the same basis to identify 
 $\operatorname {\mathrm {ad}} \rho $
 with
$\operatorname {\mathrm {ad}} \rho $
 with 
 $M_2(k)$
 with the
$M_2(k)$
 with the 
 $G_{\mathbb Q_2}$
-action given by
$G_{\mathbb Q_2}$
-action given by 
 $$ \begin{align*}g\cdot M:= \rho(g) M \rho(g)^{-1}.\end{align*} $$
$$ \begin{align*}g\cdot M:= \rho(g) M \rho(g)^{-1}.\end{align*} $$
For 
 $i,j\in \{1,2\}$
, let
$i,j\in \{1,2\}$
, let 
 $e_{ij}\in M_2(k)$
 be the matrix with the
$e_{ij}\in M_2(k)$
 be the matrix with the 
 $ij$
-entry equal to
$ij$
-entry equal to 
 $1$
 and all the other entries equal to zero. Let
$1$
 and all the other entries equal to zero. Let 
 $ {\overline {\mathrm{ad}}}\rho $
 be the quotient
$ {\overline {\mathrm{ad}}}\rho $
 be the quotient 
 $\operatorname {\mathrm {ad}} \rho $
 by the scalar matrices and let
$\operatorname {\mathrm {ad}} \rho $
 by the scalar matrices and let 
 $\overline {e}_{ij}$
 be the image of
$\overline {e}_{ij}$
 be the image of 
 $e_{ij}$
 in
$e_{ij}$
 in 
 $ {{\overline {\operatorname {\mathrm {ad}} }}} \rho $
. A direct computation shows that
$ {{\overline {\operatorname {\mathrm {ad}} }}} \rho $
. A direct computation shows that 
 $$ \begin{align*}g\cdot \overline{e}_{12}= \psi(g)^{-1} \overline{e}_{12}, \quad g\cdot \overline{e}_{11} = \overline{e}_{11}- \psi(g)^{-1}b(g) \overline{e}_{12}, \quad g\cdot \overline{e}_{21}= \psi(g) \overline{e}_{21}-\psi(g)^{-1} b(g)^2 \overline{e}_{12}.\end{align*} $$
$$ \begin{align*}g\cdot \overline{e}_{12}= \psi(g)^{-1} \overline{e}_{12}, \quad g\cdot \overline{e}_{11} = \overline{e}_{11}- \psi(g)^{-1}b(g) \overline{e}_{12}, \quad g\cdot \overline{e}_{21}= \psi(g) \overline{e}_{21}-\psi(g)^{-1} b(g)^2 \overline{e}_{12}.\end{align*} $$
Since 
 $\rho $
 is non-split,
$\rho $
 is non-split, 
 $b(g)\neq 0$
 for some
$b(g)\neq 0$
 for some 
 $g\in G_{\mathbb Q_2}$
. Thus,
$g\in G_{\mathbb Q_2}$
. Thus, 
 $\kappa \overline {e}_{12}$
 is the unique irreducible subrepresentation of
$\kappa \overline {e}_{12}$
 is the unique irreducible subrepresentation of 
 $ {{\overline {\operatorname {\mathrm {ad}} }}} \rho $
. Since
$ {{\overline {\operatorname {\mathrm {ad}} }}} \rho $
. Since 
 $G_{\mathbb Q_2}$
 acts on
$G_{\mathbb Q_2}$
 acts on 
 $\overline {e}_{12}$
 by a nontrivial character, we deduce that
$\overline {e}_{12}$
 by a nontrivial character, we deduce that 
 $H^0(G_{\mathbb Q_2}, { {\overline {\operatorname {\mathrm {ad}} }}} \rho )=0$
.
$H^0(G_{\mathbb Q_2}, { {\overline {\operatorname {\mathrm {ad}} }}} \rho )=0$
.
 It follows from local Tate duality (see [Reference Böckle and Juschka9, Theorem 3.4.1(b)]) that 
 $H^2(G_{\mathbb Q_2}, {\operatorname {ad}^0} \rho )=0$
. Note that the cyclotomic character is trivial modulo
$H^2(G_{\mathbb Q_2}, {\operatorname {ad}^0} \rho )=0$
. Note that the cyclotomic character is trivial modulo 
 $2$
.
$2$
.
The last assertion follows from Lemma 4.8.
Proposition 4.13. There is an open subscheme 
 $V^{0,\chi } \subset \overline {X}^{\mathrm {gen}, \chi }$
 such that
$V^{0,\chi } \subset \overline {X}^{\mathrm {gen}, \chi }$
 such that 
- 
(1)  $H^2(G_F, {\operatorname {ad}^0} \rho _x)=0$
 for all closed points $H^2(G_F, {\operatorname {ad}^0} \rho _x)=0$
 for all closed points $x\in V^{0, \chi }$
; $x\in V^{0, \chi }$
;
- 
(2)  $\dim \overline {X}^{\mathrm {gen}, \chi } - \dim (\overline {X}^{\mathrm {gen}, \chi }\setminus V^{0, \chi })\ge 2$
. $\dim \overline {X}^{\mathrm {gen}, \chi } - \dim (\overline {X}^{\mathrm {gen}, \chi }\setminus V^{0, \chi })\ge 2$
.
In particular, 
 $\overline {X}^{\mathrm {gen}, \chi }$
 is regular in codimension
$\overline {X}^{\mathrm {gen}, \chi }$
 is regular in codimension 
 $1$
.
$1$
.
Proof. We first note that if 
 $V\subset \overline {X}^{\mathrm {gen}, \chi }$
 is open and satisfies part (1), then V is regular by the argument explained in the proof of Proposition 4.9. Thus if (1) and (2) hold then
$V\subset \overline {X}^{\mathrm {gen}, \chi }$
 is open and satisfies part (1), then V is regular by the argument explained in the proof of Proposition 4.9. Thus if (1) and (2) hold then 
 $\overline {X}^{\mathrm {gen},\chi }$
 is regular in codimension
$\overline {X}^{\mathrm {gen},\chi }$
 is regular in codimension 
 $1$
. We also note that Lemma A.2 implies that part (1) holds for
$1$
. We also note that Lemma A.2 implies that part (1) holds for 
 $V^{\mathrm {Kirr}, \chi }:=V^{\mathrm {Kirr}}\cap \overline {X}^{\mathrm {gen}, \chi }$
. We consider three separate cases.
$V^{\mathrm {Kirr}, \chi }:=V^{\mathrm {Kirr}}\cap \overline {X}^{\mathrm {gen}, \chi }$
. We consider three separate cases.
 
Case 1: 
 $d> 2$
 or
$d> 2$
 or 
 $F \neq \mathbb {Q}_p$
 or
$F \neq \mathbb {Q}_p$
 or 
 $\overline {D}$
 is (absolutely) irreducible. These three conditions correspond to parts (1), (2) and (3) of Proposition 3.53, respectively, and indeed Proposition 3.53 implies that the complement of
$\overline {D}$
 is (absolutely) irreducible. These three conditions correspond to parts (1), (2) and (3) of Proposition 3.53, respectively, and indeed Proposition 3.53 implies that the complement of 
 $V^{\mathrm {Kirr}, \chi }$
 in
$V^{\mathrm {Kirr}, \chi }$
 in 
 $\overline {X}^{\mathrm {gen},\chi }$
 has dimension at most
$\overline {X}^{\mathrm {gen},\chi }$
 has dimension at most 
 $\dim \overline {X}^{\mathrm {gen},\chi } - 2$
. Hence, we may take
$\dim \overline {X}^{\mathrm {gen},\chi } - 2$
. Hence, we may take 
 $V^{0, \chi }=V^{\mathrm {Kirr}, \chi }$
.
$V^{0, \chi }=V^{\mathrm {Kirr}, \chi }$
.
 
Case 2: 
 $d = 2$
 and
$d = 2$
 and 
 $F = \mathbb {Q}_p$
 and
$F = \mathbb {Q}_p$
 and 
 $p>2$
 and
$p>2$
 and 
 $\overline {D}$
 is reducible. In this case,
$\overline {D}$
 is reducible. In this case, 
 $\mu = \{1\}$
 so
$\mu = \{1\}$
 so 
 $\chi = \mathbf 1$
, and thus,
$\chi = \mathbf 1$
, and thus, 
 $\overline {X}^{\mathrm {gen},\mathbf 1} = \overline {X}^{\mathrm {gen}}$
. It follows from Proposition 3.26, Lemma 3.30 and Lemma 3.52 that
$\overline {X}^{\mathrm {gen},\mathbf 1} = \overline {X}^{\mathrm {gen}}$
. It follows from Proposition 3.26, Lemma 3.30 and Lemma 3.52 that 
 $$ \begin{align*}V^{0, \chi}:= \overline{X}^{\mathrm{gen}}\setminus( Y \cup Z_{\mathcal{P}_{\max}}^{12} \cup Z_{\mathcal{P}_{\max}}^{21} \cup Z^{\mathrm{Kred}})\end{align*} $$
$$ \begin{align*}V^{0, \chi}:= \overline{X}^{\mathrm{gen}}\setminus( Y \cup Z_{\mathcal{P}_{\max}}^{12} \cup Z_{\mathcal{P}_{\max}}^{21} \cup Z^{\mathrm{Kred}})\end{align*} $$
satisfies part (2). We may also write 
 $V^{0, \chi }= V^{\mathrm {Kirr}}\cup V_{\mathcal {P}_{\max }}^{\prime }$
, where we use the notation introduced in the proof of Proposition 3.27. Since part (1) holds for
$V^{0, \chi }= V^{\mathrm {Kirr}}\cup V_{\mathcal {P}_{\max }}^{\prime }$
, where we use the notation introduced in the proof of Proposition 3.27. Since part (1) holds for 
 $V^{\mathrm {Kirr}}$
, it is enough to consider closed points
$V^{\mathrm {Kirr}}$
, it is enough to consider closed points 
 $x\in V_{\mathcal {P}_{\max }}^{\prime }$
. The definition of
$x\in V_{\mathcal {P}_{\max }}^{\prime }$
. The definition of 
 $V_{\mathcal {P}_{\max }}^{\prime }$
 implies firstly that
$V_{\mathcal {P}_{\max }}^{\prime }$
 implies firstly that 
 $\rho _x$
 is reducible and secondly that if we let
$\rho _x$
 is reducible and secondly that if we let 
 $\psi _1$
 and
$\psi _1$
 and 
 $\psi _2$
 denote its irreducible Jordan-Hölder constituents, then
$\psi _2$
 denote its irreducible Jordan-Hölder constituents, then 
 $\psi _1 \neq \psi _2(1)$
 and
$\psi _1 \neq \psi _2(1)$
 and 
 $\psi _2 \neq \psi _1(1)$
. Therefore,
$\psi _2 \neq \psi _1(1)$
. Therefore, 
 $H^2(G_F, {\operatorname {ad}^0} \rho _x)=0$
 by Lemma 4.11.
$H^2(G_F, {\operatorname {ad}^0} \rho _x)=0$
 by Lemma 4.11.
 
Case 3: 
 $d = 2$
 and
$d = 2$
 and 
 $F = \mathbb {Q}_2$
 and
$F = \mathbb {Q}_2$
 and 
 $\overline {D}$
 is reducible. The proof is the same as in Case 2, using Lemma 4.12 instead of Lemma 4.11. However, one additionally has to remove the reducible semi-simple locus in
$\overline {D}$
 is reducible. The proof is the same as in Case 2, using Lemma 4.12 instead of Lemma 4.11. However, one additionally has to remove the reducible semi-simple locus in 
 $\overline {X}^{\mathrm {gen},\chi }$
. Its dimension is at most
$\overline {X}^{\mathrm {gen},\chi }$
. Its dimension is at most 
 $4+2=6$
 by Corollary 3.49 and the dimension of
$4+2=6$
 by Corollary 3.49 and the dimension of 
 $\overline {X}^{\mathrm {gen},\chi }$
 is
$\overline {X}^{\mathrm {gen},\chi }$
 is 
 $8$
. Thus, the codimension is at least
$8$
. Thus, the codimension is at least 
 $2$
.
$2$
.
Proposition 4.14. 
 $\overline {X}^{\mathrm {gen},\chi }$
 is normal.
$\overline {X}^{\mathrm {gen},\chi }$
 is normal.
Proof. Since 
 $\overline {X}^{\mathrm {gen},\chi }$
 is a local complete intersection by Corollary 4.6, it is Cohen–Macaulay and satisfies property (S2), and Proposition 4.13 says that it satisfies property (R1). Hence,
$\overline {X}^{\mathrm {gen},\chi }$
 is a local complete intersection by Corollary 4.6, it is Cohen–Macaulay and satisfies property (S2), and Proposition 4.13 says that it satisfies property (R1). Hence, 
 $\overline {X}^{\mathrm {gen},\chi }$
 is normal by Serre’s criterion for normality.
$\overline {X}^{\mathrm {gen},\chi }$
 is normal by Serre’s criterion for normality.
Corollary 4.15. For each character 
 $\chi : \mu _{p^{\infty }}(F)\rightarrow \mathcal {O}^{\times }$
 and
$\chi : \mu _{p^{\infty }}(F)\rightarrow \mathcal {O}^{\times }$
 and 
 $\overline {\rho }: G_F\rightarrow \operatorname {\mathrm {GL}}_d(k)$
, the ring
$\overline {\rho }: G_F\rightarrow \operatorname {\mathrm {GL}}_d(k)$
, the ring 
 $R^{\square ,\chi }_{\overline {\rho }}/\varpi $
 is a normal integral domain.
$R^{\square ,\chi }_{\overline {\rho }}/\varpi $
 is a normal integral domain.
Proof. Since 
 $\overline {X}^{\mathrm {gen},\chi }$
 is normal and excellent the completions of its local rings are normal by [Reference Matsumura36, Theorem 32.2 (i)]. So after formally completing along the maximal ideal corresponding to
$\overline {X}^{\mathrm {gen},\chi }$
 is normal and excellent the completions of its local rings are normal by [Reference Matsumura36, Theorem 32.2 (i)]. So after formally completing along the maximal ideal corresponding to 
 $\overline {\rho }$
, Proposition 3.34 (after applying
$\overline {\rho }$
, Proposition 3.34 (after applying 
 $\otimes _{\mathcal {O}[\mu ],\chi } \mathcal {O}$
) and Proposition 3.37 tell us that
$\otimes _{\mathcal {O}[\mu ],\chi } \mathcal {O}$
) and Proposition 3.37 tell us that 
 $R^{\square ,\chi }_{\overline {\rho }}/\varpi $
 is normal, and thus an integral domain since it is a local ring.
$R^{\square ,\chi }_{\overline {\rho }}/\varpi $
 is normal, and thus an integral domain since it is a local ring.
Lemma 4.16. Let 
 $\hat {Y}$
 be the preimage of
$\hat {Y}$
 be the preimage of 
 ${\mathfrak m}_{R^{\mathrm {ps}}}$
 in
${\mathfrak m}_{R^{\mathrm {ps}}}$
 in 
 $\operatorname {\mathrm {Spec}} R^{\square , \chi }_{\overline {\rho }}/\varpi $
. Let W be a closed subscheme of
$\operatorname {\mathrm {Spec}} R^{\square , \chi }_{\overline {\rho }}/\varpi $
. Let W be a closed subscheme of 
 $\operatorname {\mathrm {Spec}} R^{\square , \chi }_{\overline {\rho }}/\varpi $
 such that
$\operatorname {\mathrm {Spec}} R^{\square , \chi }_{\overline {\rho }}/\varpi $
 such that 
 $H^2(G_F, {\operatorname {ad}^0} \rho _x)\neq 0$
 for all closed points
$H^2(G_F, {\operatorname {ad}^0} \rho _x)\neq 0$
 for all closed points 
 $x\in W\setminus \hat {Y}$
. Then
$x\in W\setminus \hat {Y}$
. Then 
 $\dim R^{\square , \chi }_{\overline {\rho }}/\varpi - \dim W\ge 2$
.
$\dim R^{\square , \chi }_{\overline {\rho }}/\varpi - \dim W\ge 2$
.
Proof. The assumptions imply that W is contained in 
 $\hat {Z}\cup \hat {Y}$
, where
$\hat {Z}\cup \hat {Y}$
, where 
 $Z= \overline {X}^{\mathrm {gen}, \chi }\setminus V^{0, \chi }$
 and
$Z= \overline {X}^{\mathrm {gen}, \chi }\setminus V^{0, \chi }$
 and 
 $\hat {Z}$
 is a formal completion of Z at the point corresponding to
$\hat {Z}$
 is a formal completion of Z at the point corresponding to 
 $\overline {\rho }$
. In terms of commutative algebra, the ring of functions of
$\overline {\rho }$
. In terms of commutative algebra, the ring of functions of 
 $\hat {Z}$
 corresponds to the completion of the ring of functions of Z with respect to the maximal ideal corresponding to
$\hat {Z}$
 corresponds to the completion of the ring of functions of Z with respect to the maximal ideal corresponding to 
 $\overline {\rho }$
. Hence,
$\overline {\rho }$
. Hence, 
 $\dim \hat {Z}\le \dim Z$
, and Proposition 4.13 implies that
$\dim \hat {Z}\le \dim Z$
, and Proposition 4.13 implies that 
 $\hat {Z}$
 has codimension at least
$\hat {Z}$
 has codimension at least 
 $2$
 in
$2$
 in 
 $\operatorname {\mathrm {Spec}} R^{\square , \chi }_{\overline {\rho }}/\varpi $
. Similarly,
$\operatorname {\mathrm {Spec}} R^{\square , \chi }_{\overline {\rho }}/\varpi $
. Similarly, 
 $\hat {Y}$
 is a formal completion of Y (the preimage of
$\hat {Y}$
 is a formal completion of Y (the preimage of 
 $\{{\mathfrak m}_{R^{\mathrm {ps}}}\}$
 in
$\{{\mathfrak m}_{R^{\mathrm {ps}}}\}$
 in 
 $X^{\mathrm {gen}}$
) at the point corresponding to
$X^{\mathrm {gen}}$
) at the point corresponding to 
 $\overline {\rho }$
, and using Lemma 3.30 we conclude that
$\overline {\rho }$
, and using Lemma 3.30 we conclude that 
 $\hat {Y}$
 also has codimension of at least
$\hat {Y}$
 also has codimension of at least 
 $2$
 in
$2$
 in 
 $\operatorname {\mathrm {Spec}} R^{\square , \chi }_{\overline {\rho }}/\varpi $
.
$\operatorname {\mathrm {Spec}} R^{\square , \chi }_{\overline {\rho }}/\varpi $
.
Proposition 4.17. 
 $X^{\mathrm {gen}, \chi }[1/p]$
 is normal.
$X^{\mathrm {gen}, \chi }[1/p]$
 is normal.
Proof. The proof is essentially the same as the proof of Proposition 4.14. It follows from Corollary 4.6 that 
 $X^{\mathrm {gen}, \chi }[1/p]$
 is Cohen–Macaulay, and we have to check that the codimension of the singular locus is at least
$X^{\mathrm {gen}, \chi }[1/p]$
 is Cohen–Macaulay, and we have to check that the codimension of the singular locus is at least 
 $2$
. Since
$2$
. Since 
 $X^{\mathrm {gen}, \chi }[1/p]$
 is a preimage of
$X^{\mathrm {gen}, \chi }[1/p]$
 is a preimage of 
 $\operatorname {\mathrm {Spec}} R^{\mathrm {ps}, \chi }[1/p]$
 in
$\operatorname {\mathrm {Spec}} R^{\mathrm {ps}, \chi }[1/p]$
 in 
 $X^{\mathrm {gen}}$
, Lemma 3.18 implies that
$X^{\mathrm {gen}}$
, Lemma 3.18 implies that 
 $X^{\mathrm {gen}, \chi }[1/p]$
 is Jacobson and we may argue with closed points.
$X^{\mathrm {gen}, \chi }[1/p]$
 is Jacobson and we may argue with closed points.
 We have already shown in Proposition 4.10 that the absolutely irreducible locus 
 $V^{\mathrm {irr}, \chi }$
 in
$V^{\mathrm {irr}, \chi }$
 in 
 $X^{\mathrm {gen}, \chi }[1/p]$
 is regular. Thus, the singular locus is contained in
$X^{\mathrm {gen}, \chi }[1/p]$
 is regular. Thus, the singular locus is contained in 
 $$ \begin{align*}\bigcup_{\mathcal{P}_{\min}< \mathcal{P}} X^{\mathrm{gen}, \chi}_{\mathcal{P}}[1/p],\end{align*} $$
$$ \begin{align*}\bigcup_{\mathcal{P}_{\min}< \mathcal{P}} X^{\mathrm{gen}, \chi}_{\mathcal{P}}[1/p],\end{align*} $$
where 
 $X^{\mathrm {gen}, \chi }_{\mathcal {P}}:= X^{\mathrm {gen}, \chi }\cap X^{\mathrm {gen}}_{\mathcal {P}}$
.
$X^{\mathrm {gen}, \chi }_{\mathcal {P}}:= X^{\mathrm {gen}, \chi }\cap X^{\mathrm {gen}}_{\mathcal {P}}$
.
 If either 
 $\overline {\rho }$
 is absolutely irreducible,
$\overline {\rho }$
 is absolutely irreducible, 
 $F\neq \mathbb {Q}_p$
 or
$F\neq \mathbb {Q}_p$
 or 
 $d>2$
, then it follows from Proposition 3.58 that
$d>2$
, then it follows from Proposition 3.58 that 
 $X^{\mathrm {gen}, \chi }[1/p]$
 is regular in codimension
$X^{\mathrm {gen}, \chi }[1/p]$
 is regular in codimension 
 $1$
.
$1$
.
 If 
 $\overline {\rho }$
 is reducible,
$\overline {\rho }$
 is reducible, 
 $F=\mathbb {Q}_p$
 and
$F=\mathbb {Q}_p$
 and 
 $d=2$
, then there are two partitions
$d=2$
, then there are two partitions 
 $\mathcal {P}_{\min }$
 and
$\mathcal {P}_{\min }$
 and 
 $\mathcal {P}_{\max }$
 and
$\mathcal {P}_{\max }$
 and 
 $\dim X^{\mathrm {gen}, \chi }[1/p] -\dim X^{\mathrm {gen}, \chi }_{\mathcal {P}_{\max }}[1/p]=1$
, so the previous argument does not work. If
$\dim X^{\mathrm {gen}, \chi }[1/p] -\dim X^{\mathrm {gen}, \chi }_{\mathcal {P}_{\max }}[1/p]=1$
, so the previous argument does not work. If 
 $x\in X^{\mathrm {gen}, \chi }[1/p]$
 is a closed singular point, then it follows from Proposition 4.10 and Lemma 4.11 that
$x\in X^{\mathrm {gen}, \chi }[1/p]$
 is a closed singular point, then it follows from Proposition 4.10 and Lemma 4.11 that 
 $\rho _x$
 is reducible and its semi-simplification has the form
$\rho _x$
 is reducible and its semi-simplification has the form 
 $\psi \oplus \psi (1)$
 for some character
$\psi \oplus \psi (1)$
 for some character 
 $\psi : G_F\rightarrow \kappa (x)^{\times }$
. Thus, we may assume that the pseudo-character
$\psi : G_F\rightarrow \kappa (x)^{\times }$
. Thus, we may assume that the pseudo-character 
 $\overline {D}$
 associated to
$\overline {D}$
 associated to 
 $\overline {\rho }$
 is equal to
$\overline {\rho }$
 is equal to 
 $\bar {\psi } + \bar {\psi }(1)$
. We will now recall a construction, carried out after Lemma 3.24, in this special case. Let
$\bar {\psi } + \bar {\psi }(1)$
. We will now recall a construction, carried out after Lemma 3.24, in this special case. Let 
 $R_{\bar {\psi }}$
 be the universal deformation ring of
$R_{\bar {\psi }}$
 be the universal deformation ring of 
 $\bar {\psi }$
. Mapping a deformation
$\bar {\psi }$
. Mapping a deformation 
 $\psi _A$
 to the pseudo-character
$\psi _A$
 to the pseudo-character 
 $\psi _A+\psi _A(1)$
 induces a map of local
$\psi _A+\psi _A(1)$
 induces a map of local 
 $\mathcal {O}$
-algebras
$\mathcal {O}$
-algebras 
 $R^{\mathrm {ps}}\rightarrow R_{\bar {\psi }}$
. Let
$R^{\mathrm {ps}}\rightarrow R_{\bar {\psi }}$
. Let 
 $X^{\mathrm {ps},12}_{\mathcal {P}_{\max }}$
 be the schematic image of
$X^{\mathrm {ps},12}_{\mathcal {P}_{\max }}$
 be the schematic image of 
 $\operatorname {\mathrm {Spec}} R_{\bar {\psi }}\rightarrow X^{\mathrm {ps}}$
 induced by this map. Let
$\operatorname {\mathrm {Spec}} R_{\bar {\psi }}\rightarrow X^{\mathrm {ps}}$
 induced by this map. Let 
 $W:= X^{\mathrm {gen},\chi }\times _{X^{\mathrm {ps}}} X^{\mathrm {ps},12}_{\mathcal {P}_{\max }}$
. The generic fibre
$W:= X^{\mathrm {gen},\chi }\times _{X^{\mathrm {ps}}} X^{\mathrm {ps},12}_{\mathcal {P}_{\max }}$
. The generic fibre 
 $W[1/p]$
 contains all the singular closed points, and since
$W[1/p]$
 contains all the singular closed points, and since 
 $X^{\mathrm {gen}}[1/p]$
 is Jacobson,
$X^{\mathrm {gen}}[1/p]$
 is Jacobson, 
 $W[1/p]$
 contains the singular locus of
$W[1/p]$
 contains the singular locus of 
 $X^{\mathrm {gen}}[1/p]$
. The special fibre
$X^{\mathrm {gen}}[1/p]$
. The special fibre 
 $\overline {W}$
 is a union of
$\overline {W}$
 is a union of 
 $Z^{12}_{\mathcal {P}_{\max }}$
 and Y (as underlying topological spaces). Thus,
$Z^{12}_{\mathcal {P}_{\max }}$
 and Y (as underlying topological spaces). Thus, 
 $\dim \overline {W}\le 6$
 as
$\dim \overline {W}\le 6$
 as 
 $\dim Y\le 4$
 by Lemma 3.30 and
$\dim Y\le 4$
 by Lemma 3.30 and 
 $\dim Z^{12}_{\mathcal {P}_{\max }}\le 6$
 by Proposition 3.26. Since W is a
$\dim Z^{12}_{\mathcal {P}_{\max }}\le 6$
 by Proposition 3.26. Since W is a 
 $\operatorname {\mathrm {GL}}_d$
-invariant subscheme of
$\operatorname {\mathrm {GL}}_d$
-invariant subscheme of 
 $X^{\mathrm {gen}}$
, Lemma 3.23 implies that
$X^{\mathrm {gen}}$
, Lemma 3.23 implies that 
 $\dim W[1/p]\le 6$
. It follows from Corollary 4.6 that
$\dim W[1/p]\le 6$
. It follows from Corollary 4.6 that 
 $\dim X^{\mathrm {gen}, \chi }[1/p]=\dim \overline {X}^{\mathrm {gen}, \chi }=8$
. Thus, the codimension of the singular locus in
$\dim X^{\mathrm {gen}, \chi }[1/p]=\dim \overline {X}^{\mathrm {gen}, \chi }=8$
. Thus, the codimension of the singular locus in 
 $X^{\mathrm {gen}, \chi }[1/p]$
 is at least
$X^{\mathrm {gen}, \chi }[1/p]$
 is at least 
 $2$
.
$2$
.
Corollary 4.18. 
 $X^{\mathrm {gen}, \chi }$
 is normal.
$X^{\mathrm {gen}, \chi }$
 is normal.
Proof. Since 
 $A^{\mathrm {gen}, \chi }$
 is
$A^{\mathrm {gen}, \chi }$
 is 
 $\mathcal {O}$
-torsion free by Corollary 4.6, the map
$\mathcal {O}$
-torsion free by Corollary 4.6, the map 
 $\mathcal {O}\rightarrow A^{\mathrm {gen}, \chi }$
 is flat. We have shown in Propositions 4.14 and 4.17 that the fibre rings
$\mathcal {O}\rightarrow A^{\mathrm {gen}, \chi }$
 is flat. We have shown in Propositions 4.14 and 4.17 that the fibre rings 
 $L\otimes _{\mathcal {O}} A^{\mathrm {gen}, \chi }$
 and
$L\otimes _{\mathcal {O}} A^{\mathrm {gen}, \chi }$
 and 
 $k\otimes _{\mathcal {O}} A^{\mathrm {gen}, \chi }$
 are normal. Since
$k\otimes _{\mathcal {O}} A^{\mathrm {gen}, \chi }$
 are normal. Since 
 $\mathcal {O}$
 is a regular ring, [Reference Bruns and Herzog11, Corollary 2.2.23] implies that
$\mathcal {O}$
 is a regular ring, [Reference Bruns and Herzog11, Corollary 2.2.23] implies that 
 $A^{\mathrm {gen}, \chi }$
 is normal.
$A^{\mathrm {gen}, \chi }$
 is normal.
Corollary 4.19. For each character 
 $\chi : \mu _{p^{\infty }}(F)\rightarrow \mathcal {O}^{\times }$
 and
$\chi : \mu _{p^{\infty }}(F)\rightarrow \mathcal {O}^{\times }$
 and 
 $\overline {\rho }: G_F\rightarrow \operatorname {\mathrm {GL}}_d(k)$
, the ring
$\overline {\rho }: G_F\rightarrow \operatorname {\mathrm {GL}}_d(k)$
, the ring 
 $R^{\square ,\chi }_{\overline {\rho }}$
 is a normal integral domain.
$R^{\square ,\chi }_{\overline {\rho }}$
 is a normal integral domain.
Proof. The proof is essentially the same as the proof of Corollary 4.15. To see this, note that Corollary 4.18 implies that 
 $X^{\mathrm {gen},\chi }$
 is normal, and that the formal completion of
$X^{\mathrm {gen},\chi }$
 is normal, and that the formal completion of 
 $X^{\mathrm {gen},\chi }$
 along the maximal ideal corresponding to
$X^{\mathrm {gen},\chi }$
 along the maximal ideal corresponding to 
 $\overline {\rho }$
 is
$\overline {\rho }$
 is 
 $R^{\square ,\chi }_{\overline {\rho }}$
 by the
$R^{\square ,\chi }_{\overline {\rho }}$
 by the 
 $\chi $
-version of Proposition 3.34 as explained in the proof of Corollary 4.6.
$\chi $
-version of Proposition 3.34 as explained in the proof of Corollary 4.6.
Lemma 4.20. Let W be a closed subscheme of 
 $\operatorname {\mathrm {Spec}} R^{\square , \chi }_{\overline {\rho }}[1/p]$
 with the property that
$\operatorname {\mathrm {Spec}} R^{\square , \chi }_{\overline {\rho }}[1/p]$
 with the property that 
 $H^2(G_F, {\operatorname {ad}^0}\rho _x)\neq 0$
 for all closed points
$H^2(G_F, {\operatorname {ad}^0}\rho _x)\neq 0$
 for all closed points 
 $x\in W$
. Then
$x\in W$
. Then 
 $\dim R^{\square , \chi }_{\overline {\rho }}[1/p]- \dim W\ge 2.$
$\dim R^{\square , \chi }_{\overline {\rho }}[1/p]- \dim W\ge 2.$
Proof. Since in characteristic zero 
 ${\operatorname {ad}^0} \rho _x$
 is a direct summand of
${\operatorname {ad}^0} \rho _x$
 is a direct summand of 
 $\operatorname {\mathrm {ad}} \rho _x$
 we obtain that
$\operatorname {\mathrm {ad}} \rho _x$
 we obtain that 
 $H^2(G_F, \operatorname {\mathrm {ad}} \rho _x)\neq 0$
 for all
$H^2(G_F, \operatorname {\mathrm {ad}} \rho _x)\neq 0$
 for all 
 $x\in W$
. This implies that W is contained in the singular locus of
$x\in W$
. This implies that W is contained in the singular locus of 
 $\operatorname {\mathrm {Spec}} R^{\square , \chi }_{\overline {\rho }}[1/p]$
. Since
$\operatorname {\mathrm {Spec}} R^{\square , \chi }_{\overline {\rho }}[1/p]$
. Since 
 $R^{\square , \chi }_{\overline {\rho }}[1/p]$
 is normal, the singular locus has codimension of at least
$R^{\square , \chi }_{\overline {\rho }}[1/p]$
 is normal, the singular locus has codimension of at least 
 $2$
.
$2$
.
The next result answers affirmatively a question raised by GB–Juschka in [Reference Böckle and Juschka8, Question 1.10].
Corollary 4.21. The map 
 $R_{\det \overline {\rho }}\rightarrow R^{\square }_{\overline {\rho }}$
 induces a bijection between the sets of irreducible components.
$R_{\det \overline {\rho }}\rightarrow R^{\square }_{\overline {\rho }}$
 induces a bijection between the sets of irreducible components.
Proof. Since 
 $R^{\square }_{\overline {\rho }}$
 is
$R^{\square }_{\overline {\rho }}$
 is 
 $\mathcal {O}$
-torsion free by Corollary 3.38, the irreducible components of
$\mathcal {O}$
-torsion free by Corollary 3.38, the irreducible components of 
 $R^{\square }_{\overline {\rho }}$
 and
$R^{\square }_{\overline {\rho }}$
 and 
 $R^{\square }_{\overline {\rho }}[1/p]$
 coincide. Since the algebra
$R^{\square }_{\overline {\rho }}[1/p]$
 coincide. Since the algebra 
 $\mathcal {O}[\mu _{p^{\infty }}(F)] [1/p]$
 is semi-simple, we have
$\mathcal {O}[\mu _{p^{\infty }}(F)] [1/p]$
 is semi-simple, we have 
 $$ \begin{align} R^{\square}_{\overline{\rho}}[1/p]\cong \prod_{\chi: \mu_{p^{\infty}}(F)\rightarrow \mathcal{O}^{\times}} R^{\square, \chi}_{\overline{\rho}}[1/p]. \end{align} $$
$$ \begin{align} R^{\square}_{\overline{\rho}}[1/p]\cong \prod_{\chi: \mu_{p^{\infty}}(F)\rightarrow \mathcal{O}^{\times}} R^{\square, \chi}_{\overline{\rho}}[1/p]. \end{align} $$
It follows from Corollaries 4.5 and 4.19 that 
 $R^{\square , \chi }_{\overline {\rho }}$
 is an
$R^{\square , \chi }_{\overline {\rho }}$
 is an 
 $\mathcal {O}$
-torsion free integral domain. We note that the special fibres of these rings are non-zero, thus the rings themselves are non-zero. Hence, the localization
$\mathcal {O}$
-torsion free integral domain. We note that the special fibres of these rings are non-zero, thus the rings themselves are non-zero. Hence, the localization 
 $R^{\square , \chi }_{\overline {\rho }}[1/p]$
 is non-zero and is an integral domain.
$R^{\square , \chi }_{\overline {\rho }}[1/p]$
 is non-zero and is an integral domain.
Corollary 4.22. 
 $R^{\square }_{\overline {\rho }}[1/p]$
 is normal and
$R^{\square }_{\overline {\rho }}[1/p]$
 is normal and 
 $R^{\square }_{\overline {\rho }}$
 is reduced.
$R^{\square }_{\overline {\rho }}$
 is reduced.
Proof. The first assertion follows from (29) and Corollary 4.19. Since 
 $R^{\square }_{\overline {\rho }}$
 is
$R^{\square }_{\overline {\rho }}$
 is 
 $\mathcal {O}$
-torsion free by Corollary 3.38, it is a subring of
$\mathcal {O}$
-torsion free by Corollary 3.38, it is a subring of 
 $R^{\square }_{\overline {\rho }}[1/p]$
. This implies the second assertion as normal rings are reduced.
$R^{\square }_{\overline {\rho }}[1/p]$
. This implies the second assertion as normal rings are reduced.
Corollary 4.23. If either 
 $d=2$
 and
$d=2$
 and 
 $[F:\mathbb {Q}_p]\ge 4$
 or
$[F:\mathbb {Q}_p]\ge 4$
 or 
 $d\ge 3$
 and
$d\ge 3$
 and 
 $[F:\mathbb {Q}_p]\ge 3$
, then for each character
$[F:\mathbb {Q}_p]\ge 3$
, then for each character 
 $\chi : \mu _{p^{\infty }}(F)\rightarrow \mathcal {O}^{\times }$
 and
$\chi : \mu _{p^{\infty }}(F)\rightarrow \mathcal {O}^{\times }$
 and 
 $\overline {\rho }: G_F\rightarrow \operatorname {\mathrm {GL}}_d(k)$
, the rings
$\overline {\rho }: G_F\rightarrow \operatorname {\mathrm {GL}}_d(k)$
, the rings 
 $R^{\square ,\chi }_{\overline {\rho }}$
,
$R^{\square ,\chi }_{\overline {\rho }}$
, 
 $R^{\square ,\chi }_{\overline {\rho }}/\varpi $
 are regular in codimension
$R^{\square ,\chi }_{\overline {\rho }}/\varpi $
 are regular in codimension 
 $3$
. In particular,
$3$
. In particular, 
 $R^{\square ,\chi }_{\overline {\rho }}$
 and
$R^{\square ,\chi }_{\overline {\rho }}$
 and 
 $R^{\square , \chi }_{\overline {\rho }}/\varpi $
 are factorial.
$R^{\square , \chi }_{\overline {\rho }}/\varpi $
 are factorial.
Proof. The assumptions together with the lower bound on the codimension of the Kummer-irreducible locus in Proposition 3.53 and the containment 
 $V^{\mathrm {Kirr}} \subset V^{{\mathrm {n}\text{-}\mathrm {spcl}}}$
 (resp. Proposition 3.58) imply that the complement of the absolutely irreducible non-special locus in
$V^{\mathrm {Kirr}} \subset V^{{\mathrm {n}\text{-}\mathrm {spcl}}}$
 (resp. Proposition 3.58) imply that the complement of the absolutely irreducible non-special locus in 
 $\overline {X}^{\mathrm {gen}, \chi }$
 (resp. absolutely irreducible locus in
$\overline {X}^{\mathrm {gen}, \chi }$
 (resp. absolutely irreducible locus in 
 $X^{\mathrm {gen}, \chi }[1/p]$
) has codimension at least
$X^{\mathrm {gen}, \chi }[1/p]$
) has codimension at least 
 $4$
. It follows from Proposition 4.9 (resp. Proposition 4.10) that it contains the singular locus in
$4$
. It follows from Proposition 4.9 (resp. Proposition 4.10) that it contains the singular locus in 
 $\overline {X}^{\mathrm {gen},\chi }$
 (resp.
$\overline {X}^{\mathrm {gen},\chi }$
 (resp. 
 $X^{\mathrm {gen}, \chi }[1/p]$
). Hence,
$X^{\mathrm {gen}, \chi }[1/p]$
). Hence, 
 $X^{\mathrm {gen}, \chi }$
 and
$X^{\mathrm {gen}, \chi }$
 and 
 $\overline {X}^{\mathrm {gen}, \chi }$
 are regular in codimension
$\overline {X}^{\mathrm {gen}, \chi }$
 are regular in codimension 
 $3$
, which implies that
$3$
, which implies that 
 $R^{\square , \chi }_{\overline {\rho }}$
 and
$R^{\square , \chi }_{\overline {\rho }}$
 and 
 $R^{\square , \chi }_{\overline {\rho }}/\varpi $
 are regular in codimension
$R^{\square , \chi }_{\overline {\rho }}/\varpi $
 are regular in codimension 
 $3$
. Since both rings are also complete intersection by Corollary 4.5, they are factorial by a theorem of Grothendieck; see [Reference Call and Lyubeznik13] for a short proof.
$3$
. Since both rings are also complete intersection by Corollary 4.5, they are factorial by a theorem of Grothendieck; see [Reference Call and Lyubeznik13] for a short proof.
Remark 4.24. The assumptions in Corollary 4.23 are not optimal as the next Corollary shows. To find the optimal assumptions, one would have to further study the reducible locus, and we do not want to pursue this here. We note that if 
 $F=\mathbb {Q}_p$
,
$F=\mathbb {Q}_p$
, 
 $p\ge 5$
 and
$p\ge 5$
 and 
 $\overline {\rho }= \bigl (\begin {smallmatrix} 1 & \ast \\ 0 & \omega \end {smallmatrix}\bigr )$
 is non-split, where
$\overline {\rho }= \bigl (\begin {smallmatrix} 1 & \ast \\ 0 & \omega \end {smallmatrix}\bigr )$
 is non-split, where 
 $\omega $
 is the cyclotomic character modulo p, then it follows from [Reference Paškūnas42, Corollary B.5] that
$\omega $
 is the cyclotomic character modulo p, then it follows from [Reference Paškūnas42, Corollary B.5] that 
 and hence is not factorial. Therefore, some assumptions in Corollary 4.23 have to be made.
 and hence is not factorial. Therefore, some assumptions in Corollary 4.23 have to be made.
Corollary 4.25. If 
 $\overline {\rho }$
 is absolutely irreducible, then
$\overline {\rho }$
 is absolutely irreducible, then 
 $R^{\square , \chi }_{\overline {\rho }}$
 and
$R^{\square , \chi }_{\overline {\rho }}$
 and 
 $R^{\square , \chi }_{\overline {\rho }}/\varpi $
 are factorial, except in the case
$R^{\square , \chi }_{\overline {\rho }}/\varpi $
 are factorial, except in the case 
 $d=2$
,
$d=2$
, 
 $F=\mathbb Q_3$
 and
$F=\mathbb Q_3$
 and 
 $\overline {\rho }\cong \overline {\rho }(1)$
.
$\overline {\rho }\cong \overline {\rho }(1)$
.
Proof. Since 
 $\overline {\rho }$
 is absolutely irreducible,
$\overline {\rho }$
 is absolutely irreducible, 
 $X^{\mathrm {gen}, \chi }[1/p]$
 is regular by Proposition 4.10, and the singular locus of
$X^{\mathrm {gen}, \chi }[1/p]$
 is regular by Proposition 4.10, and the singular locus of 
 $\overline {X}^{\mathrm {gen}, \chi }$
 is contained in
$\overline {X}^{\mathrm {gen}, \chi }$
 is contained in 
 $Z^{\operatorname {\mathrm {spcl}}}$
, which has codimension at least
$Z^{\operatorname {\mathrm {spcl}}}$
, which has codimension at least 
 $\frac {1}{2}[F:\mathbb {Q}_p]d^2$
 by Lemma 3.52. Thus, if either
$\frac {1}{2}[F:\mathbb {Q}_p]d^2$
 by Lemma 3.52. Thus, if either 
 $d>2$
 or
$d>2$
 or 
 $F\neq \mathbb {Q}_p$
, then we can conclude that
$F\neq \mathbb {Q}_p$
, then we can conclude that 
 $R^{\square ,\chi }_{\overline {\rho }}$
 and
$R^{\square ,\chi }_{\overline {\rho }}$
 and 
 $R^{\square ,\chi }_{\overline {\rho }}/\varpi $
 are regular in codimension
$R^{\square ,\chi }_{\overline {\rho }}/\varpi $
 are regular in codimension 
 $3$
 and hence factorial.
$3$
 and hence factorial.
 If 
 $\overline {\rho }\not \cong \overline {\rho }(1)$
, then
$\overline {\rho }\not \cong \overline {\rho }(1)$
, then 
 $H^2(G_{\mathbb {Q}_p}, {\operatorname {ad}^0} \overline {\rho })=0$
, and it follows from Lemma 4.8 that
$H^2(G_{\mathbb {Q}_p}, {\operatorname {ad}^0} \overline {\rho })=0$
, and it follows from Lemma 4.8 that 
 $R^{\square , \chi }_{\overline {\rho }}$
 and
$R^{\square , \chi }_{\overline {\rho }}$
 and 
 $R^{\square ,\chi }_{\overline {\rho }}/\varpi $
 are formally smooth, hence regular and hence factorial.
$R^{\square ,\chi }_{\overline {\rho }}/\varpi $
 are formally smooth, hence regular and hence factorial.
 If 
 $d=2$
, then
$d=2$
, then 
 $\overline {\rho }\cong \overline {\rho }(1)$
 implies that
$\overline {\rho }\cong \overline {\rho }(1)$
 implies that 
 $\det \overline {\rho }= (\det \overline {\rho }) \omega ^2$
. This leaves us with two cases:
$\det \overline {\rho }= (\det \overline {\rho }) \omega ^2$
. This leaves us with two cases: 
 $F=\mathbb Q_2$
 or
$F=\mathbb Q_2$
 or 
 $F=\mathbb Q_3$
. If
$F=\mathbb Q_3$
. If 
 $p=2$
, then
$p=2$
, then 
 $R^{\square }_{\overline {\rho }}$
 is formally smooth over
$R^{\square }_{\overline {\rho }}$
 is formally smooth over 
 $\mathcal {O}[\mu ]$
 by [Reference Chenevier16, Proposition 4.5], and thus
$\mathcal {O}[\mu ]$
 by [Reference Chenevier16, Proposition 4.5], and thus 
 $R^{\square , \chi }_{\overline {\rho }}$
 and
$R^{\square , \chi }_{\overline {\rho }}$
 and 
 $R^{\square ,\chi }_{\overline {\rho }}/\varpi $
 are regular.
$R^{\square ,\chi }_{\overline {\rho }}/\varpi $
 are regular.
 We claim that if 
 $F=\mathbb Q_3$
,
$F=\mathbb Q_3$
, 
 $d=2$
 and
$d=2$
 and 
 $\overline {\rho }\cong \overline {\rho }(1)$
, then the ring
$\overline {\rho }\cong \overline {\rho }(1)$
, then the ring 
 $R^{\square , \chi }_{\overline {\rho }}$
 is not factorial. It follows from [Reference Böckle6, Theorem 5.1] that, in this case,
$R^{\square , \chi }_{\overline {\rho }}$
 is not factorial. It follows from [Reference Böckle6, Theorem 5.1] that, in this case, 
 $R^{\square , \chi }_{\overline {\rho }}$
 is formally smooth over
$R^{\square , \chi }_{\overline {\rho }}$
 is formally smooth over 
 , where
, where 
 ${r= (1+d)^6 (1 + bc u) - (1+bc v)}$
 and
${r= (1+d)^6 (1 + bc u) - (1+bc v)}$
 and 
 $u, v$
 are units in
$u, v$
 are units in 
 . The ideal
. The ideal 
 ${\mathfrak p}=(b, d)$
 is prime of height
${\mathfrak p}=(b, d)$
 is prime of height 
 $1$
. If
$1$
. If 
 $R^{\square , \chi }_{\overline {\rho }}$
 were factorial, then
$R^{\square , \chi }_{\overline {\rho }}$
 were factorial, then 
 ${\mathfrak p}$
 would have to be principal, [48, Tag 0AFT], and thus there would exist
${\mathfrak p}$
 would have to be principal, [48, Tag 0AFT], and thus there would exist 
 such that we have an equality of ideals
 such that we have an equality of ideals 
 $(b, d)= ( r, \pi )$
 in
$(b, d)= ( r, \pi )$
 in 
 . By considering this modulo
. By considering this modulo 
 $(\varpi , c)$
, we would conclude that
$(\varpi , c)$
, we would conclude that 
 $(d^3- d^6, \bar {\pi })$
 is the maximal ideal in
$(d^3- d^6, \bar {\pi })$
 is the maximal ideal in 
 . Since
. Since 
 $(d^3-d^6, \bar {\pi })\rightarrow (b,d)/(b,d)^2$
 is not surjective, we obtain a contradiction. The same argument shows that
$(d^3-d^6, \bar {\pi })\rightarrow (b,d)/(b,d)^2$
 is not surjective, we obtain a contradiction. The same argument shows that 
 $R^{\square , \chi }_{\overline {\rho }}/\varpi $
 is also not factorial.
$R^{\square , \chi }_{\overline {\rho }}/\varpi $
 is also not factorial.
Proposition 4.26. For each character 
 $\chi : \mu _{p^{\infty }}(F)\rightarrow \mathcal {O}^{\times }$
, the rings
$\chi : \mu _{p^{\infty }}(F)\rightarrow \mathcal {O}^{\times }$
, the rings 
 $A^{\mathrm {gen},\chi }$
 and
$A^{\mathrm {gen},\chi }$
 and 
 $A^{\mathrm {gen}, \chi }/\varpi $
 are integral domains.
$A^{\mathrm {gen}, \chi }/\varpi $
 are integral domains.
Proof. Since 
 $A^{\mathrm {gen},\chi }$
 is normal by Corollary 4.18, it is a product of normal domains
$A^{\mathrm {gen},\chi }$
 is normal by Corollary 4.18, it is a product of normal domains 
 $A^{\mathrm {gen}, \chi }\cong A_1\times \ldots \times A_m$
. The action of G on
$A^{\mathrm {gen}, \chi }\cong A_1\times \ldots \times A_m$
. The action of G on 
 $X^{\mathrm {gen}, \chi }$
 leaves the connected components invariant by Lemma 2.1. It follows from Lemma 3.21 that each
$X^{\mathrm {gen}, \chi }$
 leaves the connected components invariant by Lemma 2.1. It follows from Lemma 3.21 that each 
 $\operatorname {\mathrm {Spec}} A_i$
 contains a closed point over the closed point
$\operatorname {\mathrm {Spec}} A_i$
 contains a closed point over the closed point 
 $X^{\mathrm {ps}}$
. Thus,
$X^{\mathrm {ps}}$
. Thus, 
 $A_i\otimes _{R^{\mathrm {ps}}} k$
 are non-zero for
$A_i\otimes _{R^{\mathrm {ps}}} k$
 are non-zero for 
 $1\le i\le m$
. If
$1\le i\le m$
. If 
 $m>1$
, then this would imply that the fibre at the closed point of
$m>1$
, then this would imply that the fibre at the closed point of 
 $X^{\mathrm {ps}}$
 is not connected, contradicting Lemma 3.7. The same proof works also for the special fibre.
$X^{\mathrm {ps}}$
 is not connected, contradicting Lemma 3.7. The same proof works also for the special fibre.
 Define 
 $R^{\mathrm {ps}, \chi }:= R^{\mathrm {ps}}\otimes _{\mathcal {O}[\mu ], \chi } \mathcal {O} $
 for a character
$R^{\mathrm {ps}, \chi }:= R^{\mathrm {ps}}\otimes _{\mathcal {O}[\mu ], \chi } \mathcal {O} $
 for a character 
 $\chi :\mu \to \mathcal {O}^{\times }$
 and using the isomorphism from Lemma 4.1. We let
$\chi :\mu \to \mathcal {O}^{\times }$
 and using the isomorphism from Lemma 4.1. We let 
 $X^{\mathrm {ps},\chi }=\operatorname {\mathrm {Spec}} R^{\mathrm {ps}, \chi }$
 and let
$X^{\mathrm {ps},\chi }=\operatorname {\mathrm {Spec}} R^{\mathrm {ps}, \chi }$
 and let 
 $\overline {X}^{\mathrm {ps}, \chi }$
 be its special fibre.
$\overline {X}^{\mathrm {ps}, \chi }$
 be its special fibre.
Corollary 4.27. The rings 
 $R^{\mathrm {ps}}[1/p]$
,
$R^{\mathrm {ps}}[1/p]$
, 
 $R^{\mathrm {ps}, \chi }[1/p]$
 and the rigid spaces
$R^{\mathrm {ps}, \chi }[1/p]$
 and the rigid spaces 
 $(\operatorname {\mathrm {Spf}} R^{\mathrm {ps}})^{\mathrm {rig}}$
,
$(\operatorname {\mathrm {Spf}} R^{\mathrm {ps}})^{\mathrm {rig}}$
, 
 $(\operatorname {\mathrm {Spf}} R^{\mathrm {ps}, \chi })^{\mathrm {rig}}$
 are normal. Moreover,
$(\operatorname {\mathrm {Spf}} R^{\mathrm {ps}, \chi })^{\mathrm {rig}}$
 are normal. Moreover, 
 $R^{\mathrm {ps}, \chi }[1/p]$
 is an integral domain, and thus the map
$R^{\mathrm {ps}, \chi }[1/p]$
 is an integral domain, and thus the map 
 $R_{\det \overline {\rho }}[1/p]\rightarrow R^{\mathrm {ps}}[1/p]$
 induces a bijection between the sets of irreducible components.
$R_{\det \overline {\rho }}[1/p]\rightarrow R^{\mathrm {ps}}[1/p]$
 induces a bijection between the sets of irreducible components.
Proof. The assertion follows from [Reference Paškūnas and Tung43, Theorem A.1] using Corollary 4.22. As part of the proof, one obtains 
 $R^{\mathrm {ps}}[1/p]=( A^{\mathrm {gen}}[1/p])^G$
. This yields
$R^{\mathrm {ps}}[1/p]=( A^{\mathrm {gen}}[1/p])^G$
. This yields 
 $R^{\mathrm {ps}, \chi }[1/p]= ( A^{\mathrm {gen}, \chi }[1/p])^G$
. Proposition 4.26 implies that
$R^{\mathrm {ps}, \chi }[1/p]= ( A^{\mathrm {gen}, \chi }[1/p])^G$
. Proposition 4.26 implies that 
 $A^{\mathrm {gen}, \chi }[1/p]$
 is an integral domain. Hence,
$A^{\mathrm {gen}, \chi }[1/p]$
 is an integral domain. Hence, 
 $R^{\mathrm {ps}, \chi }[1/p]$
 is an integral domain, and the assertion about irreducible components is proved in the same manner as Corollary 4.21.
$R^{\mathrm {ps}, \chi }[1/p]$
 is an integral domain, and the assertion about irreducible components is proved in the same manner as Corollary 4.21.
Corollary 4.28. The image of 
 $R^{\mathrm {ps}}$
 in
$R^{\mathrm {ps}}$
 in 
 $A^{\mathrm {gen}}$
 is the maximal
$A^{\mathrm {gen}}$
 is the maximal 
 $\mathcal {O}$
-torsion free quotient of
$\mathcal {O}$
-torsion free quotient of 
 $R^{\mathrm {ps}}$
 and is also the maximal reduced quotient of
$R^{\mathrm {ps}}$
 and is also the maximal reduced quotient of 
 $R^{\mathrm {ps}}$
. In particular, the map
$R^{\mathrm {ps}}$
. In particular, the map 
 $R_{\det \overline {D}}\rightarrow R^{\mathrm {ps}}\rightarrow R^{\mathrm {ps}}[1/p]$
 induces a bijection between the sets of irreducible components. Moreover, if
$R_{\det \overline {D}}\rightarrow R^{\mathrm {ps}}\rightarrow R^{\mathrm {ps}}[1/p]$
 induces a bijection between the sets of irreducible components. Moreover, if 
 $\overline {D}$
 is multiplicity free, then
$\overline {D}$
 is multiplicity free, then 
 $R^{\mathrm {ps}}$
 is reduced and
$R^{\mathrm {ps}}$
 is reduced and 
 $\mathcal {O}$
-torsion free.
$\mathcal {O}$
-torsion free.
Proof. By [Reference Wang-Erickson50, Theorem 2.20], the map 
 is an adequate homeomorphism. It follows from [Reference Alper1, Proposition 3.3.5] that the kernel of
 is an adequate homeomorphism. It follows from [Reference Alper1, Proposition 3.3.5] that the kernel of 
 $R^{\mathrm {ps}}\rightarrow (A^{\mathrm {gen}})^{\operatorname {\mathrm {GL}}_d}$
 is nilpotent and vanishes after inverting p. Since
$R^{\mathrm {ps}}\rightarrow (A^{\mathrm {gen}})^{\operatorname {\mathrm {GL}}_d}$
 is nilpotent and vanishes after inverting p. Since 
 $A^{\mathrm {gen}}$
 is
$A^{\mathrm {gen}}$
 is 
 $\mathcal {O}$
-torsion free and reduced, this implies that both quotients coincide and are equal to the image of
$\mathcal {O}$
-torsion free and reduced, this implies that both quotients coincide and are equal to the image of 
 $R^{\mathrm {ps}}$
 in
$R^{\mathrm {ps}}$
 in 
 $A^{\mathrm {gen}}$
. This together with the last part of Corollary 4.27 implies the assertion about the irreducible components.
$A^{\mathrm {gen}}$
. This together with the last part of Corollary 4.27 implies the assertion about the irreducible components.
 If 
 $\overline {D}$
 is multiplicity free, then E is a generalized matrix algebra by [Reference Chenevier18, Theorem 2.22], and it follows from [Reference Wang-Erickson50, Theorem 3.8 (4)] that
$\overline {D}$
 is multiplicity free, then E is a generalized matrix algebra by [Reference Chenevier18, Theorem 2.22], and it follows from [Reference Wang-Erickson50, Theorem 3.8 (4)] that 
 $R^{\mathrm {ps}}=(A^{\mathrm {gen}})^{\operatorname {\mathrm {GL}}_d}$
, and so
$R^{\mathrm {ps}}=(A^{\mathrm {gen}})^{\operatorname {\mathrm {GL}}_d}$
, and so 
 $R^{\mathrm {ps}}$
 is
$R^{\mathrm {ps}}$
 is 
 $\mathcal {O}$
-torsion free and reduced.
$\mathcal {O}$
-torsion free and reduced.
Corollary 4.29. The image of 
 $R^{\mathrm {ps}, \chi }/\varpi $
 in
$R^{\mathrm {ps}, \chi }/\varpi $
 in 
 $A^{\mathrm {gen}, \chi }/\varpi $
 is the maximal reduced quotient of
$A^{\mathrm {gen}, \chi }/\varpi $
 is the maximal reduced quotient of 
 $R^{\mathrm {ps}, \chi }/\varpi $
. The image of
$R^{\mathrm {ps}, \chi }/\varpi $
. The image of 
 $R^{\mathrm {ps}, \chi }$
 in
$R^{\mathrm {ps}, \chi }$
 in 
 $A^{\mathrm {gen}, \chi }$
 is the maximal reduced quotient of
$A^{\mathrm {gen}, \chi }$
 is the maximal reduced quotient of 
 $R^{\mathrm {ps}, \chi }$
 and is also the maximal
$R^{\mathrm {ps}, \chi }$
 and is also the maximal 
 $\mathcal {O}$
-torsion free quotient of
$\mathcal {O}$
-torsion free quotient of 
 $R^{\mathrm {ps}, \chi }$
. Moreover, if
$R^{\mathrm {ps}, \chi }$
. Moreover, if 
 $\overline {D}$
 is multiplicity free, then both
$\overline {D}$
 is multiplicity free, then both 
 $R^{\mathrm {ps}, \chi }/\varpi $
 and
$R^{\mathrm {ps}, \chi }/\varpi $
 and 
 $R^{\mathrm {ps}, \chi }$
 are integral domains.
$R^{\mathrm {ps}, \chi }$
 are integral domains.
Proof. If we work with the algebra 
 $E^{\chi }:=E\otimes _{\mathcal {O}[\mu ], \chi } \mathcal {O}$
 instead of E, then the argument in the proof of Corollary 4.28 gives adequate homeomorphisms
$E^{\chi }:=E\otimes _{\mathcal {O}[\mu ], \chi } \mathcal {O}$
 instead of E, then the argument in the proof of Corollary 4.28 gives adequate homeomorphisms 

In particular, the kernel of 
 $R^{\mathrm {ps}, \chi }/\varpi \rightarrow A^{\mathrm {gen}, \chi }/\varpi $
 is nilpotent. Since
$R^{\mathrm {ps}, \chi }/\varpi \rightarrow A^{\mathrm {gen}, \chi }/\varpi $
 is nilpotent. Since 
 $A^{\mathrm {gen},\chi }/\varpi $
 is an integral domain by Proposition 4.26, we obtain the first assertion. The argument with
$A^{\mathrm {gen},\chi }/\varpi $
 is an integral domain by Proposition 4.26, we obtain the first assertion. The argument with 
 $R^{\mathrm {ps}, \chi }$
 is the same as in Corollary 4.28 using that
$R^{\mathrm {ps}, \chi }$
 is the same as in Corollary 4.28 using that 
 $A^{\mathrm {gen}, \chi }$
 is an integral domain.
$A^{\mathrm {gen}, \chi }$
 is an integral domain.
 If 
 $\overline {D}$
 is multiplicity free, then
$\overline {D}$
 is multiplicity free, then 
 $E^{\chi }$
 and
$E^{\chi }$
 and 
 $E^{\chi }/\varpi $
 are generalized matrix algebras, and the argument in Corollary 4.28 carries over.
$E^{\chi }/\varpi $
 are generalized matrix algebras, and the argument in Corollary 4.28 carries over.
Lemma 4.30. If 
 $R^{\mathrm {ps}, \chi }/\varpi $
 satisfies Serre’s condition (S1), then
$R^{\mathrm {ps}, \chi }/\varpi $
 satisfies Serre’s condition (S1), then 
 $R^{\mathrm {ps}, \chi }/\varpi $
 and
$R^{\mathrm {ps}, \chi }/\varpi $
 and 
 $R^{\mathrm {ps}, \chi }$
 are integral domains.
$R^{\mathrm {ps}, \chi }$
 are integral domains.
Proof. We first note that 
 $R^{\mathrm {ps}, \chi }/\varpi $
 satisfies Serre’s condition (R0). Since the underlying reduced subschemes of
$R^{\mathrm {ps}, \chi }/\varpi $
 satisfies Serre’s condition (R0). Since the underlying reduced subschemes of 
 $\overline {X}^{\mathrm {ps}}$
 and
$\overline {X}^{\mathrm {ps}}$
 and 
 $\overline {X}^{\mathrm {ps}, \chi }$
 coincide, Proposition A.9 implies that the Kummer-irreducible locus
$\overline {X}^{\mathrm {ps}, \chi }$
 coincide, Proposition A.9 implies that the Kummer-irreducible locus 
 $(\overline {X}^{\mathrm {ps}, \chi })^{\mathrm {Kirr}}$
 in
$(\overline {X}^{\mathrm {ps}, \chi })^{\mathrm {Kirr}}$
 in 
 $\overline {X}^{\mathrm {ps}, \chi }$
 is open dense. If
$\overline {X}^{\mathrm {ps}, \chi }$
 is open dense. If 
 $x\in (\overline {X}^{\mathrm {ps}, \chi })^{\mathrm {Kirr}}$
 is a closed point, then the pseudo-character
$x\in (\overline {X}^{\mathrm {ps}, \chi })^{\mathrm {Kirr}}$
 is a closed point, then the pseudo-character 
 $D_x$
 is absolutely irreducible and hence is associated to an absolutely irreducible representation which we denote by
$D_x$
 is absolutely irreducible and hence is associated to an absolutely irreducible representation which we denote by 
 $\rho _x$
. Let
$\rho _x$
. Let 
 $R_{\rho _x}$
 be the universal deformation ring of
$R_{\rho _x}$
 be the universal deformation ring of 
 $R_{\rho _x}$
 and let
$R_{\rho _x}$
 and let 
 $R^{\chi }_{\rho _x}$
 be the quotient of
$R^{\chi }_{\rho _x}$
 be the quotient of 
 $R_{\rho _x}$
 parameterizing deformations such that the restriction of the determinant to
$R_{\rho _x}$
 parameterizing deformations such that the restriction of the determinant to 
 $\operatorname {\mathrm {Art}}_F(\mu )\subset G_F^{\mathrm {ab}}$
 is equal to
$\operatorname {\mathrm {Art}}_F(\mu )\subset G_F^{\mathrm {ab}}$
 is equal to 
 $\chi $
. Since
$\chi $
. Since 
 $R^{\square , \chi }_{\rho _x}$
 is formally smooth over
$R^{\square , \chi }_{\rho _x}$
 is formally smooth over 
 $R_{\rho _x}^{\chi }$
, the Kummer-irreducibility of x implies that
$R_{\rho _x}^{\chi }$
, the Kummer-irreducibility of x implies that 
 $R_{\rho _x}^{\chi }$
 is regular. The proof of [Reference Böckle and Juschka9, Lemma 5.1.6] shows that x is a regular point in
$R_{\rho _x}^{\chi }$
 is regular. The proof of [Reference Böckle and Juschka9, Lemma 5.1.6] shows that x is a regular point in 
 $\overline {X}^{\mathrm {ps}, \chi }$
. Hence,
$\overline {X}^{\mathrm {ps}, \chi }$
. Hence, 
 $\overline {X}^{\mathrm {ps}, \chi }$
 contains an open dense regular subscheme, which implies that
$\overline {X}^{\mathrm {ps}, \chi }$
 contains an open dense regular subscheme, which implies that 
 $R^{\mathrm {ps}, \chi }/\varpi $
 satisfies (R0). Since
$R^{\mathrm {ps}, \chi }/\varpi $
 satisfies (R0). Since 
 $R^{\mathrm {ps}, \chi }/\varpi $
 satisfies (S1), by assumption we conclude that
$R^{\mathrm {ps}, \chi }/\varpi $
 satisfies (S1), by assumption we conclude that 
 $R^{\mathrm {ps}, \chi }/\varpi $
 is reduced. It follows from Lemma 4.29 and Proposition 4.26 that
$R^{\mathrm {ps}, \chi }/\varpi $
 is reduced. It follows from Lemma 4.29 and Proposition 4.26 that 
 $R^{\mathrm {ps}, \chi }/\varpi $
 is an integral domain.
$R^{\mathrm {ps}, \chi }/\varpi $
 is an integral domain.
 Let 
 $R^{\mathrm {ps},\chi }\twoheadrightarrow R^{\mathrm {ps},\chi }_{\mathrm {tf}}$
 be the maximal
$R^{\mathrm {ps},\chi }\twoheadrightarrow R^{\mathrm {ps},\chi }_{\mathrm {tf}}$
 be the maximal 
 $\mathcal {O}$
-torsion free quotient quotient and let
$\mathcal {O}$
-torsion free quotient quotient and let 
 $\mathfrak a$
 be the kernel of this map. We have an exact sequence
$\mathfrak a$
 be the kernel of this map. We have an exact sequence 
 $0\rightarrow \mathfrak a/\varpi \rightarrow R^{\mathrm {ps},\chi }/\varpi \rightarrow R^{\mathrm {ps},\chi }_{\mathrm {tf}}/\varpi \rightarrow 0$
. It follows from Corollary 4.29 that
$0\rightarrow \mathfrak a/\varpi \rightarrow R^{\mathrm {ps},\chi }/\varpi \rightarrow R^{\mathrm {ps},\chi }_{\mathrm {tf}}/\varpi \rightarrow 0$
. It follows from Corollary 4.29 that 
 $\mathfrak a$
 is nilpotent. Since
$\mathfrak a$
 is nilpotent. Since 
 $R^{\mathrm {ps},\chi }/\varpi $
 is reduced, we deduce from the exact sequence that
$R^{\mathrm {ps},\chi }/\varpi $
 is reduced, we deduce from the exact sequence that 
 $\mathfrak a/\varpi $
 is zero. Nakayama’s lemma implies that
$\mathfrak a/\varpi $
 is zero. Nakayama’s lemma implies that 
 $\mathfrak a=0$
. Thus,
$\mathfrak a=0$
. Thus, 
 $R^{\mathrm {ps},\chi }$
 is
$R^{\mathrm {ps},\chi }$
 is 
 $\mathcal {O}$
-torsion free and hence is a subring of
$\mathcal {O}$
-torsion free and hence is a subring of 
 $A^{\mathrm {gen}, \chi }$
 by Corollary 4.29. Since
$A^{\mathrm {gen}, \chi }$
 by Corollary 4.29. Since 
 $A^{\mathrm {gen}, \chi }$
 is domain, we conclude that
$A^{\mathrm {gen}, \chi }$
 is domain, we conclude that 
 $R^{\mathrm {ps},\chi }$
 is an integral domain.
$R^{\mathrm {ps},\chi }$
 is an integral domain.
Remark 4.31. We expect that the rings 
 $R^{\mathrm {ps}, \chi }$
 and
$R^{\mathrm {ps}, \chi }$
 and 
 $R^{\mathrm {ps}, \chi }/\varpi $
 are integral domains. Although we know the dimension of
$R^{\mathrm {ps}, \chi }/\varpi $
 are integral domains. Although we know the dimension of 
 $R^{\mathrm {ps}, \chi }/\varpi $
 by [Reference Böckle and Juschka9, Theorem 5.5.1], we cannot conclude that the ring is complete intersection (which would imply that (S1) holds) as we lack a presentation analogous to (21). Since
$R^{\mathrm {ps}, \chi }/\varpi $
 by [Reference Böckle and Juschka9, Theorem 5.5.1], we cannot conclude that the ring is complete intersection (which would imply that (S1) holds) as we lack a presentation analogous to (21). Since 
 $A^{\mathrm {gen}, \chi }$
 and
$A^{\mathrm {gen}, \chi }$
 and 
 $A^{\mathrm {gen}, \chi }/\varpi $
 are integral domains, this question is closely related to the embedding problem discussed in [Reference Bellaïche and Chenevier5, Section 1.3.4].
$A^{\mathrm {gen}, \chi }/\varpi $
 are integral domains, this question is closely related to the embedding problem discussed in [Reference Bellaïche and Chenevier5, Section 1.3.4].
5 Deformation rings with fixed determinant
 Let 
 $\overline {\rho }: G_F\rightarrow \operatorname {\mathrm {GL}}_d(k)$
 be a representation with pseudo-character
$\overline {\rho }: G_F\rightarrow \operatorname {\mathrm {GL}}_d(k)$
 be a representation with pseudo-character 
 $\overline {D}$
 and let
$\overline {D}$
 and let 
 $\psi : G_F\rightarrow \mathcal {O}^{\times }$
 be a character lifting
$\psi : G_F\rightarrow \mathcal {O}^{\times }$
 be a character lifting 
 $\det \overline {\rho }=\det \overline {D}$
. Let
$\det \overline {\rho }=\det \overline {D}$
. Let 
 $$ \begin{align*}R^{\square, \psi}_{\overline{\rho}}:= R^{\square}_{\overline{\rho}}\otimes_{R_{\det \overline{\rho}}, \psi} \mathcal{O}.\end{align*} $$
$$ \begin{align*}R^{\square, \psi}_{\overline{\rho}}:= R^{\square}_{\overline{\rho}}\otimes_{R_{\det \overline{\rho}}, \psi} \mathcal{O}.\end{align*} $$
Let 
 $\mu :=\mu _{p^{\infty }}(F)$
 and let
$\mu :=\mu _{p^{\infty }}(F)$
 and let 
 $\chi :\mu \to \mathcal {O}^{\times }$
 be a character such that the restriction of
$\chi :\mu \to \mathcal {O}^{\times }$
 be a character such that the restriction of 
 $\psi $
 to
$\psi $
 to 
 $\mu $
 under the Artin map
$\mu $
 under the Artin map 
 $\mu \to G_F^{\mathrm {ab}}$
 from local class field theory is equal to
$\mu \to G_F^{\mathrm {ab}}$
 from local class field theory is equal to 
 $\chi $
. Then
$\chi $
. Then 
 $R^{\square , \psi }_{\overline {\rho }}$
 is a quotient of the ring
$R^{\square , \psi }_{\overline {\rho }}$
 is a quotient of the ring 
 $R^{\square , \chi }_{\overline {\rho }}$
 considered in the previous section. We let
$R^{\square , \chi }_{\overline {\rho }}$
 considered in the previous section. We let 
 $X^{\square , \chi }= \operatorname {\mathrm {Spec}} R^{\square , \chi }_{\overline {\rho }}$
,
$X^{\square , \chi }= \operatorname {\mathrm {Spec}} R^{\square , \chi }_{\overline {\rho }}$
, 
 $X^{\square , \psi }= \operatorname {\mathrm {Spec}} R^{\square , \psi }_{\overline {\rho }}$
 and denote by
$X^{\square , \psi }= \operatorname {\mathrm {Spec}} R^{\square , \psi }_{\overline {\rho }}$
 and denote by 
 $\overline {X}^{\square , \chi }$
 and
$\overline {X}^{\square , \chi }$
 and 
 $\overline {X}^{\square , \psi }$
 their special fibres.
$\overline {X}^{\square , \psi }$
 their special fibres.
 Let 
 $\mathcal X: \mathfrak {A}_{\mathcal {O}}\rightarrow \operatorname {\mathrm {Sets}}$
 be the functor, which sends
$\mathcal X: \mathfrak {A}_{\mathcal {O}}\rightarrow \operatorname {\mathrm {Sets}}$
 be the functor, which sends 
 $(A, {\mathfrak m}_A)$
 to the group
$(A, {\mathfrak m}_A)$
 to the group 
 $\mathcal X(A)$
 of continuous characters
$\mathcal X(A)$
 of continuous characters 
 $\theta : G_F\rightarrow 1+{\mathfrak m}_A$
 whose restriction to
$\theta : G_F\rightarrow 1+{\mathfrak m}_A$
 whose restriction to 
 $\mu $
 under the Artin map is trivial. It follows from Lemma 4.1 that the functor
$\mu $
 under the Artin map is trivial. It follows from Lemma 4.1 that the functor 
 $\mathcal X$
 is pro-represented by
$\mathcal X$
 is pro-represented by 

 For 
 $e\in \mathbb {N}$
, let
$e\in \mathbb {N}$
, let 
 $\varphi _e:\mathcal X\to \mathcal X$
 be the natural transformation that sends
$\varphi _e:\mathcal X\to \mathcal X$
 be the natural transformation that sends 
 $\theta \in \mathcal X(A)$
 to
$\theta \in \mathcal X(A)$
 to 
 $\theta ^e$
. We also write
$\theta ^e$
. We also write 
 $\varphi _e$
 for the induced maps
$\varphi _e$
 for the induced maps 
 $\mathcal {O}(\mathcal X)\to \mathcal {O}(\mathcal X)$
 and
$\mathcal {O}(\mathcal X)\to \mathcal {O}(\mathcal X)$
 and 
 $\operatorname {\mathrm {Spec}} \mathcal {O}(\mathcal X)\to \operatorname {\mathrm {Spec}} \mathcal {O}(\mathcal X)$
. The natural transformation
$\operatorname {\mathrm {Spec}} \mathcal {O}(\mathcal X)\to \operatorname {\mathrm {Spec}} \mathcal {O}(\mathcal X)$
. The natural transformation 
 $D^{\square ,\chi }_{\overline {\rho }}\to \mathcal X$
,
$D^{\square ,\chi }_{\overline {\rho }}\to \mathcal X$
, 
 $\rho \mapsto (\det \rho ) \psi ^{-1}$
 induces a homomorphism of local
$\rho \mapsto (\det \rho ) \psi ^{-1}$
 induces a homomorphism of local 
 $\mathcal {O}$
-algebras
$\mathcal {O}$
-algebras 
 $\mathcal {O}(\mathcal X)\rightarrow R^{\square , \chi }_{\overline {\rho }}$
; we will consider
$\mathcal {O}(\mathcal X)\rightarrow R^{\square , \chi }_{\overline {\rho }}$
; we will consider 
 $R^{\square , \chi }_{\overline {\rho }}$
 as
$R^{\square , \chi }_{\overline {\rho }}$
 as 
 $\mathcal {O}(\mathcal X)$
-algebra via this map in the statements below.
$\mathcal {O}(\mathcal X)$
-algebra via this map in the statements below.
Proposition 5.1. One has a natural isomorphism of functors
 $$ \begin{align*}D^{\square,\chi}_{\overline{\rho}} \times_{\mathcal X, \varphi_d} \mathcal X \cong D^{\square,\psi}_{\overline{\rho}}\times \mathcal X.\end{align*} $$
$$ \begin{align*}D^{\square,\chi}_{\overline{\rho}} \times_{\mathcal X, \varphi_d} \mathcal X \cong D^{\square,\psi}_{\overline{\rho}}\times \mathcal X.\end{align*} $$
Proof. Let 
 $(A,{\mathfrak m}_A)$
 be in
$(A,{\mathfrak m}_A)$
 be in 
 $\mathfrak {A}_{\mathcal {O}}$
. An element in
$\mathfrak {A}_{\mathcal {O}}$
. An element in 
 $(D^{\square ,\chi }_{\overline {\rho }} \times _{\mathcal X, \varphi _d} \mathcal X) (A)$
 is a pair
$(D^{\square ,\chi }_{\overline {\rho }} \times _{\mathcal X, \varphi _d} \mathcal X) (A)$
 is a pair 
 $(\rho , \theta )$
 such that
$(\rho , \theta )$
 such that 
 $\theta :G_F\to 1+{\mathfrak m}_A$
 is a continuous homomorphism that is trivial on
$\theta :G_F\to 1+{\mathfrak m}_A$
 is a continuous homomorphism that is trivial on 
 $\mu $
,
$\mu $
, 
 $\rho :G_F\to \operatorname {\mathrm {GL}}_d(A)$
 is a continuous homomorphism such that
$\rho :G_F\to \operatorname {\mathrm {GL}}_d(A)$
 is a continuous homomorphism such that 
 $\det \rho $
 and
$\det \rho $
 and 
 $\chi $
 agree when restricted to
$\chi $
 agree when restricted to 
 $\mu $
, and one has
$\mu $
, and one has 
 $(\det \rho )\psi ^{-1}=\theta ^d$
. An element in
$(\det \rho )\psi ^{-1}=\theta ^d$
. An element in 
 $(D^{\square ,\psi }_{\overline {\rho }}\times \mathcal X)(A)$
 is a pair
$(D^{\square ,\psi }_{\overline {\rho }}\times \mathcal X)(A)$
 is a pair 
 $(\rho _1,\theta _1)$
, where
$(\rho _1,\theta _1)$
, where 
 $\theta _1:G_F\to 1+{\mathfrak m}_A$
 is a continuous homomorphism that is trivial on
$\theta _1:G_F\to 1+{\mathfrak m}_A$
 is a continuous homomorphism that is trivial on 
 $\mu $
 and
$\mu $
 and 
 $\rho _1:G_F\to \operatorname {\mathrm {GL}}_d(A)$
 is a continuous homomorphism such that
$\rho _1:G_F\to \operatorname {\mathrm {GL}}_d(A)$
 is a continuous homomorphism such that 
 $\det \rho _1=\psi $
. One verifies that the map
$\det \rho _1=\psi $
. One verifies that the map 
 $$ \begin{align*}(\rho, \theta)\mapsto (\rho \otimes \theta^{-1}, \theta)\end{align*} $$
$$ \begin{align*}(\rho, \theta)\mapsto (\rho \otimes \theta^{-1}, \theta)\end{align*} $$
defines a bijection that is natural in A.
Corollary 5.2. Proposition 5.1 induces a natural isomorphism
 $$\begin{align*}R_{\overline{\rho}}^{\square,\chi}\otimes_{\mathcal{O}(\mathcal X), \varphi_d}\mathcal{O}(\mathcal X) \cong R_{\overline{\rho}}^{\square,\psi} \widehat\otimes_{\mathcal{O}}\mathcal{O}(\mathcal X). \end{align*}$$
$$\begin{align*}R_{\overline{\rho}}^{\square,\chi}\otimes_{\mathcal{O}(\mathcal X), \varphi_d}\mathcal{O}(\mathcal X) \cong R_{\overline{\rho}}^{\square,\psi} \widehat\otimes_{\mathcal{O}}\mathcal{O}(\mathcal X). \end{align*}$$
 We now clarify some properties of the map 
 $\varphi _d:\mathcal {O}(\mathcal X)\to \mathcal {O}(\mathcal X)$
.
$\varphi _d:\mathcal {O}(\mathcal X)\to \mathcal {O}(\mathcal X)$
.
Lemma 5.3. The map 
 $\varphi _d$
 is finite and flat and becomes étale after inverting p. Moreover, it induces a universal homeomorphism on the special fibres.
$\varphi _d$
 is finite and flat and becomes étale after inverting p. Moreover, it induces a universal homeomorphism on the special fibres.
Proof. We may write 
 $d= e p^m$
 such that p does not divide e. Then
$d= e p^m$
 such that p does not divide e. Then 
 $\varphi _d= \varphi _{p^m} \circ \varphi _e$
. Since e is prime to p, elements in
$\varphi _d= \varphi _{p^m} \circ \varphi _e$
. Since e is prime to p, elements in 
 $1+{\mathfrak m}_A$
 for
$1+{\mathfrak m}_A$
 for 
 $(A,{\mathfrak m}_A)$
 in
$(A,{\mathfrak m}_A)$
 in 
 $\mathfrak {A}_{\mathcal {O}}$
 possess a unique e-th root in
$\mathfrak {A}_{\mathcal {O}}$
 possess a unique e-th root in 
 $1+{\mathfrak m}_A$
 by the binomial theorem, and it follows that
$1+{\mathfrak m}_A$
 by the binomial theorem, and it follows that 
 $\varphi _e$
 is an isomorphism. We thus may assume that d is a power of p.
$\varphi _e$
 is an isomorphism. We thus may assume that d is a power of p.
 The map 
 $\varphi _d:\mathcal {O}(\mathcal X)\to \mathcal {O}(\mathcal X)$
 sends
$\varphi _d:\mathcal {O}(\mathcal X)\to \mathcal {O}(\mathcal X)$
 sends 
 $y_i$
 to
$y_i$
 to 
 $(1+y_i)^d-1$
. One checks that the monomials
$(1+y_i)^d-1$
. One checks that the monomials 
 $\prod _{i=1}^{[F:\mathbb {Q}_p]+1} y_i^{m_i}$
 with
$\prod _{i=1}^{[F:\mathbb {Q}_p]+1} y_i^{m_i}$
 with 
 $0\le m_i\le d-1$
 form a basis of
$0\le m_i\le d-1$
 form a basis of 
 $\mathcal {O}(\mathcal X)$
 as
$\mathcal {O}(\mathcal X)$
 as 
 $\mathcal {O}(\mathcal X)$
-module via
$\mathcal {O}(\mathcal X)$
-module via 
 $\varphi _d$
 by checking the assertion modulo
$\varphi _d$
 by checking the assertion modulo 
 $\varpi $
 and using Nakayama’s lemma. A (standard) calculation shows that the discriminant is a power of p up to a sign. Thus,
$\varpi $
 and using Nakayama’s lemma. A (standard) calculation shows that the discriminant is a power of p up to a sign. Thus, 
 $\varphi _d$
 becomes étale after inverting p.
$\varphi _d$
 becomes étale after inverting p.
 The map 
 $\overline {\varphi }_d: \mathcal {O}(\mathcal X)/\varpi \rightarrow \mathcal {O}(\mathcal X)/\varpi $
 is a power of the relative Frobenius of
$\overline {\varphi }_d: \mathcal {O}(\mathcal X)/\varpi \rightarrow \mathcal {O}(\mathcal X)/\varpi $
 is a power of the relative Frobenius of 
 $\operatorname {\mathrm {Spec}} (\mathcal {O}(\mathcal X)/\varpi ) /\operatorname {\mathrm {Spec}} k$
. The last assertion follows from [48, Tag 0CCB].
$\operatorname {\mathrm {Spec}} (\mathcal {O}(\mathcal X)/\varpi ) /\operatorname {\mathrm {Spec}} k$
. The last assertion follows from [48, Tag 0CCB].
 In the following results, we deduce properties of the ring 
 $R^{\square , \psi }_{\overline {\rho }}$
.
$R^{\square , \psi }_{\overline {\rho }}$
.
Corollary 5.4. The following hold:
- 
(1)  $R^{\square , \psi }_{\overline {\rho }}$
 is a local complete intersection, flat over $R^{\square , \psi }_{\overline {\rho }}$
 is a local complete intersection, flat over $\mathcal {O}$
 and of relative dimension $\mathcal {O}$
 and of relative dimension $(d^2-1)([F:\mathbb {Q}_p]+1)$
. $(d^2-1)([F:\mathbb {Q}_p]+1)$
.
- 
(2)  $R^{\square , \psi }_{\overline {\rho }}/\varpi $
 is a local complete intersection of dimension $R^{\square , \psi }_{\overline {\rho }}/\varpi $
 is a local complete intersection of dimension $(d^2-1)([F:\mathbb {Q}_p]+1)$
. $(d^2-1)([F:\mathbb {Q}_p]+1)$
.
Proof. The pushout of the isomorphism from Proposition 4.3 under 
 $R_{\det \overline {\rho }}\to \mathcal {O}$
, which corresponds to
$R_{\det \overline {\rho }}\to \mathcal {O}$
, which corresponds to 
 $\psi $
, gives an isomorphism
$\psi $
, gives an isomorphism 

with 
 $r-t=(d^2-1)([F:\mathbb {Q}_p]+1)$
. To prove (1) and (2), it thus suffices to show that the dimension of
$r-t=(d^2-1)([F:\mathbb {Q}_p]+1)$
. To prove (1) and (2), it thus suffices to show that the dimension of 
 $R^{\square , \psi }_{\overline {\rho }}/\varpi $
 is at most
$R^{\square , \psi }_{\overline {\rho }}/\varpi $
 is at most 
 $(d^2-1)([F:\mathbb {Q}_p]+1)$
, or equivalently (see (30)), it suffices to show that
$(d^2-1)([F:\mathbb {Q}_p]+1)$
, or equivalently (see (30)), it suffices to show that 
 $$ \begin{align} \dim \bigl((R^{\square, \psi}_{\overline{\rho}}\operatorname{\mathrm{\widehat{\otimes}}}_{\mathcal{O}} \mathcal{O}(\mathcal X))/\varpi\bigr) \le d^2([F:\mathbb{Q}_p]+1). \end{align} $$
$$ \begin{align} \dim \bigl((R^{\square, \psi}_{\overline{\rho}}\operatorname{\mathrm{\widehat{\otimes}}}_{\mathcal{O}} \mathcal{O}(\mathcal X))/\varpi\bigr) \le d^2([F:\mathbb{Q}_p]+1). \end{align} $$
Let us write 
 $\overline {\mathcal X}:=\operatorname {\mathrm {Spec}} \mathcal {O}(\mathcal X)/\varpi $
. Since
$\overline {\mathcal X}:=\operatorname {\mathrm {Spec}} \mathcal {O}(\mathcal X)/\varpi $
. Since 
 $\overline {\varphi }_d: \overline {\mathcal X}\rightarrow \overline {\mathcal X}$
 is a universal homeomorphism. by Lemma 5.3, the map
$\overline {\varphi }_d: \overline {\mathcal X}\rightarrow \overline {\mathcal X}$
 is a universal homeomorphism. by Lemma 5.3, the map 
 $$ \begin{align} \overline{X}^{\square, \chi} \times_{\overline{\mathcal X}, \overline{\varphi}_d} \overline{\mathcal X}\rightarrow \overline{X}^{\square, \chi} \end{align} $$
$$ \begin{align} \overline{X}^{\square, \chi} \times_{\overline{\mathcal X}, \overline{\varphi}_d} \overline{\mathcal X}\rightarrow \overline{X}^{\square, \chi} \end{align} $$
is a homeomorphism. In particular, the spaces have the same dimension, which is equal to 
 $d^2([F:\mathbb {Q}_p]+1)$
 by Corollary 4.5. We conclude using Corollary 5.2 that (31) is an equality.
$d^2([F:\mathbb {Q}_p]+1)$
 by Corollary 4.5. We conclude using Corollary 5.2 that (31) is an equality.
Lemma 5.5. Let 
 $\rho : G_F \rightarrow \operatorname {\mathrm {GL}}_d(\kappa )$
 be a representation, such that
$\rho : G_F \rightarrow \operatorname {\mathrm {GL}}_d(\kappa )$
 be a representation, such that 
 $\det \rho =\psi $
, where
$\det \rho =\psi $
, where 
 $\kappa $
 is either a finite or local field of characteristic p or a finite extension of L. If
$\kappa $
 is either a finite or local field of characteristic p or a finite extension of L. If 
 $H^2(G_F, {\operatorname {ad}^0}\rho )=0$
, then the ring
$H^2(G_F, {\operatorname {ad}^0}\rho )=0$
, then the ring 
 $R^{\square , \psi }_{\rho }$
 is formally smooth over
$R^{\square , \psi }_{\rho }$
 is formally smooth over 
 $\Lambda $
 with
$\Lambda $
 with 
 $\Lambda $
 as in Subsection 3.5.
$\Lambda $
 as in Subsection 3.5.
Proof. This is the same proof as the proof of Lemma 4.8.
Theorem 5.6. The rings 
 $R^{\square , \psi }_{\overline {\rho }}$
 and
$R^{\square , \psi }_{\overline {\rho }}$
 and 
 $R^{\square , \psi }_{\overline {\rho }}/\varpi $
 are normal integral domains.
$R^{\square , \psi }_{\overline {\rho }}/\varpi $
 are normal integral domains.
Proof. We will first prove that 
 $R^{\square , \psi }_{\overline {\rho }}/\varpi $
 is normal. Since
$R^{\square , \psi }_{\overline {\rho }}/\varpi $
 is normal. Since 
 $R^{\square ,\psi }_{\overline {\rho }}/\varpi $
 is complete intersection by Corollary 5.4, it suffices to show that
$R^{\square ,\psi }_{\overline {\rho }}/\varpi $
 is complete intersection by Corollary 5.4, it suffices to show that 
 $R^{\square , \psi }_{\overline {\rho }}/\varpi $
 satisfies Serre’s condition (R1). Let
$R^{\square , \psi }_{\overline {\rho }}/\varpi $
 satisfies Serre’s condition (R1). Let 
 ${\mathfrak p} \in \overline {X}^{\square ,\psi } :=\operatorname {\mathrm {Spec}} R^{\square ,\psi }_{\overline {\rho }}/\varpi $
 be a point of height at most
${\mathfrak p} \in \overline {X}^{\square ,\psi } :=\operatorname {\mathrm {Spec}} R^{\square ,\psi }_{\overline {\rho }}/\varpi $
 be a point of height at most 
 $1$
 and assume that the local ring at
$1$
 and assume that the local ring at 
 ${\mathfrak p}$
 is not regular. Then by Lemma 5.5 there is a closed irreducible subset Z of
${\mathfrak p}$
 is not regular. Then by Lemma 5.5 there is a closed irreducible subset Z of 
 $\overline {X}^{\square ,\psi }$
 of codimension at most
$\overline {X}^{\square ,\psi }$
 of codimension at most 
 $1$
, the closure of
$1$
, the closure of 
 ${\mathfrak p}$
, such that for all
${\mathfrak p}$
, such that for all 
 $z\in Z$
 with finite or local residue field the space
$z\in Z$
 with finite or local residue field the space 
 $H^2(G_F, {\operatorname {ad}^0}\rho _z)$
 is non-zero. Using the explicit bijection from the proof of Proposition 5.1, and the isomorphism of Corollary 5.2 modulo,
$H^2(G_F, {\operatorname {ad}^0}\rho _z)$
 is non-zero. Using the explicit bijection from the proof of Proposition 5.1, and the isomorphism of Corollary 5.2 modulo, 
 $\varpi $
 it follows that there is a closed irreducible subset
$\varpi $
 it follows that there is a closed irreducible subset 
 $W\subset \overline {X}^{\square , \chi }\times _{\overline {\mathcal X}, \overline {\varphi }_d} \overline {\mathcal X}$
 of codimension at most
$W\subset \overline {X}^{\square , \chi }\times _{\overline {\mathcal X}, \overline {\varphi }_d} \overline {\mathcal X}$
 of codimension at most 
 $1$
, such that for all
$1$
, such that for all 
 $w\in W$
 with finite or local residue field, the space
$w\in W$
 with finite or local residue field, the space 
 $H^2(G_F, {\operatorname {ad}^0}\rho _w)$
 is non-zero, where, as in the proof of Proposition 5.1, the point w corresponds to a pair
$H^2(G_F, {\operatorname {ad}^0}\rho _w)$
 is non-zero, where, as in the proof of Proposition 5.1, the point w corresponds to a pair 
 $(\rho _w, \theta _w)$
. Since the map (32) is a homeomorphism and sends
$(\rho _w, \theta _w)$
. Since the map (32) is a homeomorphism and sends 
 $(\rho _w, \theta _w)$
 to
$(\rho _w, \theta _w)$
 to 
 $\rho _w$
, the image of W in
$\rho _w$
, the image of W in 
 $\overline {X}^{\square , \chi }$
, which we denote by
$\overline {X}^{\square , \chi }$
, which we denote by 
 $W'$
, is closed irreducible of codimension at most
$W'$
, is closed irreducible of codimension at most 
 $1$
 in
$1$
 in 
 $\overline {X}^{\square , \chi }$
, and all
$\overline {X}^{\square , \chi }$
, and all 
 $x\in W'$
 with finite or local residue field have non-vanishing
$x\in W'$
 with finite or local residue field have non-vanishing 
 $H^2(G_F, {\operatorname {ad}^0}\rho _x)$
. Lemma 4.16 implies that the codimension of
$H^2(G_F, {\operatorname {ad}^0}\rho _x)$
. Lemma 4.16 implies that the codimension of 
 $W'$
 is at least
$W'$
 is at least 
 $2$
, yielding a contradiction.
$2$
, yielding a contradiction.
 Let us prove that 
 $R^{\square , \psi }_{\overline {\rho }}$
 is normal. Since
$R^{\square , \psi }_{\overline {\rho }}$
 is normal. Since 
 $R^{\square , \psi }_{\overline {\rho }}$
 is
$R^{\square , \psi }_{\overline {\rho }}$
 is 
 $\mathcal {O}$
-torsion free by Corollary 5.4 and we know that the special fibre is normal, it is enough to prove that
$\mathcal {O}$
-torsion free by Corollary 5.4 and we know that the special fibre is normal, it is enough to prove that 
 $R^{\square , \psi }_{\overline {\rho }}[1/p]$
 is normal; see the proof of Proposition 4.18. Lemma 5.3 implies that the map
$R^{\square , \psi }_{\overline {\rho }}[1/p]$
 is normal; see the proof of Proposition 4.18. Lemma 5.3 implies that the map 
 $$ \begin{align} X^{\square, \chi}[1/p] \times_{\mathcal X[1/p], \varphi_d} \mathcal X[1/p]\rightarrow X^{\square, \chi}[1/p] \end{align} $$
$$ \begin{align} X^{\square, \chi}[1/p] \times_{\mathcal X[1/p], \varphi_d} \mathcal X[1/p]\rightarrow X^{\square, \chi}[1/p] \end{align} $$
is finite étale. We proceed exactly as in the proof for the special fibre, using (33) instead of (32) and Lemma 4.20 instead of Lemma 4.16.
Corollary 5.7. The absolutely irreducible locus is dense in 
 $\operatorname {\mathrm {Spec}} R^{\square , \psi }_{\overline {\rho }}[1/p]$
 and the Kummer-irreducible locus is dense in
$\operatorname {\mathrm {Spec}} R^{\square , \psi }_{\overline {\rho }}[1/p]$
 and the Kummer-irreducible locus is dense in 
 $\operatorname {\mathrm {Spec}} R^{\square , \psi }_{\overline {\rho }}/\varpi $
.
$\operatorname {\mathrm {Spec}} R^{\square , \psi }_{\overline {\rho }}/\varpi $
.
Proof. By Proposition 3.55 and Corollary 3.59, the absolutely irreducible locus is dense open in 
 $\operatorname {\mathrm {Spec}} R^{\square ,\chi }_{\overline {\rho }}/\varpi $
 and in
$\operatorname {\mathrm {Spec}} R^{\square ,\chi }_{\overline {\rho }}/\varpi $
 and in 
 $\operatorname {\mathrm {Spec}} R^{\square ,\chi }_{\overline {\rho }}[1/p]$
. Arguing as in the proof of Theorem 5.6, one deduces that the absolutely irreducible locus is dense open in the spaces
$\operatorname {\mathrm {Spec}} R^{\square ,\chi }_{\overline {\rho }}[1/p]$
. Arguing as in the proof of Theorem 5.6, one deduces that the absolutely irreducible locus is dense open in the spaces 
 $\operatorname {\mathrm {Spec}} R^{\square ,\psi }_{\overline {\rho }}/\varpi $
 and
$\operatorname {\mathrm {Spec}} R^{\square ,\psi }_{\overline {\rho }}/\varpi $
 and 
 $\operatorname {\mathrm {Spec}} R^{\square ,\psi }_{\overline {\rho }}[1/p]$
. For absolutely irreducible
$\operatorname {\mathrm {Spec}} R^{\square ,\psi }_{\overline {\rho }}[1/p]$
. For absolutely irreducible 
 $x\in \operatorname {\mathrm {Spec}} R^{\square ,\chi }_{\overline {\rho }}/\varpi $
, Kummer-irreducibility implies
$x\in \operatorname {\mathrm {Spec}} R^{\square ,\chi }_{\overline {\rho }}/\varpi $
, Kummer-irreducibility implies 
 $H^2(G_F,{\operatorname {ad}^0}\rho _x)=0$
, so the assertion on the density of the Kummer-irreducible locus in
$H^2(G_F,{\operatorname {ad}^0}\rho _x)=0$
, so the assertion on the density of the Kummer-irreducible locus in 
 $\operatorname {\mathrm {Spec}} R^{\square ,\chi }_{\overline {\rho }}/\varpi $
 follows from the proof of Theorem 5.6.
$\operatorname {\mathrm {Spec}} R^{\square ,\chi }_{\overline {\rho }}/\varpi $
 follows from the proof of Theorem 5.6.
 As explained in Section 4, both 
 $R^{\mathrm {ps}}$
 and
$R^{\mathrm {ps}}$
 and 
 $A^{\mathrm {gen}}$
 are naturally
$A^{\mathrm {gen}}$
 are naturally 
 $R_{\det \overline {D}}$
-algebras. Moreover,
$R_{\det \overline {D}}$
-algebras. Moreover, 
 $\det \overline {D}=\det \overline {\rho }$
. We let
$\det \overline {D}=\det \overline {\rho }$
. We let 
 $$ \begin{align*}R^{\mathrm{ps}, \psi}:=R^{\mathrm{ps}}\otimes_{R_{\det \overline{D}}, \psi}\mathcal{O}, \quad A^{\mathrm{gen}, \psi}:=A^{\mathrm{gen}}\otimes_{R_{\det \overline{D}}, \psi}\mathcal{O}.\end{align*} $$
$$ \begin{align*}R^{\mathrm{ps}, \psi}:=R^{\mathrm{ps}}\otimes_{R_{\det \overline{D}}, \psi}\mathcal{O}, \quad A^{\mathrm{gen}, \psi}:=A^{\mathrm{gen}}\otimes_{R_{\det \overline{D}}, \psi}\mathcal{O}.\end{align*} $$
Corollary 5.8. The following hold:
- 
(1)  $A^{\mathrm {gen}, \psi }$
 is $A^{\mathrm {gen}, \psi }$
 is $\mathcal {O}$
-flat, equi-dimensional of dimension $\mathcal {O}$
-flat, equi-dimensional of dimension $1+ (d^2-1)([F:\mathbb {Q}_p]+1)$
, normal and is locally complete intersection; $1+ (d^2-1)([F:\mathbb {Q}_p]+1)$
, normal and is locally complete intersection;
- 
(2)  $A^{\mathrm {gen}, \psi }/\varpi $
 is equi-dimensional of dimension $A^{\mathrm {gen}, \psi }/\varpi $
 is equi-dimensional of dimension $(d^2-1)([F:\mathbb {Q}_p]+1)$
, normal and is locally complete intersection. $(d^2-1)([F:\mathbb {Q}_p]+1)$
, normal and is locally complete intersection.
Proof. The ring 
 $A^{\mathrm {gen}}$
 is excellent, since it is finitely generated over a complete local Noetherian ring. Thus, its local rings are also excellent. An excellent local ring is normal if and only if its completion with respect to the maximal ideal is normal, [Reference Matsumura36, Theorem 32.2 (i)]. Given this, the proof is the same as the proof of Corollary 4.6 using Theorem 5.6.
$A^{\mathrm {gen}}$
 is excellent, since it is finitely generated over a complete local Noetherian ring. Thus, its local rings are also excellent. An excellent local ring is normal if and only if its completion with respect to the maximal ideal is normal, [Reference Matsumura36, Theorem 32.2 (i)]. Given this, the proof is the same as the proof of Corollary 4.6 using Theorem 5.6.
Corollary 5.9. The rings 
 $A^{\mathrm {gen}, \psi }$
 and
$A^{\mathrm {gen}, \psi }$
 and 
 $A^{\mathrm {gen},\psi }/\varpi $
 are integral domains.
$A^{\mathrm {gen},\psi }/\varpi $
 are integral domains.
Proof. The proof is the same as the proof of Proposition 4.26.
Corollary 5.10. The ring 
 $R^{\mathrm {ps}, \psi }[1/p]$
 and the rigid space
$R^{\mathrm {ps}, \psi }[1/p]$
 and the rigid space 
 $(\operatorname {\mathrm {Spf}} R^{\mathrm {ps}, \psi })^{\mathrm {rig}}$
 are normal. The ring
$(\operatorname {\mathrm {Spf}} R^{\mathrm {ps}, \psi })^{\mathrm {rig}}$
 are normal. The ring 
 $R^{\mathrm {ps}, \psi }[1/p]$
 is an integral domain.
$R^{\mathrm {ps}, \psi }[1/p]$
 is an integral domain.
Proof. This follows from [Reference Paškūnas and Tung43, Corollary A.10]. The last part is proved in the same way as Corollary 4.27 using Corollary 5.9.
Corollary 5.11. The maximal reduced quotient of 
 $R^{\mathrm {ps}, \psi }$
 is equal to the maximal
$R^{\mathrm {ps}, \psi }$
 is equal to the maximal 
 $\mathcal {O}$
-torsion free quotient of
$\mathcal {O}$
-torsion free quotient of 
 $R^{\mathrm {ps}, \psi }$
 and is an integral domain. Moreover, if
$R^{\mathrm {ps}, \psi }$
 and is an integral domain. Moreover, if 
 $\overline {D}$
 is multiplicity free, then
$\overline {D}$
 is multiplicity free, then 
 $R^{\mathrm {ps}, \psi }$
 is an
$R^{\mathrm {ps}, \psi }$
 is an 
 $\mathcal {O}$
-torsion free integral domain.
$\mathcal {O}$
-torsion free integral domain.
Proof. This is proved in the same way as Corollary 4.28.
Proposition 5.12. The map
 $$ \begin{align} R_{\det \overline{\rho}}\rightarrow R^{\square}_{\overline{\rho}} \end{align} $$
$$ \begin{align} R_{\det \overline{\rho}}\rightarrow R^{\square}_{\overline{\rho}} \end{align} $$
is flat.
Proof. Let
 
. By arguing as in the proof of Proposition 4.3, we may choose presentations

such that (34) is a map of S-algebras and 
 $(1+z)^m-1, f_1, \ldots , f_t$
 is a regular sequence in
$(1+z)^m-1, f_1, \ldots , f_t$
 is a regular sequence in 
 
. Let
 
. Then 
 $S'$
 is complete intersection, and hence Cohen–Macaulay, and the fibre ring
$S'$
 is complete intersection, and hence Cohen–Macaulay, and the fibre ring 
 $k\otimes _S S'$
 is isomorphic to
$k\otimes _S S'$
 is isomorphic to 
 $R^{\square , \psi }_{\overline {\rho }}/\varpi $
, which has dimension equal to
$R^{\square , \psi }_{\overline {\rho }}/\varpi $
, which has dimension equal to 
 $\dim R^{\square }_{\overline {\rho }} - \dim R_{\det \rho }=\dim S'- \dim S$
, by Corollary 5.4. Since S is regular, the fibre-wise criterion for flatness, [Reference Matsumura36, Theorem 23.1], implies that
$\dim R^{\square }_{\overline {\rho }} - \dim R_{\det \rho }=\dim S'- \dim S$
, by Corollary 5.4. Since S is regular, the fibre-wise criterion for flatness, [Reference Matsumura36, Theorem 23.1], implies that 
 $S'$
 is flat over S. Hence,
$S'$
 is flat over S. Hence, 
 $R^{\square }_{\overline {\rho }}\cong S'/((1+z)^m-1)$
 is flat over
$R^{\square }_{\overline {\rho }}\cong S'/((1+z)^m-1)$
 is flat over 
 $R_{\det \overline {\rho }}\cong S/((1+z)^m-1)$
.
$R_{\det \overline {\rho }}\cong S/((1+z)^m-1)$
.
6 Density of points with prescribed p-adic Hodge theoretic properties
 We fix a continuous representation 
 $\overline {\rho }: G_F \rightarrow \operatorname {\mathrm {GL}}_d(k)$
. Let
$\overline {\rho }: G_F \rightarrow \operatorname {\mathrm {GL}}_d(k)$
. Let 
 $R^{\square }_{\overline {\rho }}$
 be its universal framed deformation ring and let
$R^{\square }_{\overline {\rho }}$
 be its universal framed deformation ring and let 
 $X^{\square }=\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}$
. If
$X^{\square }=\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}$
. If 
 $x:R^{\square }_{\overline {\rho }}\rightarrow \overline {\mathbb {Q}}_p$
 is an
$x:R^{\square }_{\overline {\rho }}\rightarrow \overline {\mathbb {Q}}_p$
 is an 
 $\mathcal {O}$
-algebra homomorphism, then we denote by
$\mathcal {O}$
-algebra homomorphism, then we denote by 
 $\rho ^{\square }_x:G_F\rightarrow \operatorname {\mathrm {GL}}_d(\overline {\mathbb {Q}}_p)$
 the specialization of the universal framed deformation
$\rho ^{\square }_x:G_F\rightarrow \operatorname {\mathrm {GL}}_d(\overline {\mathbb {Q}}_p)$
 the specialization of the universal framed deformation 
 $\rho ^{\square }: G_F\rightarrow \operatorname {\mathrm {GL}}_d(R^{\square }_{\overline {\rho }}) $
 at x. In this section, we will study Zariski closures of subsets
$\rho ^{\square }: G_F\rightarrow \operatorname {\mathrm {GL}}_d(R^{\square }_{\overline {\rho }}) $
 at x. In this section, we will study Zariski closures of subsets 
 $\Sigma \subset X^{\square }(\overline {\mathbb {Q}}_p)$
, such that
$\Sigma \subset X^{\square }(\overline {\mathbb {Q}}_p)$
, such that 
 $\rho ^{\square }_x$
 is potentially semi-stable for all
$\rho ^{\square }_x$
 is potentially semi-stable for all 
 $x\in \Sigma $
 and satisfies additional conditions imposed on either the Hodge–Tate weights or the inertial type of
$x\in \Sigma $
 and satisfies additional conditions imposed on either the Hodge–Tate weights or the inertial type of 
 $\rho ^{\square }_x$
. Recall that the Hodge–Tate weights
$\rho ^{\square }_x$
. Recall that the Hodge–Tate weights 
 $\mathrm {HT}(\rho )$
 of a potentially semi-stable representation
$\mathrm {HT}(\rho )$
 of a potentially semi-stable representation 
 $\rho $
 is a collection
$\rho $
 is a collection 
 $\underline {k}$
 of d-tuples of integers
$\underline {k}$
 of d-tuples of integers 
 $\underline {k}_{\sigma }=(k_{\sigma ,1}\ge k_{\sigma ,2}\ge \ldots \ge k_{\sigma , d})$
 for each embedding
$\underline {k}_{\sigma }=(k_{\sigma ,1}\ge k_{\sigma ,2}\ge \ldots \ge k_{\sigma , d})$
 for each embedding 
 $\sigma : F\hookrightarrow \overline {\mathbb {Q}}_p$
, and we say that
$\sigma : F\hookrightarrow \overline {\mathbb {Q}}_p$
, and we say that 
 $\underline {k}$
 is regular if all the inequalities are strict. Let
$\underline {k}$
 is regular if all the inequalities are strict. Let 
 $$ \begin{align*}\Sigma^{\mathrm{cris}}:=\{ x\in X^{\square}(\overline{\mathbb{Q}}_p): \rho_x^{\square} \text{ is crystalline with regular Hodge--Tate weights}\}.\end{align*} $$
$$ \begin{align*}\Sigma^{\mathrm{cris}}:=\{ x\in X^{\square}(\overline{\mathbb{Q}}_p): \rho_x^{\square} \text{ is crystalline with regular Hodge--Tate weights}\}.\end{align*} $$
For a fixed regular Hodge–Tate weight 
 $\underline {k}$
, we let
$\underline {k}$
, we let 
 $$ \begin{align*}\Sigma_{\underline{k}}:=\{x\in X^{\square}(\overline{\mathbb{Q}}_p): \rho_x^{\square} \text{ is potentially semi-stable with } \mathrm{HT}(\rho^{\square}_x)= \underline{k}\}.\end{align*} $$
$$ \begin{align*}\Sigma_{\underline{k}}:=\{x\in X^{\square}(\overline{\mathbb{Q}}_p): \rho_x^{\square} \text{ is potentially semi-stable with } \mathrm{HT}(\rho^{\square}_x)= \underline{k}\}.\end{align*} $$
If 
 $\rho $
 is potentially semi-stable, then to it we may attach a Weil–Deligne representation
$\rho $
 is potentially semi-stable, then to it we may attach a Weil–Deligne representation 
 $\operatorname {\mathrm {WD}}(\rho )$
; we denote by
$\operatorname {\mathrm {WD}}(\rho )$
; we denote by 
 $\operatorname {\mathrm {WD}}(\rho )^{F-\mathrm {ss}}$
 its Frobenius semi-simplification. We may attach a smooth irreducible representation of
$\operatorname {\mathrm {WD}}(\rho )^{F-\mathrm {ss}}$
 its Frobenius semi-simplification. We may attach a smooth irreducible representation of 
 $\operatorname {\mathrm {GL}}_d(F)$
, which we denote by
$\operatorname {\mathrm {GL}}_d(F)$
, which we denote by 
 $\mathrm {LL}(\operatorname {\mathrm {WD}}(\rho ))$
, to
$\mathrm {LL}(\operatorname {\mathrm {WD}}(\rho ))$
, to 
 $\operatorname {\mathrm {WD}}(\rho )^{F-\mathrm {ss}}$
 via the classical Langlands correspondence; see [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14, Section 1.8] for more details and further references.
$\operatorname {\mathrm {WD}}(\rho )^{F-\mathrm {ss}}$
 via the classical Langlands correspondence; see [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14, Section 1.8] for more details and further references.
 Let 
 $\Sigma ^{\mathrm {prnc}}_{\underline {k}}$
 be the subset of
$\Sigma ^{\mathrm {prnc}}_{\underline {k}}$
 be the subset of 
 $\Sigma _{\underline {k}}$
, such that
$\Sigma _{\underline {k}}$
, such that 
 $x\in \Sigma _{\underline {k}}$
 lies in
$x\in \Sigma _{\underline {k}}$
 lies in 
 $\Sigma ^{\mathrm {prnc}}_{\underline {k}}$
 if and only if
$\Sigma ^{\mathrm {prnc}}_{\underline {k}}$
 if and only if 
 $\mathrm {LL}(\operatorname {\mathrm {WD}}(\rho _x^{\square }))$
 is a principal series representation. In terms of the Galois side
$\mathrm {LL}(\operatorname {\mathrm {WD}}(\rho _x^{\square }))$
 is a principal series representation. In terms of the Galois side 
 $\Sigma ^{\mathrm {prnc}}_{\underline {k}}$
 may be characterised as the set of
$\Sigma ^{\mathrm {prnc}}_{\underline {k}}$
 may be characterised as the set of 
 $x\in \Sigma _{\underline {k}}$
 such that the restriction of
$x\in \Sigma _{\underline {k}}$
 such that the restriction of 
 $\rho ^{\square }_x$
 to the Galois group of some finite abelian extension of F is crystalline.
$\rho ^{\square }_x$
 to the Galois group of some finite abelian extension of F is crystalline.
 Let 
 $\Sigma ^{\mathrm {spcd}}_{\underline {k}}$
 be the subset of
$\Sigma ^{\mathrm {spcd}}_{\underline {k}}$
 be the subset of 
 $\Sigma _{\underline {k}}$
 such that x lies in
$\Sigma _{\underline {k}}$
 such that x lies in 
 $\Sigma ^{\mathrm {spcd}}_{\underline {k}}$
 if and only if
$\Sigma ^{\mathrm {spcd}}_{\underline {k}}$
 if and only if 
 $\operatorname {\mathrm {WD}}(\rho _x)$
 is irreducible as a representation of the Weil group
$\operatorname {\mathrm {WD}}(\rho _x)$
 is irreducible as a representation of the Weil group 
 $W_F$
 of F and is induced from a
$W_F$
 of F and is induced from a 
 $1$
-dimensional representation of
$1$
-dimensional representation of 
 $W_E$
, where E is an unramified extension of F of degree d. In this case,
$W_E$
, where E is an unramified extension of F of degree d. In this case, 
 $\mathrm {LL}(\operatorname {\mathrm {WD}}(\rho _x))$
 is a supercuspidal representation of
$\mathrm {LL}(\operatorname {\mathrm {WD}}(\rho _x))$
 is a supercuspidal representation of 
 $\operatorname {\mathrm {GL}}_d(F)$
.
$\operatorname {\mathrm {GL}}_d(F)$
.
The goal of this section is the following theorem.
Theorem 6.1. Assume that 
 $p\nmid 2d$
. Let
$p\nmid 2d$
. Let 
 $\Sigma $
 be any of the sets
$\Sigma $
 be any of the sets 
 $\Sigma ^{\mathrm {cris}}$
,
$\Sigma ^{\mathrm {cris}}$
, 
 $\Sigma ^{\mathrm {prnc}}_{\underline {k}}$
,
$\Sigma ^{\mathrm {prnc}}_{\underline {k}}$
, 
 $\Sigma ^{\mathrm {spcd}}_{\underline {k}}$
 defined above. Then
$\Sigma ^{\mathrm {spcd}}_{\underline {k}}$
 defined above. Then 
 $\Sigma $
 is Zariski dense in
$\Sigma $
 is Zariski dense in 
 $X^{\square }$
.
$X^{\square }$
.
Remark 6.2. We could additionally require the representations in 
 $\Sigma ^{\mathrm {cris}}$
 to be benign in the sense of [Reference Emerton and Paškūnas25, Definition 6.8], or instead of considering crystalline representations, fix an inertial type.
$\Sigma ^{\mathrm {cris}}$
 to be benign in the sense of [Reference Emerton and Paškūnas25, Definition 6.8], or instead of considering crystalline representations, fix an inertial type.
 One could also change the definition of 
 $\Sigma ^{\mathrm {spcd}}_{\underline {k}}$
 to allow E to be a ramified extension of F; see [Reference Emerton and Paškūnas25, Section 5.3].
$\Sigma ^{\mathrm {spcd}}_{\underline {k}}$
 to allow E to be a ramified extension of F; see [Reference Emerton and Paškūnas25, Section 5.3].
 The problem for 
 $\Sigma ^{\mathrm {cris}}$
 has been studied by Colmez [Reference Colmez19], Kisin [Reference Kisin34], Chenevier [Reference Chenevier17], Nakamura [Reference Nakamura39], [Reference Nakamura40]. Hellmann and Schraen have studied the problem for
$\Sigma ^{\mathrm {cris}}$
 has been studied by Colmez [Reference Colmez19], Kisin [Reference Kisin34], Chenevier [Reference Chenevier17], Nakamura [Reference Nakamura39], [Reference Nakamura40]. Hellmann and Schraen have studied the problem for 
 $\Sigma ^{\mathrm {prnc}}_{\underline {k}}$
 and
$\Sigma ^{\mathrm {prnc}}_{\underline {k}}$
 and 
 $\Sigma ^{\mathrm {cris}}$
 in [Reference Hellmann and Schraen28]. Emerton and VP have studied the problem for
$\Sigma ^{\mathrm {cris}}$
 in [Reference Hellmann and Schraen28]. Emerton and VP have studied the problem for 
 $\Sigma ^{\mathrm {cris}}$
,
$\Sigma ^{\mathrm {cris}}$
, 
 $\Sigma ^{\mathrm {prnc}}_{\underline {k}}$
 and
$\Sigma ^{\mathrm {prnc}}_{\underline {k}}$
 and 
 $\Sigma ^{\mathrm {spcd}}_{\underline {k}}$
 in [Reference Emerton and Paškūnas25]. A common feature of these papers is that they show that the closure of
$\Sigma ^{\mathrm {spcd}}_{\underline {k}}$
 in [Reference Emerton and Paškūnas25]. A common feature of these papers is that they show that the closure of 
 $\Sigma $
 is a union of irreducible components of
$\Sigma $
 is a union of irreducible components of 
 $X^{\square }$
 and density is equivalent to showing that
$X^{\square }$
 and density is equivalent to showing that 
 $\Sigma $
 meets each irreducible component. If one knows the irreducible components, then one might hope to show density this way. This strategy has been carried out for
$\Sigma $
 meets each irreducible component. If one knows the irreducible components, then one might hope to show density this way. This strategy has been carried out for 
 $\Sigma ^{\mathrm {cris}}$
 by Colmez–Dospinescu–VP in [Reference Colmez, Dospinescu and Paškūnas20] for
$\Sigma ^{\mathrm {cris}}$
 by Colmez–Dospinescu–VP in [Reference Colmez, Dospinescu and Paškūnas20] for 
 $p=d=2$
 and
$p=d=2$
 and 
 $F=\mathbb {Q}_p$
 and by AI in [Reference Iyengar30] for
$F=\mathbb {Q}_p$
 and by AI in [Reference Iyengar30] for 
 $p>d$
 and F arbitrary, when
$p>d$
 and F arbitrary, when 
 $\overline {\rho }$
 is the trivial representation, where after determining irreducible components, one can write down the lifts explicitly. We note that using Corollary 4.21, one may remove the assumption
$\overline {\rho }$
 is the trivial representation, where after determining irreducible components, one can write down the lifts explicitly. We note that using Corollary 4.21, one may remove the assumption 
 $p>d$
 in [Reference Iyengar30, Theorem 5.11]. It seems impossible to carry this out for arbitrary
$p>d$
 in [Reference Iyengar30, Theorem 5.11]. It seems impossible to carry this out for arbitrary 
 $\underline {k}$
 and
$\underline {k}$
 and 
 $\overline {\rho }$
 directly, even if one knows that the irreducible components of
$\overline {\rho }$
 directly, even if one knows that the irreducible components of 
 $X^{\square }$
 are in bijection with irreducible components of
$X^{\square }$
 are in bijection with irreducible components of 
 $\operatorname {\mathrm {Spec}} R_{\det \overline {\rho }}$
. Instead, we combine our knowledge of irreducible components with results of [Reference Emerton and Paškūnas25].
$\operatorname {\mathrm {Spec}} R_{\det \overline {\rho }}$
. Instead, we combine our knowledge of irreducible components with results of [Reference Emerton and Paškūnas25].
 The paper [Reference Emerton and Paškūnas25] builds on the global patching arguments carried out in [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14], which assumes that 
 $p\nmid 2d$
 and
$p\nmid 2d$
 and 
 $\overline {\rho }$
 has a potentially diagonalisable lift. This last condition can be easily verified if
$\overline {\rho }$
 has a potentially diagonalisable lift. This last condition can be easily verified if 
 $\overline {\rho }$
 is semi-simple (see [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14, Lemma 2.2]); it has been shown to always be satisfied in [Reference Emerton and Gee24, Theorem 1.2.2]. The output of [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14] is a complete local Noetherian
$\overline {\rho }$
 is semi-simple (see [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14, Lemma 2.2]); it has been shown to always be satisfied in [Reference Emerton and Gee24, Theorem 1.2.2]. The output of [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14] is a complete local Noetherian 
 $\mathcal {O}$
-algebra
$\mathcal {O}$
-algebra 
 $R_{\infty }$
 with residue field k and a linearly compact
$R_{\infty }$
 with residue field k and a linearly compact 
 $R_{\infty }$
-module
$R_{\infty }$
-module 
 $M_{\infty }$
, which carries a continuous
$M_{\infty }$
, which carries a continuous 
 $R_{\infty }$
-linear action of
$R_{\infty }$
-linear action of 
 $G:=\operatorname {\mathrm {GL}}_d(F)$
. Moreover, the action of
$G:=\operatorname {\mathrm {GL}}_d(F)$
. Moreover, the action of 
 $R_{\infty }[K]$
 on
$R_{\infty }[K]$
 on 
 $M_{\infty }$
 extends (uniquely) to a continuous action of the completed group algebra
$M_{\infty }$
 extends (uniquely) to a continuous action of the completed group algebra 
 , where
, where 
 $K:=\operatorname {\mathrm {GL}}_d(\mathcal {O}_F)$
, so that
$K:=\operatorname {\mathrm {GL}}_d(\mathcal {O}_F)$
, so that 
 $M_{\infty }$
 is a finitely generated
$M_{\infty }$
 is a finitely generated 
 -module.
-module.
Lemma 6.3. We have an isomorphism of 
 $R^{\square }_{\overline {\rho }}$
-algebras:
$R^{\square }_{\overline {\rho }}$
-algebras: 
 $$ \begin{align*}R_{\infty}\cong R^{\square}_{\overline{\rho}}\operatorname{\mathrm{\widehat{\otimes}}}_{\mathcal{O}} A,\end{align*} $$
$$ \begin{align*}R_{\infty}\cong R^{\square}_{\overline{\rho}}\operatorname{\mathrm{\widehat{\otimes}}}_{\mathcal{O}} A,\end{align*} $$
where A is a complete local Noetherian 
 $\mathcal {O}$
-algebra, which is
$\mathcal {O}$
-algebra, which is 
 $\mathcal {O}$
-torsion free, reduced and equi-dimensional. Thus, the ring
$\mathcal {O}$
-torsion free, reduced and equi-dimensional. Thus, the ring 
 $R_{\infty }$
 is a reduced,
$R_{\infty }$
 is a reduced, 
 $\mathcal {O}$
-torsion free and flat
$\mathcal {O}$
-torsion free and flat 
 $R^{\square }_{\overline {\rho }}$
-algebra.
$R^{\square }_{\overline {\rho }}$
-algebra.
 After replacing L by a finite extension, the irreducible components of 
 $\operatorname {\mathrm {Spec}} R_{\infty }$
 are of the form
$\operatorname {\mathrm {Spec}} R_{\infty }$
 are of the form 
 $\operatorname {\mathrm {Spec}}(R^{\square , \chi }_{\overline {\rho }}\operatorname {\mathrm {\widehat {\otimes }}}_{\mathcal {O}} A/{\mathfrak p})$
, for a character
$\operatorname {\mathrm {Spec}}(R^{\square , \chi }_{\overline {\rho }}\operatorname {\mathrm {\widehat {\otimes }}}_{\mathcal {O}} A/{\mathfrak p})$
, for a character 
 $\chi :\mu _{p^{\infty }}(F)\rightarrow \mathcal {O}^{\times }$
 and a minimal prime
$\chi :\mu _{p^{\infty }}(F)\rightarrow \mathcal {O}^{\times }$
 and a minimal prime 
 ${\mathfrak p}$
 of A. Moreover, distinct pairs
${\mathfrak p}$
 of A. Moreover, distinct pairs 
 $(\chi , {\mathfrak p})$
 give rise to distinct irreducible components of
$(\chi , {\mathfrak p})$
 give rise to distinct irreducible components of 
 $\operatorname {\mathrm {Spec}} R_{\infty }$
.
$\operatorname {\mathrm {Spec}} R_{\infty }$
.
Proof. The ring 
 $R_{\infty }$
 is defined in [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14, Section 2.8] and is formally smooth over the ring denoted by
$R_{\infty }$
 is defined in [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14, Section 2.8] and is formally smooth over the ring denoted by 
 $R^{\mathrm {loc}}$
 in [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14, Section 2.6]. The ring
$R^{\mathrm {loc}}$
 in [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14, Section 2.6]. The ring 
 $R^{\mathrm {loc}}$
 is a completed tensor product over
$R^{\mathrm {loc}}$
 is a completed tensor product over 
 $\mathcal {O}$
 of
$\mathcal {O}$
 of 
 $R^{\square }_{\overline {\rho }}$
, the ring
$R^{\square }_{\overline {\rho }}$
, the ring 
 $R_{\tilde {v}_1}^{\square }$
, which is formally smooth over
$R_{\tilde {v}_1}^{\square }$
, which is formally smooth over 
 $\mathcal {O}$
 by [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14, Lemma 2.5], and potentially semi-stable rings at other places above p, denoted by
$\mathcal {O}$
 by [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14, Lemma 2.5], and potentially semi-stable rings at other places above p, denoted by 
 $R^{\square , \xi , \tau }_{\tilde {v}}$
 in [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14, Section 2.4]. These are
$R^{\square , \xi , \tau }_{\tilde {v}}$
 in [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14, Section 2.4]. These are 
 $\mathcal {O}$
-torsion free, reduced and equi-dimensional by [Reference Kisin33, Theorem 3.3.8]. Thus,
$\mathcal {O}$
-torsion free, reduced and equi-dimensional by [Reference Kisin33, Theorem 3.3.8]. Thus, 
 $R_{\infty }\cong R^{\square }_{\overline {\rho }}\operatorname {\mathrm {\widehat {\otimes }}} A$
, where A is formally smooth over the ring
$R_{\infty }\cong R^{\square }_{\overline {\rho }}\operatorname {\mathrm {\widehat {\otimes }}} A$
, where A is formally smooth over the ring 
 $\operatorname {\mathrm {\widehat {\otimes }}}_{v\in S_p\setminus {\mathfrak p}} R^{\square ,\xi ,\tau }_{\tilde {v}}$
 in the notation of [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14]. Since the rings
$\operatorname {\mathrm {\widehat {\otimes }}}_{v\in S_p\setminus {\mathfrak p}} R^{\square ,\xi ,\tau }_{\tilde {v}}$
 in the notation of [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14]. Since the rings 
 $R^{\square ,\xi ,\tau }_{\tilde {v}}$
 are
$R^{\square ,\xi ,\tau }_{\tilde {v}}$
 are 
 $\mathcal {O}$
-torsion free, reduced and equi-dimensional, so is the ring A by [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14, Corollary A.2] and [Reference Hu and Paškūnas29, Lemma A.1]. Since
$\mathcal {O}$
-torsion free, reduced and equi-dimensional, so is the ring A by [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14, Corollary A.2] and [Reference Hu and Paškūnas29, Lemma A.1]. Since 
 $R^{\square }_{\overline {\rho }}$
 is also
$R^{\square }_{\overline {\rho }}$
 is also 
 $\mathcal {O}$
-torsion free, reduced and equi-dimensional, we obtain that the same holds for
$\mathcal {O}$
-torsion free, reduced and equi-dimensional, we obtain that the same holds for 
 $R_{\infty }$
. Since A is
$R_{\infty }$
. Since A is 
 $\mathcal {O}$
-torsion free,
$\mathcal {O}$
-torsion free, 
 $R_{\infty }$
 is a flat
$R_{\infty }$
 is a flat 
 $R^{\square }_{\overline {\rho }}$
-algebra.
$R^{\square }_{\overline {\rho }}$
-algebra.
 It follows from [Reference Hu and Paškūnas29, Lemma A.5] that after replacing L with a finite extension, we may assume that for all minimal primes 
 ${\mathfrak p}$
 of A, the quotient
${\mathfrak p}$
 of A, the quotient 
 $A/{\mathfrak p}$
 is geometrically integral, by which we mean that
$A/{\mathfrak p}$
 is geometrically integral, by which we mean that 
 $(A/{\mathfrak p})\otimes _{\mathcal {O}} \mathcal {O}_{L'}$
 is integral domain for all finite extensions
$(A/{\mathfrak p})\otimes _{\mathcal {O}} \mathcal {O}_{L'}$
 is integral domain for all finite extensions 
 $L'/L$
. If
$L'/L$
. If 
 ${\mathfrak p}'$
 is a minimal prime of
${\mathfrak p}'$
 is a minimal prime of 
 $R^{\square }_{\overline {\rho }}$
, then
$R^{\square }_{\overline {\rho }}$
, then 
 $R^{\square }_{\overline {\rho }}/{\mathfrak p}'= R^{\square , \chi }_{\overline {\rho }}$
 for a unique character
$R^{\square }_{\overline {\rho }}/{\mathfrak p}'= R^{\square , \chi }_{\overline {\rho }}$
 for a unique character 
 $\chi : \mu _{p^{\infty }}(F)\rightarrow \mathcal {O}^{\times }$
 by Corollary 4.21. The moduli interpretation of
$\chi : \mu _{p^{\infty }}(F)\rightarrow \mathcal {O}^{\times }$
 by Corollary 4.21. The moduli interpretation of 
 $R^{\square , \chi }_{\overline {\rho }}$
 together with Corollary 4.19 shows that the ring is geometrically integral. It follows from [Reference Barnet-Lamb, Geraghty, Harris and Taylor4, Lemma 3.3 (5)] that the minimal primes
$R^{\square , \chi }_{\overline {\rho }}$
 together with Corollary 4.19 shows that the ring is geometrically integral. It follows from [Reference Barnet-Lamb, Geraghty, Harris and Taylor4, Lemma 3.3 (5)] that the minimal primes 
 $\mathfrak {q}$
 of
$\mathfrak {q}$
 of 
 $R_{\infty }$
 are of the form
$R_{\infty }$
 are of the form 
 ${\mathfrak p}'(R^{\square }_{\overline {\rho }}\operatorname {\mathrm {\widehat {\otimes }}}_{\mathcal {O}} A)+{\mathfrak p}(R^{\square }_{\overline {\rho }}\operatorname {\mathrm {\widehat {\otimes }}}_{\mathcal {O}} A)$
, where
${\mathfrak p}'(R^{\square }_{\overline {\rho }}\operatorname {\mathrm {\widehat {\otimes }}}_{\mathcal {O}} A)+{\mathfrak p}(R^{\square }_{\overline {\rho }}\operatorname {\mathrm {\widehat {\otimes }}}_{\mathcal {O}} A)$
, where 
 ${\mathfrak p}'$
 is the image of
${\mathfrak p}'$
 is the image of 
 $\mathfrak {q}$
 in
$\mathfrak {q}$
 in 
 $\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}$
 and
$\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}$
 and 
 ${\mathfrak p}$
 is the image of
${\mathfrak p}$
 is the image of 
 $\mathfrak {q}$
 in
$\mathfrak {q}$
 in 
 $\operatorname {\mathrm {Spec}} A$
. This implies the last assertion.
$\operatorname {\mathrm {Spec}} A$
. This implies the last assertion.
 In our arguments, we will not invoke the assumption 
 $p\nmid 2d$
, since eventually this restriction used in construction of
$p\nmid 2d$
, since eventually this restriction used in construction of 
 $M_{\infty }$
 should become redundant. In particular, the next two Lemmas do not use this assumption.
$M_{\infty }$
 should become redundant. In particular, the next two Lemmas do not use this assumption.
Lemma 6.4. Let 
 $\psi :G_F\rightarrow \mathcal {O}^{\times }$
 be a character such that
$\psi :G_F\rightarrow \mathcal {O}^{\times }$
 be a character such that 
 $\psi $
 is trivial on the torsion subgroup of
$\psi $
 is trivial on the torsion subgroup of 
 $G_F^{\mathrm {ab}}$
. Then after replacing L by a finite extension, we may find a character
$G_F^{\mathrm {ab}}$
. Then after replacing L by a finite extension, we may find a character 
 $\eta : G_F \rightarrow \mathcal {O}^{\times }$
 such that
$\eta : G_F \rightarrow \mathcal {O}^{\times }$
 such that 
 $\eta ^d=\psi $
.
$\eta ^d=\psi $
.
Proof. It follows from local class field theory that the maximal torsion-free quotient of 
 $G_F^{\mathrm {ab}}$
 is isomorphic to
$G_F^{\mathrm {ab}}$
 is isomorphic to 
 $\widehat {\mathbb Z}\times \mathbb {Z}_p^{m}$
, where
$\widehat {\mathbb Z}\times \mathbb {Z}_p^{m}$
, where 
 $m=[F:\mathbb {Q}_p]$
. We choose topological generators
$m=[F:\mathbb {Q}_p]$
. We choose topological generators 
 $\gamma _1, \ldots , \gamma _{m+1}$
, where
$\gamma _1, \ldots , \gamma _{m+1}$
, where 
 $\gamma _1$
 is a generator of
$\gamma _1$
 is a generator of 
 $\widehat {\mathbb Z}$
. Let
$\widehat {\mathbb Z}$
. Let 
 $\overline {\psi (\gamma _1)}$
 be the image of
$\overline {\psi (\gamma _1)}$
 be the image of 
 $\psi (\gamma _1)$
 in k. If it is not equal to
$\psi (\gamma _1)$
 in k. If it is not equal to 
 $1$
, then choose
$1$
, then choose 
 $\lambda \in \overline {k}$
 such that
$\lambda \in \overline {k}$
 such that 
 $\lambda ^d= \overline {\psi (\gamma _1)}$
. We enlarge L, so that the residue field contains
$\lambda ^d= \overline {\psi (\gamma _1)}$
. We enlarge L, so that the residue field contains 
 $\lambda $
 and let
$\lambda $
 and let 
 $\mu : \widehat {\mathbb Z}\times \mathbb {Z}_p^{m} \rightarrow \widehat {\mathbb {Z}}\rightarrow \mathcal {O}^{\times }$
 be the unramified character, such that
$\mu : \widehat {\mathbb Z}\times \mathbb {Z}_p^{m} \rightarrow \widehat {\mathbb {Z}}\rightarrow \mathcal {O}^{\times }$
 be the unramified character, such that 
 $\mu (\gamma _1)$
 is equal to the Teichmüller lift of
$\mu (\gamma _1)$
 is equal to the Teichmüller lift of 
 $\lambda $
. After replacing
$\lambda $
. After replacing 
 $\psi $
 with
$\psi $
 with 
 $\psi \mu ^{-d}$
, we may assume that
$\psi \mu ^{-d}$
, we may assume that 
 $\psi (\gamma _1)\equiv 1\ \pmod {\varpi }$
. Thus, we may view
$\psi (\gamma _1)\equiv 1\ \pmod {\varpi }$
. Thus, we may view 
 $\psi $
 as a character on
$\psi $
 as a character on 
 $\mathbb {Z}_p^{m+1}$
 and
$\mathbb {Z}_p^{m+1}$
 and 
 $\psi (\gamma _i)\equiv 1\ \pmod {\varpi }$
 for
$\psi (\gamma _i)\equiv 1\ \pmod {\varpi }$
 for 
 $1\le i \le m+1$
. After enlarging L, we may find
$1\le i \le m+1$
. After enlarging L, we may find 
 $y_i \in (\varpi )$
 such that
$y_i \in (\varpi )$
 such that 
 $(1+y_i)^d= \psi (\gamma _i)$
. Since the series
$(1+y_i)^d= \psi (\gamma _i)$
. Since the series 
 $(1+y_i)^x:=\sum _{n=0}^{\infty } \begin {pmatrix}x\\ n\end {pmatrix} y_i^n$
 converges for all
$(1+y_i)^x:=\sum _{n=0}^{\infty } \begin {pmatrix}x\\ n\end {pmatrix} y_i^n$
 converges for all 
 $x\in \mathbb {Z}_p$
, we may define
$x\in \mathbb {Z}_p$
, we may define 
 $\eta $
 on
$\eta $
 on 
 $\mathbb {Z}_p^{m+1}$
 by sending
$\mathbb {Z}_p^{m+1}$
 by sending 
 $\gamma _i$
 to
$\gamma _i$
 to 
 $1+y_i$
 and then inflate it to
$1+y_i$
 and then inflate it to 
 $G_F$
.
$G_F$
.
Lemma 6.5. Let 
 $\kappa : G_F\rightarrow \mathcal {O}^{\times }$
 be a character. Then there is a crystalline character
$\kappa : G_F\rightarrow \mathcal {O}^{\times }$
 be a character. Then there is a crystalline character 
 $\psi : G_F\rightarrow \mathcal {O}^{\times }$
 such that
$\psi : G_F\rightarrow \mathcal {O}^{\times }$
 such that 
 $\psi \kappa ^{-1}$
 is trivial on the torsion part of
$\psi \kappa ^{-1}$
 is trivial on the torsion part of 
 $G_F^{\mathrm {ab}}$
.
$G_F^{\mathrm {ab}}$
.
 In particular, given characters 
 $\overline {\kappa }: G_F\rightarrow k^{\times }$
 and
$\overline {\kappa }: G_F\rightarrow k^{\times }$
 and 
 $\chi : \mu _{p^{\infty }}(F)\rightarrow \mathcal {O}^{\times }$
, there exists a crystalline character
$\chi : \mu _{p^{\infty }}(F)\rightarrow \mathcal {O}^{\times }$
, there exists a crystalline character 
 $\psi : G_F\rightarrow \mathcal {O}^{\times }$
 lifting
$\psi : G_F\rightarrow \mathcal {O}^{\times }$
 lifting 
 $\overline {\kappa }$
 such that
$\overline {\kappa }$
 such that 
 $\psi (\operatorname {\mathrm {Art}}_F(z))= \chi (z)$
 for all
$\psi (\operatorname {\mathrm {Art}}_F(z))= \chi (z)$
 for all 
 $z\in \mu _{p^{\infty }}(F)$
.
$z\in \mu _{p^{\infty }}(F)$
.
Proof. The Artin map 
 $\operatorname {\mathrm {Art}}_F: F^{\times }\rightarrow G_F^{\mathrm {ab}}$
 of local class field theory allows us to identify characters
$\operatorname {\mathrm {Art}}_F: F^{\times }\rightarrow G_F^{\mathrm {ab}}$
 of local class field theory allows us to identify characters 
 $\psi : G_F \rightarrow \mathcal {O}^{\times }$
 with characters
$\psi : G_F \rightarrow \mathcal {O}^{\times }$
 with characters 
 $\psi : F^{\times }\rightarrow \mathcal {O}^{\times }$
. Under this identification,
$\psi : F^{\times }\rightarrow \mathcal {O}^{\times }$
. Under this identification, 
 $\psi $
 is crystalline if and only if
$\psi $
 is crystalline if and only if 
 $\psi (x)= \prod _{\sigma : F\hookrightarrow L} \sigma (x)^{n_{\sigma }}$
 for some integers
$\psi (x)= \prod _{\sigma : F\hookrightarrow L} \sigma (x)^{n_{\sigma }}$
 for some integers 
 $n_{\sigma }$
 and for all
$n_{\sigma }$
 and for all 
 $x\in \mathcal {O}_F^{\times }$
 by [Reference Conrad22, Proposition B.4].
$x\in \mathcal {O}_F^{\times }$
 by [Reference Conrad22, Proposition B.4].
 Let 
 $\zeta $
 be a generator of the torsion subgroup of
$\zeta $
 be a generator of the torsion subgroup of 
 $F^{\times }$
 and let m be the multiplicative order of
$F^{\times }$
 and let m be the multiplicative order of 
 $\zeta $
. Let
$\zeta $
. Let 
 $\xi $
 be a primitive m-th root of unity in L. Then
$\xi $
 be a primitive m-th root of unity in L. Then 
 $\kappa (\zeta )= \xi ^a$
 for some integer a. Let
$\kappa (\zeta )= \xi ^a$
 for some integer a. Let 
 $\sigma : F\hookrightarrow L$
 be an embedding such that
$\sigma : F\hookrightarrow L$
 be an embedding such that 
 $\sigma (\zeta )=\xi $
. Let
$\sigma (\zeta )=\xi $
. Let 
 $\psi : F^{\times }\rightarrow \mathcal {O}^{\times }$
 be the character
$\psi : F^{\times }\rightarrow \mathcal {O}^{\times }$
 be the character 
 $\psi (x)= \sigma ( x \varpi _F^{-v(x)})^a$
 for all
$\psi (x)= \sigma ( x \varpi _F^{-v(x)})^a$
 for all 
 $x\in F^{\times }$
, where v is a valuation on F normalized so that
$x\in F^{\times }$
, where v is a valuation on F normalized so that 
 $v(\varpi _F)=1$
. Then
$v(\varpi _F)=1$
. Then 
 $\psi \kappa ^{-1}(\zeta )=1$
, and hence,
$\psi \kappa ^{-1}(\zeta )=1$
, and hence, 
 $\psi \kappa ^{-1}$
 is trivial on the torsion subgroup of
$\psi \kappa ^{-1}$
 is trivial on the torsion subgroup of 
 $F^{\times }$
. Moreover,
$F^{\times }$
. Moreover, 
 $\psi $
 is crystalline by the above. Note that
$\psi $
 is crystalline by the above. Note that 
 $\psi \kappa ^{-1}\equiv 1\ \pmod {\varpi }$
.
$\psi \kappa ^{-1}\equiv 1\ \pmod {\varpi }$
.
 For the last part, we may choose any 
 $\kappa : G_F\rightarrow \mathcal {O}^{\times }$
 lifting
$\kappa : G_F\rightarrow \mathcal {O}^{\times }$
 lifting 
 $\overline {\kappa }$
 and satisfying
$\overline {\kappa }$
 and satisfying 
 $\kappa (\operatorname {\mathrm {Art}}_F(z))= \chi (z)$
 for all
$\kappa (\operatorname {\mathrm {Art}}_F(z))= \chi (z)$
 for all 
 $z\in \mu _{p^{\infty }}(F)$
 and apply the previous part.
$z\in \mu _{p^{\infty }}(F)$
 and apply the previous part.
Lemma 6.6. Let 
 $\psi : G_F\rightarrow \mathcal {O}^{\times }$
 be a character lifting
$\psi : G_F\rightarrow \mathcal {O}^{\times }$
 be a character lifting 
 $\det \overline {\rho }$
 and let
$\det \overline {\rho }$
 and let 
 $x:R_{\det \overline {\rho }}\rightarrow \mathcal {O}$
 be the corresponding
$x:R_{\det \overline {\rho }}\rightarrow \mathcal {O}$
 be the corresponding 
 $\mathcal {O}$
-algebra homomorphism. Then the centre Z of G acts on
$\mathcal {O}$
-algebra homomorphism. Then the centre Z of G acts on 
 $M_{\infty }\otimes _{R_{\det \overline {\rho }}, x}\mathcal {O}$
 via the character
$M_{\infty }\otimes _{R_{\det \overline {\rho }}, x}\mathcal {O}$
 via the character 
 $\delta ^{-1}$
, where
$\delta ^{-1}$
, where 
 $\delta : Z\rightarrow \mathcal {O}^{\times }$
 is the composition
$\delta : Z\rightarrow \mathcal {O}^{\times }$
 is the composition 
 $$ \begin{align*}Z\overset{\cong}{\longrightarrow} F^{\times}\overset{\operatorname{\mathrm{Art}}_F}{\longrightarrow} G_F^{\mathrm{ab}}\overset{\varepsilon^{d(d-1)/2} \psi}{\longrightarrow}\mathcal{O}^{\times},\end{align*} $$
$$ \begin{align*}Z\overset{\cong}{\longrightarrow} F^{\times}\overset{\operatorname{\mathrm{Art}}_F}{\longrightarrow} G_F^{\mathrm{ab}}\overset{\varepsilon^{d(d-1)/2} \psi}{\longrightarrow}\mathcal{O}^{\times},\end{align*} $$
where 
 $\varepsilon $
 is the p-adic cyclotomic character.
$\varepsilon $
 is the p-adic cyclotomic character.
 Moreover, 
 $M_{\infty }\otimes _{R_{\det \overline {\rho }}, x}\mathcal {O}$
 is non-zero and projective in the category of linearly compact
$M_{\infty }\otimes _{R_{\det \overline {\rho }}, x}\mathcal {O}$
 is non-zero and projective in the category of linearly compact 
 -modules on which
-modules on which 
 $Z\cap K$
 acts by
$Z\cap K$
 acts by 
 $\delta ^{-1}$
.
$\delta ^{-1}$
.
 Further, if 
 $\psi $
 is crystalline, then there is an algebraic character
$\psi $
 is crystalline, then there is an algebraic character 
 $\theta : \operatorname {\mathrm {Res}}^F_{\mathbb {Q}_p} \mathbb G_m \rightarrow \mathbb G_m$
 defined over L such that
$\theta : \operatorname {\mathrm {Res}}^F_{\mathbb {Q}_p} \mathbb G_m \rightarrow \mathbb G_m$
 defined over L such that 
 $\delta |_{K\cap Z}$
 is equal to the composition
$\delta |_{K\cap Z}$
 is equal to the composition 
 $$ \begin{align*}\mathcal{O}_F^{\times} \hookrightarrow (\operatorname{\mathrm{Res}}^F_{\mathbb{Q}_p} \mathbb G_m)(\mathbb{Q}_p)\rightarrow (\operatorname{\mathrm{Res}}^F_{\mathbb{Q}_p} \mathbb G_m)(L)\overset{\theta}{\longrightarrow}\mathbb G_m(L),\end{align*} $$
$$ \begin{align*}\mathcal{O}_F^{\times} \hookrightarrow (\operatorname{\mathrm{Res}}^F_{\mathbb{Q}_p} \mathbb G_m)(\mathbb{Q}_p)\rightarrow (\operatorname{\mathrm{Res}}^F_{\mathbb{Q}_p} \mathbb G_m)(L)\overset{\theta}{\longrightarrow}\mathbb G_m(L),\end{align*} $$
where 
 $\operatorname {\mathrm {Res}}^F_{\mathbb {Q}_p}$
 denotes the restriction of scalars.
$\operatorname {\mathrm {Res}}^F_{\mathbb {Q}_p}$
 denotes the restriction of scalars.
Proof. It follows from the discussion at the beginning of [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14, Section 4.22] that Z acts via 
 $\delta $
 on the Pontryagin dual of
$\delta $
 on the Pontryagin dual of 
 $M_{\infty }\otimes _{R_{\det \overline {\rho }}, x}\mathcal {O}$
. Hence, it acts on
$M_{\infty }\otimes _{R_{\det \overline {\rho }}, x}\mathcal {O}$
. Hence, it acts on 
 $M_{\infty }\otimes _{R_{\det \overline {\rho }}, x}\mathcal {O}$
 via
$M_{\infty }\otimes _{R_{\det \overline {\rho }}, x}\mathcal {O}$
 via 
 $\delta ^{-1}$
. The second part follows from [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14, Corollary 4.26]. The last part follows from [Reference Conrad22, Proposition B.4] as explained in the proof of Lemma 6.5.
$\delta ^{-1}$
. The second part follows from [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14, Corollary 4.26]. The last part follows from [Reference Conrad22, Proposition B.4] as explained in the proof of Lemma 6.5.
 If V is a continuous representation of K on a finite dimensional L-vector space, then we define a finitely generated 
 $R_{\infty }[1/p]$
-module
$R_{\infty }[1/p]$
-module 
 $M_{\infty }(V)$
 as follows. Since K is compact, it stabilizes a bounded
$M_{\infty }(V)$
 as follows. Since K is compact, it stabilizes a bounded 
 $\mathcal {O}$
-lattice
$\mathcal {O}$
-lattice 
 $\Theta $
 in V. Let
$\Theta $
 in V. Let 

where 
 $(\cdot )^d:= \operatorname {\mathrm {Hom}}^{\mathrm {cont}}_{\mathcal {O}} (\cdot , \mathcal {O})$
. Then
$(\cdot )^d:= \operatorname {\mathrm {Hom}}^{\mathrm {cont}}_{\mathcal {O}} (\cdot , \mathcal {O})$
. Then 
 $M_{\infty }(\Theta )$
 is a finitely generated
$M_{\infty }(\Theta )$
 is a finitely generated 
 $R_{\infty }$
-module. The module
$R_{\infty }$
-module. The module 
 $M_{\infty }(V):=M_{\infty }(\Theta )\otimes _{\mathcal {O}}L$
 does not depend on the choice of a lattice
$M_{\infty }(V):=M_{\infty }(\Theta )\otimes _{\mathcal {O}}L$
 does not depend on the choice of a lattice 
 $\Theta $
.
$\Theta $
.
 We will denote by 
 $\operatorname {\mathrm {Irr}}(G)$
 the set of equivalence classes of irreducible algebraic representation of
$\operatorname {\mathrm {Irr}}(G)$
 the set of equivalence classes of irreducible algebraic representation of 
 $(\operatorname {\mathrm {Res}}^F_{\mathbb {Q}_p} \operatorname {\mathrm {GL}}_d)_L$
 defined over L. If
$(\operatorname {\mathrm {Res}}^F_{\mathbb {Q}_p} \operatorname {\mathrm {GL}}_d)_L$
 defined over L. If 
 $\xi \in \operatorname {\mathrm {Irr}}(G)$
, then we will consider it as a representation of K by evaluating at L and letting K act via the composition
$\xi \in \operatorname {\mathrm {Irr}}(G)$
, then we will consider it as a representation of K by evaluating at L and letting K act via the composition 
 $$ \begin{align*}K\hookrightarrow (\operatorname{\mathrm{Res}}^F_{\mathbb{Q}_p} \operatorname{\mathrm{GL}}_d)(\mathbb{Q}_p) \rightarrow (\operatorname{\mathrm{Res}}^F_{\mathbb{Q}_p} \operatorname{\mathrm{GL}}_d)(L).\end{align*} $$
$$ \begin{align*}K\hookrightarrow (\operatorname{\mathrm{Res}}^F_{\mathbb{Q}_p} \operatorname{\mathrm{GL}}_d)(\mathbb{Q}_p) \rightarrow (\operatorname{\mathrm{Res}}^F_{\mathbb{Q}_p} \operatorname{\mathrm{GL}}_d)(L).\end{align*} $$
If M is a compact 
 $\mathcal {O}$
-module, then we define an L-Banach space
$\mathcal {O}$
-module, then we define an L-Banach space 
 $$ \begin{align*}\Pi(M):=\operatorname{\mathrm{Hom}}^{\mathrm{cont}}_{\mathcal{O}}(M, L),\end{align*} $$
$$ \begin{align*}\Pi(M):=\operatorname{\mathrm{Hom}}^{\mathrm{cont}}_{\mathcal{O}}(M, L),\end{align*} $$
equipped with supremum norm. If M is a compact 
 -module, then the action of K on M makes
-module, then the action of K on M makes 
 $\Pi (M)$
 into a unitary L-Banach space representation of K. For example, the map
$\Pi (M)$
 into a unitary L-Banach space representation of K. For example, the map 
 induces an isomorphism of unitary L-Banach space representations
 induces an isomorphism of unitary L-Banach space representations 
 , the space of continuous functions from K to L, with K-action given by left translations; [Reference Schneider and Teitelbaum46, Corollary 2.2].
, the space of continuous functions from K to L, with K-action given by left translations; [Reference Schneider and Teitelbaum46, Corollary 2.2].
Lemma 6.7. Let 
 $\theta : \operatorname {\mathrm {Res}}^F_{\mathbb {Q}_p} \mathbb G_m \rightarrow \mathbb G_m$
 be an algebraic character defined over L and let
$\theta : \operatorname {\mathrm {Res}}^F_{\mathbb {Q}_p} \mathbb G_m \rightarrow \mathbb G_m$
 be an algebraic character defined over L and let 
 $\delta : Z\cap K\rightarrow \mathcal {O}^{\times }$
 be the character associated to
$\delta : Z\cap K\rightarrow \mathcal {O}^{\times }$
 be the character associated to 
 $\theta $
 in Lemma 6.6. Let M be non-zero and projective in the category of linearly compact
$\theta $
 in Lemma 6.6. Let M be non-zero and projective in the category of linearly compact 
 -modules on which
-modules on which 
 $Z\cap K$
 acts by
$Z\cap K$
 acts by 
 $\delta ^{-1}$
. Then there is
$\delta ^{-1}$
. Then there is 
 $\xi \in \operatorname {\mathrm {Irr}}(G)$
 such that
$\xi \in \operatorname {\mathrm {Irr}}(G)$
 such that 
 $\operatorname {\mathrm {Hom}}^{\mathrm {cont}}_K(M, \xi ^*)\neq 0$
.
$\operatorname {\mathrm {Hom}}^{\mathrm {cont}}_K(M, \xi ^*)\neq 0$
.
Proof. We may assume that M is a direct summand of 
 since an arbitrary projective module is isomorphic to a product of indecomposable projectives, and these are direct summands of
 since an arbitrary projective module is isomorphic to a product of indecomposable projectives, and these are direct summands of 
 . Then the Banach space
. Then the Banach space 
 $\Pi (M)$
 is a non-zero direct summand
$\Pi (M)$
 is a non-zero direct summand 
 $\mathcal C_{\delta }(K, L)$
, the subspace of
$\mathcal C_{\delta }(K, L)$
, the subspace of 
 $\mathcal C(K, L)$
 on which
$\mathcal C(K, L)$
 on which 
 $Z\cap K$
 acts by
$Z\cap K$
 acts by 
 $\delta $
.
$\delta $
.
 Using the theory of highest weight, we may find 
 $\tau \in \operatorname {\mathrm {Irr}}(G)$
 such that the central character of
$\tau \in \operatorname {\mathrm {Irr}}(G)$
 such that the central character of 
 $\tau $
 is equal to
$\tau $
 is equal to 
 $\theta $
. It follows from [Reference Dospinescu, Paškūnas and Schraen23, Corollary 7.8] that the evaluation map
$\theta $
. It follows from [Reference Dospinescu, Paškūnas and Schraen23, Corollary 7.8] that the evaluation map 
 $$ \begin{align*}\bigoplus_{\xi' \in \operatorname{\mathrm{Irr}}(G/Z)} \tau\otimes \xi'\otimes \operatorname{\mathrm{Hom}}_K^{\mathrm{cont}}(\tau\otimes \xi', \Pi(M))\rightarrow \Pi(M)\end{align*} $$
$$ \begin{align*}\bigoplus_{\xi' \in \operatorname{\mathrm{Irr}}(G/Z)} \tau\otimes \xi'\otimes \operatorname{\mathrm{Hom}}_K^{\mathrm{cont}}(\tau\otimes \xi', \Pi(M))\rightarrow \Pi(M)\end{align*} $$
has dense image. Thus, there is 
 $\xi '\in \operatorname {\mathrm {Irr}}(G/Z)$
 and an irreducible summand
$\xi '\in \operatorname {\mathrm {Irr}}(G/Z)$
 and an irreducible summand 
 $\xi $
 of
$\xi $
 of 
 $\tau \otimes \xi '$
 such that
$\tau \otimes \xi '$
 such that 
 $\operatorname {\mathrm {Hom}}_K^{\mathrm {cont}}(\xi , \Pi (M))\neq 0$
. Dually, this implies
$\operatorname {\mathrm {Hom}}_K^{\mathrm {cont}}(\xi , \Pi (M))\neq 0$
. Dually, this implies 
 $\operatorname {\mathrm {Hom}}_K^{\mathrm {cont}}(M, \xi ^*)\neq 0$
.
$\operatorname {\mathrm {Hom}}_K^{\mathrm {cont}}(M, \xi ^*)\neq 0$
.
Theorem 6.8. The action of 
 $R^{\square }_{\overline {\rho }}$
 on
$R^{\square }_{\overline {\rho }}$
 on 
 $M_{\infty }$
 is faithful.
$M_{\infty }$
 is faithful.
Proof. Let 
 ${\mathfrak p}$
 be a minimal prime of
${\mathfrak p}$
 be a minimal prime of 
 $R^{\square }_{\overline {\rho }}$
. We have shown in Corollary 4.21 that there is a character
$R^{\square }_{\overline {\rho }}$
. We have shown in Corollary 4.21 that there is a character 
 $\chi : \mu _{p^{\infty }}(F)\rightarrow L^{\times }$
 such that
$\chi : \mu _{p^{\infty }}(F)\rightarrow L^{\times }$
 such that 
 $R^{\square }_{\overline {\rho }}/{\mathfrak p} = R^{\square , \chi }_{\overline {\rho }}$
. It follows from Lemma 6.5 that there is a crystalline character
$R^{\square }_{\overline {\rho }}/{\mathfrak p} = R^{\square , \chi }_{\overline {\rho }}$
. It follows from Lemma 6.5 that there is a crystalline character 
 $\psi : G_F\rightarrow \mathcal {O}^{\times }$
 lifting
$\psi : G_F\rightarrow \mathcal {O}^{\times }$
 lifting 
 $\det \overline {\rho }$
 such that
$\det \overline {\rho }$
 such that 
 $\psi (\operatorname {\mathrm {Art}}_F(z))= \chi (z)$
 for all
$\psi (\operatorname {\mathrm {Art}}_F(z))= \chi (z)$
 for all 
 $z\in \mu _{p^{\infty }}(F)$
. Let
$z\in \mu _{p^{\infty }}(F)$
. Let 
 $x:R_{\det \overline {\rho }}\rightarrow \mathcal {O}$
 be the corresponding
$x:R_{\det \overline {\rho }}\rightarrow \mathcal {O}$
 be the corresponding 
 $\mathcal {O}$
-algebra homomorphism. It follows from Lemmas 6.6, 6.7 that there is
$\mathcal {O}$
-algebra homomorphism. It follows from Lemmas 6.6, 6.7 that there is 
 $\xi \in \operatorname {\mathrm {Irr}}(G)$
 such that
$\xi \in \operatorname {\mathrm {Irr}}(G)$
 such that 
 $$ \begin{align*}\operatorname{\mathrm{Hom}}_K^{\mathrm{cont}}(M_{\infty}\otimes_{R_{\det \overline{\rho}},x}\mathcal{O}, \xi^*)\neq 0.\end{align*} $$
$$ \begin{align*}\operatorname{\mathrm{Hom}}_K^{\mathrm{cont}}(M_{\infty}\otimes_{R_{\det \overline{\rho}},x}\mathcal{O}, \xi^*)\neq 0.\end{align*} $$
This implies that 
 $M_{\infty }(\xi )\otimes _{R_{\det \overline {\rho }}, x} \mathcal {O}\neq 0.$
$M_{\infty }(\xi )\otimes _{R_{\det \overline {\rho }}, x} \mathcal {O}\neq 0.$
 Let 
 $\mathfrak a$
 be the
$\mathfrak a$
 be the 
 $R_{\infty }$
 annihilator of
$R_{\infty }$
 annihilator of 
 $M_{\infty }$
. In [Reference Emerton and Paškūnas25, Theorem 6.12], it is shown, following the approach of Chenevier [Reference Chenevier17] and Nakamura [Reference Nakamura40], that the closure in
$M_{\infty }$
. In [Reference Emerton and Paškūnas25, Theorem 6.12], it is shown, following the approach of Chenevier [Reference Chenevier17] and Nakamura [Reference Nakamura40], that the closure in 
 $\operatorname {\mathrm {Spec}} R_{\infty }$
 of the union of the supports of
$\operatorname {\mathrm {Spec}} R_{\infty }$
 of the union of the supports of 
 $M_{\infty }(\xi ')$
 for all
$M_{\infty }(\xi ')$
 for all 
 $\xi '\in \operatorname {\mathrm {Irr}}(G)$
 is a union of irreducible components of
$\xi '\in \operatorname {\mathrm {Irr}}(G)$
 is a union of irreducible components of 
 $\operatorname {\mathrm {Spec}} R_{\infty }$
. Thus, there is a minimal prime
$\operatorname {\mathrm {Spec}} R_{\infty }$
. Thus, there is a minimal prime 
 $\mathfrak {q}$
 of
$\mathfrak {q}$
 of 
 $R_{\infty }$
 such that
$R_{\infty }$
 such that 
 $\operatorname {\mathrm {Supp}} M_{\infty }(\xi )\subset V(\mathfrak {q})\subset V(\mathfrak a)$
.
$\operatorname {\mathrm {Supp}} M_{\infty }(\xi )\subset V(\mathfrak {q})\subset V(\mathfrak a)$
.
 Since 
 $M_{\infty }(\xi )\otimes _{R_{\det \overline {\rho }}, x} \mathcal {O}\neq 0$
, Lemma 6.3 implies that the image of
$M_{\infty }(\xi )\otimes _{R_{\det \overline {\rho }}, x} \mathcal {O}\neq 0$
, Lemma 6.3 implies that the image of 
 $\mathfrak {q}$
 in
$\mathfrak {q}$
 in 
 $\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}$
 is equal to
$\operatorname {\mathrm {Spec}} R^{\square }_{\overline {\rho }}$
 is equal to 
 ${\mathfrak p}$
. Thus,
${\mathfrak p}$
. Thus, 
 ${\mathfrak p}$
 contains
${\mathfrak p}$
 contains 
 $\mathfrak a \cap R^{\square }_{\overline {\rho }}$
, which is the
$\mathfrak a \cap R^{\square }_{\overline {\rho }}$
, which is the 
 $R^{\square }_{\overline {\rho }}$
-annihilator of
$R^{\square }_{\overline {\rho }}$
-annihilator of 
 $M_{\infty }$
. Since
$M_{\infty }$
. Since 
 $R^{\square }_{\overline {\rho }}$
 is reduced by Corollary 4.22, the intersection of all minimal prime ideals is zero, and hence,
$R^{\square }_{\overline {\rho }}$
 is reduced by Corollary 4.22, the intersection of all minimal prime ideals is zero, and hence, 
 $R^{\square }_{\overline {\rho }}$
 acts faithfully on
$R^{\square }_{\overline {\rho }}$
 acts faithfully on 
 $M_{\infty }$
.
$M_{\infty }$
.
Proof of Theorem 6.1.
 This is proved in the same way as [Reference Emerton and Paškūnas25, Theorems 5.1, 5.3]. Let us sketch the proof in the case of 
 $\Sigma ^{\mathrm {cris}}$
 for the convenience of the reader. For each
$\Sigma ^{\mathrm {cris}}$
 for the convenience of the reader. For each 
 $\xi \in \operatorname {\mathrm {Irr}}(G)$
, let
$\xi \in \operatorname {\mathrm {Irr}}(G)$
, let 
 $\mathfrak a_{\xi }$
 be the
$\mathfrak a_{\xi }$
 be the 
 $R^{\square }_{\overline {\rho }}$
-annihilator of
$R^{\square }_{\overline {\rho }}$
-annihilator of 
 $M_{\infty }(\xi )$
. It follows from [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14, Lemma 4.18] that
$M_{\infty }(\xi )$
. It follows from [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14, Lemma 4.18] that 
 $R^{\square }_{\overline {\rho }}/\mathfrak a_{\xi }$
 is a quotient of the crystalline deformation ring of
$R^{\square }_{\overline {\rho }}/\mathfrak a_{\xi }$
 is a quotient of the crystalline deformation ring of 
 $\overline {\rho }$
 with Hodge–Tate weights corresponding to the highest weight of
$\overline {\rho }$
 with Hodge–Tate weights corresponding to the highest weight of 
 $\xi $
; see [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14, Section 1.8], [Reference Dospinescu, Paškūnas and Schraen23, Remark 5.14]. Moreover,
$\xi $
; see [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14, Section 1.8], [Reference Dospinescu, Paškūnas and Schraen23, Remark 5.14]. Moreover, 
 $R^{\square }_{\overline {\rho }}/\mathfrak a_{\xi }$
 is a union of irreducible components of that ring. This implies that
$R^{\square }_{\overline {\rho }}/\mathfrak a_{\xi }$
 is a union of irreducible components of that ring. This implies that 
 $R^{\square }_{\overline {\rho }}/\mathfrak a_{\xi }$
 is reduced and
$R^{\square }_{\overline {\rho }}/\mathfrak a_{\xi }$
 is reduced and 
 $\mathcal {O}$
-torsion free. The set
$\mathcal {O}$
-torsion free. The set 
 $\Sigma ^{\mathrm {cris}}$
 contains the set of maximal ideals of
$\Sigma ^{\mathrm {cris}}$
 contains the set of maximal ideals of 
 $(R^{\square }_{\overline {\rho }}/\mathfrak a_{\xi })[1/p]$
. Since
$(R^{\square }_{\overline {\rho }}/\mathfrak a_{\xi })[1/p]$
. Since 
 $(R^{\square }_{\overline {\rho }}/\mathfrak a_{\xi })[1/p]$
 is Jacobson, if
$(R^{\square }_{\overline {\rho }}/\mathfrak a_{\xi })[1/p]$
 is Jacobson, if 
 $a\in R^{\square }_{\overline {\rho }}$
 is contained in the intersection of all maximal ideals in
$a\in R^{\square }_{\overline {\rho }}$
 is contained in the intersection of all maximal ideals in 
 $\Sigma ^{\mathrm {cris}}$
, then a will annihilate
$\Sigma ^{\mathrm {cris}}$
, then a will annihilate 
 $M_{\infty }(\xi )$
 for all
$M_{\infty }(\xi )$
 for all 
 $\xi \in \operatorname {\mathrm {Irr}}(G)$
. The continuous L-linear dual of
$\xi \in \operatorname {\mathrm {Irr}}(G)$
. The continuous L-linear dual of 
 $M_{\infty }(\xi )$
 can be identified with
$M_{\infty }(\xi )$
 can be identified with 
 $\operatorname {\mathrm {Hom}}_K(\xi , \Pi (M_{\infty }))$
. The key point is that the image of the evaluation map
$\operatorname {\mathrm {Hom}}_K(\xi , \Pi (M_{\infty }))$
. The key point is that the image of the evaluation map 
 $$ \begin{align} \bigoplus_{\xi\in \operatorname{\mathrm{Irr}}(G)} \xi\otimes_L \operatorname{\mathrm{Hom}}_K(\xi, \Pi(M_{\infty}))\rightarrow \Pi(M_{\infty}) \end{align} $$
$$ \begin{align} \bigoplus_{\xi\in \operatorname{\mathrm{Irr}}(G)} \xi\otimes_L \operatorname{\mathrm{Hom}}_K(\xi, \Pi(M_{\infty}))\rightarrow \Pi(M_{\infty}) \end{align} $$
is dense. Thus, a will annihilate the left-hand side of (35), and by density it will annihilate 
 $\Pi (M_{\infty })$
. The continuous L-linear dual of
$\Pi (M_{\infty })$
. The continuous L-linear dual of 
 $\Pi (M_{\infty })$
 can be identified with
$\Pi (M_{\infty })$
 can be identified with 
 $M_{\infty }[1/p]$
. Since
$M_{\infty }[1/p]$
. Since 
 $R^{\square }_{\overline {\rho }}$
 is
$R^{\square }_{\overline {\rho }}$
 is 
 $\mathcal {O}$
-torsion free and
$\mathcal {O}$
-torsion free and 
 $R^{\square }_{\overline {\rho }}$
 acts faithfully on
$R^{\square }_{\overline {\rho }}$
 acts faithfully on 
 $M_{\infty }$
, by Theorem 6.8, we deduce that
$M_{\infty }$
, by Theorem 6.8, we deduce that 
 $a=0$
.
$a=0$
.
 If 
 $\Sigma =\Sigma ^{\mathrm {prnc}}_{\underline {k}}$
 or
$\Sigma =\Sigma ^{\mathrm {prnc}}_{\underline {k}}$
 or 
 $\Sigma ^{\mathrm {spcd}}_{\underline {k}}$
, then the argument is the same, except that instead of considering all
$\Sigma ^{\mathrm {spcd}}_{\underline {k}}$
, then the argument is the same, except that instead of considering all 
 $\xi \in \operatorname {\mathrm {Irr}}(G)$
, one fixes
$\xi \in \operatorname {\mathrm {Irr}}(G)$
, one fixes 
 $\xi \in \operatorname {\mathrm {Irr}}(G)$
, such that the highest weight of
$\xi \in \operatorname {\mathrm {Irr}}(G)$
, such that the highest weight of 
 $\xi $
 corresponds to the Hodge–Tate weights
$\xi $
 corresponds to the Hodge–Tate weights 
 $\underline {k}$
 and one considers the family
$\underline {k}$
 and one considers the family 
 $\xi \otimes _L V$
, where V are principal series or appropriate supercuspidal types; see the proof of Theorems 5.1, 5.3 in [Reference Emerton and Paškūnas25] for more details.
$\xi \otimes _L V$
, where V are principal series or appropriate supercuspidal types; see the proof of Theorems 5.1, 5.3 in [Reference Emerton and Paškūnas25] for more details.
Remark 6.9. It is natural to ask whether the ring 
 $R_{\infty }$
 acts faithfully on
$R_{\infty }$
 acts faithfully on 
 $M_{\infty }$
. We cannot answer this question in general since it boils down to whether every irreducible component of the potentially semi-stable rings
$M_{\infty }$
. We cannot answer this question in general since it boils down to whether every irreducible component of the potentially semi-stable rings 
 $R^{\square , \xi , \tau }_{\tilde {v}}$
 (see the proof of Lemma 6.3, where
$R^{\square , \xi , \tau }_{\tilde {v}}$
 (see the proof of Lemma 6.3, where 
 $v\in S_p\setminus {\mathfrak p}$
 is a place above p, different from the place at which the patching construction is carried out) has a point corresponding to an automorphic Galois representation. These questions are connected with modularity lifting theorems and the Fontaine–Mazur conjecture; see [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14, Remark 4.20].
$v\in S_p\setminus {\mathfrak p}$
 is a place above p, different from the place at which the patching construction is carried out) has a point corresponding to an automorphic Galois representation. These questions are connected with modularity lifting theorems and the Fontaine–Mazur conjecture; see [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14, Remark 4.20].
 However, if all 
 $R^{\square , \xi , \tau }_{\tilde {v}}$
 were integral domains, then the ring A in Lemma 6.3 would also be an integral domain, and we would deduce from the proof of Theorem 6.8 that
$R^{\square , \xi , \tau }_{\tilde {v}}$
 were integral domains, then the ring A in Lemma 6.3 would also be an integral domain, and we would deduce from the proof of Theorem 6.8 that 
 $R_{\infty }$
 acts faithfully on
$R_{\infty }$
 acts faithfully on 
 $M_{\infty }$
. A further possibility is to avoid the modularity lifting related issues by carrying out the patching construction of [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14] at all places above p at once. Then the proof of Theorem 6.8 would carry over in this new setting to show that
$M_{\infty }$
. A further possibility is to avoid the modularity lifting related issues by carrying out the patching construction of [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14] at all places above p at once. Then the proof of Theorem 6.8 would carry over in this new setting to show that 
 $R_{\infty }$
 acts faithfully on
$R_{\infty }$
 acts faithfully on 
 $M_{\infty }$
.
$M_{\infty }$
.
Remark 6.10. In [Reference Böckle, Iyengar and Paškūnas7], which is a sequel to this paper, we have proved the density of 
 $\Sigma ^{\mathrm {cris}}$
 in the rigid analytic space
$\Sigma ^{\mathrm {cris}}$
 in the rigid analytic space 
 $(\operatorname {\mathrm {Spf}} R^{\square }_{\overline {\rho }})^{\mathrm {rig}}$
 associated to the formal scheme
$(\operatorname {\mathrm {Spf}} R^{\square }_{\overline {\rho }})^{\mathrm {rig}}$
 associated to the formal scheme 
 $\operatorname {\mathrm {Spf}} R^{\square }_{\overline {\rho }}$
 by making a strong use of [Reference Emerton and Gee24] to show that
$\operatorname {\mathrm {Spf}} R^{\square }_{\overline {\rho }}$
 by making a strong use of [Reference Emerton and Gee24] to show that 
 $\Sigma ^{\mathrm {cris}}$
 is non-empty. This, in turn, implies Theorem 6.1 for
$\Sigma ^{\mathrm {cris}}$
 is non-empty. This, in turn, implies Theorem 6.1 for 
 $\Sigma ^{\mathrm {cris}}$
 without any restrictions on the prime p; see [Reference Böckle, Iyengar and Paškūnas7, Corollary 5.2]. However, the sets
$\Sigma ^{\mathrm {cris}}$
 without any restrictions on the prime p; see [Reference Böckle, Iyengar and Paškūnas7, Corollary 5.2]. However, the sets 
 $\Sigma ^{\mathrm {prnc}}_{\underline {k}}$
 and
$\Sigma ^{\mathrm {prnc}}_{\underline {k}}$
 and 
 $\Sigma ^{\mathrm {spcd}}_{\underline {k}}$
 for a fixed regular
$\Sigma ^{\mathrm {spcd}}_{\underline {k}}$
 for a fixed regular 
 $\underline {k}$
 are not Zariski dense in
$\underline {k}$
 are not Zariski dense in 
 $(\operatorname {\mathrm {Spf}} R^{\square }_{\overline {\rho }})^{\mathrm {rig}}$
, and the argument explained in this section is the only known method to approach the density result in Theorem 6.1 in these cases. We also find Theorem 6.8 to be an interesting result in its own right: if one believes the expectation in [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14, Section 6] that
$(\operatorname {\mathrm {Spf}} R^{\square }_{\overline {\rho }})^{\mathrm {rig}}$
, and the argument explained in this section is the only known method to approach the density result in Theorem 6.1 in these cases. We also find Theorem 6.8 to be an interesting result in its own right: if one believes the expectation in [Reference Caraiani, Emerton, Gee, Geraghty, Paškūnas and Shin14, Section 6] that 
 $M_{\infty }$
 should realize the conjectural p-adic Langlands correspondence, then Theorem 6.8 has to hold.
$M_{\infty }$
 should realize the conjectural p-adic Langlands correspondence, then Theorem 6.8 has to hold.
A Kummer-irreducible points
 The purpose of the appendix is to slightly generalize the notion of non-special points in 
 $\overline {X}^{\mathrm {ps}}= \operatorname {\mathrm {Spec}} R^{\mathrm {ps}}/\varpi $
 in [Reference Böckle and Juschka9, Definition 5.1.2]. We use the notation of the main text. In particular,
$\overline {X}^{\mathrm {ps}}= \operatorname {\mathrm {Spec}} R^{\mathrm {ps}}/\varpi $
 in [Reference Böckle and Juschka9, Definition 5.1.2]. We use the notation of the main text. In particular, 
 $\zeta _p$
 is a primitive p-th root of unity in a fixed algebraic closure
$\zeta _p$
 is a primitive p-th root of unity in a fixed algebraic closure 
 $\overline {F}$
 of F. If
$\overline {F}$
 of F. If 
 $x\in \overline {X}^{\mathrm {ps}}$
, then we let
$x\in \overline {X}^{\mathrm {ps}}$
, then we let 
 $D_x= D^u\otimes _{R^{\mathrm {ps}}}\overline {\kappa (x)}$
, where
$D_x= D^u\otimes _{R^{\mathrm {ps}}}\overline {\kappa (x)}$
, where 
 $\overline {\kappa (x)}$
 is an algebraic closure of the residue field at x, and we let
$\overline {\kappa (x)}$
 is an algebraic closure of the residue field at x, and we let 
 $\rho _x:G_F\to \operatorname {\mathrm {GL}}_d(\overline {\kappa (x)})$
 be the semisimple representation whose pseudo-character is
$\rho _x:G_F\to \operatorname {\mathrm {GL}}_d(\overline {\kappa (x)})$
 be the semisimple representation whose pseudo-character is 
 $D_x$
.
$D_x$
.
Definition A.1. We say that 
 $x\in P_1(R^{\mathrm {ps}}/\varpi )$
 is Kummer-irreducible if the restriction of
$x\in P_1(R^{\mathrm {ps}}/\varpi )$
 is Kummer-irreducible if the restriction of 
 $D_x$
 to
$D_x$
 to 
 $G_{F'}$
 is absolutely irreducible for all degree p Galois extensions
$G_{F'}$
 is absolutely irreducible for all degree p Galois extensions 
 $F'$
 of
$F'$
 of 
 $F(\zeta _p)$
. Otherwise, we say that x is Kummer-reducible.
$F(\zeta _p)$
. Otherwise, we say that x is Kummer-reducible.
 Thus, x is Kummer-irreducible if and only if 
 $\rho _x|_{G_{F(\zeta _p)}}$
 is non-special in the sense of [Reference Böckle and Juschka9, Definition 5.1.2]. In particular, if
$\rho _x|_{G_{F(\zeta _p)}}$
 is non-special in the sense of [Reference Böckle and Juschka9, Definition 5.1.2]. In particular, if 
 $\zeta _p\in F$
, then both notions coincide. Our main interest in this notion is the following Lemma.
$\zeta _p\in F$
, then both notions coincide. Our main interest in this notion is the following Lemma.
Lemma A.2. If x is Kummer-irreducible, then 
 $H^2(G_F, {\operatorname {ad}^0} \rho _x)=0$
.
$H^2(G_F, {\operatorname {ad}^0} \rho _x)=0$
.
Proof. Since the order of 
 $\operatorname {\mathrm {Gal}}(F(\zeta _p)/F)$
 is prime to p, we have
$\operatorname {\mathrm {Gal}}(F(\zeta _p)/F)$
 is prime to p, we have 
 $$ \begin{align*}H^2(G_F, {\operatorname{ad}^0} \rho_x)\cong H^2(G_{F(\zeta_p)}, {\operatorname{ad}^0} \rho_x)^{\operatorname{\mathrm{Gal}}(F(\zeta_p)/F)}.\end{align*} $$
$$ \begin{align*}H^2(G_F, {\operatorname{ad}^0} \rho_x)\cong H^2(G_{F(\zeta_p)}, {\operatorname{ad}^0} \rho_x)^{\operatorname{\mathrm{Gal}}(F(\zeta_p)/F)}.\end{align*} $$
Since x is Kummer-irreducible, the restriction of 
 $\rho _x$
 to
$\rho _x$
 to 
 $G_{F(\zeta _p)}$
 is non-special, and it follows from [Reference Böckle and Juschka9, Lemma 5.1.1] that
$G_{F(\zeta _p)}$
 is non-special, and it follows from [Reference Böckle and Juschka9, Lemma 5.1.1] that 
 $H^2(G_{F(\zeta _p)}, {\operatorname {ad}^0} \rho _x)=0$
.
$H^2(G_{F(\zeta _p)}, {\operatorname {ad}^0} \rho _x)=0$
.
 If 
 $E\subset \overline F$
 is a finite extension of F, then we denote by
$E\subset \overline F$
 is a finite extension of F, then we denote by 
 $R^{\mathrm {ps}}_{E}$
 the universal ring for deformations of the pseudo-character
$R^{\mathrm {ps}}_{E}$
 the universal ring for deformations of the pseudo-character 
 $\overline {D}|_{G_{E}}$
. We let
$\overline {D}|_{G_{E}}$
. We let 
 $\overline {X}^{\mathrm {ps}}_E=\operatorname {\mathrm {Spec}} R^{\mathrm {ps}}_{E}$
,
$\overline {X}^{\mathrm {ps}}_E=\operatorname {\mathrm {Spec}} R^{\mathrm {ps}}_{E}$
, 
 $U^{\mathrm {irr}}_E$
 the absolute irreducible locus in
$U^{\mathrm {irr}}_E$
 the absolute irreducible locus in 
 $\overline {X}^{\mathrm {ps}}_E$
 and
$\overline {X}^{\mathrm {ps}}_E$
 and 
 $U^{{\mathrm {n}\text{-}\mathrm {spcl}}}_E$
 the non-special locus in
$U^{{\mathrm {n}\text{-}\mathrm {spcl}}}_E$
 the non-special locus in 
 $U^{\mathrm {irr}}_E$
. These are open subschemes of
$U^{\mathrm {irr}}_E$
. These are open subschemes of 
 $\overline {X}^{\mathrm {ps}}_E$
. Let
$\overline {X}^{\mathrm {ps}}_E$
. Let 
 $U^{\operatorname {\mathrm {spcl}}}_E$
 be the complement of
$U^{\operatorname {\mathrm {spcl}}}_E$
 be the complement of 
 $U^{{\mathrm {n}\text{-}\mathrm {spcl}}}_E$
 of
$U^{{\mathrm {n}\text{-}\mathrm {spcl}}}_E$
 of 
 $U^{\mathrm {irr}}_E$
. We drop the subscript E, when
$U^{\mathrm {irr}}_E$
. We drop the subscript E, when 
 $E=F$
.
$E=F$
.
Lemma A.3. If 
 $E\subset \overline F$
 is a finite extension of F, then the morphism
$E\subset \overline F$
 is a finite extension of F, then the morphism 
 $r: X^{\mathrm {ps}} \rightarrow X^{\mathrm {ps}}_E$
, induced by restriction of pseudo-characters of
$r: X^{\mathrm {ps}} \rightarrow X^{\mathrm {ps}}_E$
, induced by restriction of pseudo-characters of 
 $G_F$
 to
$G_F$
 to 
 $G_{E}$
, is finite.
$G_{E}$
, is finite.
Proof. The proof is similar to the proof of Proposition 3.24. The map 
 $R^{\mathrm {ps}}_E\rightarrow R^{\mathrm {ps}}$
 is a local homomorphism of complete local rings with residue field k. Topological Nakayama’s lemma implies that it is enough to show that the fibre ring
$R^{\mathrm {ps}}_E\rightarrow R^{\mathrm {ps}}$
 is a local homomorphism of complete local rings with residue field k. Topological Nakayama’s lemma implies that it is enough to show that the fibre ring 
 $S:=R^{\mathrm {ps}}/{\mathfrak m}_{R^{\mathrm {ps}}_{E}}R^{\mathrm {ps}}$
 is a finite dimensional k-vector space, which amounts to showing
$S:=R^{\mathrm {ps}}/{\mathfrak m}_{R^{\mathrm {ps}}_{E}}R^{\mathrm {ps}}$
 is a finite dimensional k-vector space, which amounts to showing 
 $\operatorname {\mathrm {Spec}} S=\{{\mathfrak m}_S\}$
. We note that S represents the functor of deformations
$\operatorname {\mathrm {Spec}} S=\{{\mathfrak m}_S\}$
. We note that S represents the functor of deformations 
 $D_A:A[G_F]\to A$
 of
$D_A:A[G_F]\to A$
 of 
 $\overline {D}$
 to local artinian k-algebras A such that
$\overline {D}$
 to local artinian k-algebras A such that 
 $D_A|_{G_{E}}=\overline {D}|_{G_{E}}\otimes _k A$
.
$D_A|_{G_{E}}=\overline {D}|_{G_{E}}\otimes _k A$
.
 Let y be any point of 
 $\operatorname {\mathrm {Spec}} S$
 with associated pseudo-character
$\operatorname {\mathrm {Spec}} S$
 with associated pseudo-character 
 $D_y$
 and semisimple representation
$D_y$
 and semisimple representation 
 $\rho _y: G_F\to \operatorname {\mathrm {GL}}_d(\overline {\kappa (y)})$
. The restriction
$\rho _y: G_F\to \operatorname {\mathrm {GL}}_d(\overline {\kappa (y)})$
. The restriction 
 $\rho _y|_{G_{E}}$
 is semisimple, cf. [Reference Böckle and Juschka9, Lemma 2.1.4], and its associated pseudo-character is
$\rho _y|_{G_{E}}$
 is semisimple, cf. [Reference Böckle and Juschka9, Lemma 2.1.4], and its associated pseudo-character is 
 $\overline {D}|_{G_{E}}\otimes _k\overline {\kappa (y)}$
, so that
$\overline {D}|_{G_{E}}\otimes _k\overline {\kappa (y)}$
, so that 
 $\rho _y(G_{E})$
 is finite. Hence,
$\rho _y(G_{E})$
 is finite. Hence, 
 $\rho _y(G_F)$
 is finite, and therefore,
$\rho _y(G_F)$
 is finite, and therefore, 
 $D_y$
 is defined over a finite field
$D_y$
 is defined over a finite field 
 $k'\supset k$
. This shows that the corresponding ring map
$k'\supset k$
. This shows that the corresponding ring map 
 $S\to \kappa (y)$
 factors via
$S\to \kappa (y)$
 factors via 
 $k'$
, and thus its kernel y is the maximal ideal
$k'$
, and thus its kernel y is the maximal ideal 
 ${\mathfrak m}_S$
.
${\mathfrak m}_S$
.
 We define the Kummer-reducible locus in 
 $U^{\mathrm {irr}}$
 as
$U^{\mathrm {irr}}$
 as 
 $$ \begin{align*}U^{\mathrm{Kred}}:= U^{\mathrm{irr}} \cap \bigl(\bigcup_{F'} r^{-1} (\overline{X}^{\mathrm{ps}}_{F'} \setminus U^{\mathrm{irr}}_{F'}) \bigr),\end{align*} $$
$$ \begin{align*}U^{\mathrm{Kred}}:= U^{\mathrm{irr}} \cap \bigl(\bigcup_{F'} r^{-1} (\overline{X}^{\mathrm{ps}}_{F'} \setminus U^{\mathrm{irr}}_{F'}) \bigr),\end{align*} $$
where the union is taken over all degree p Galois extensions 
 $F'$
 of
$F'$
 of 
 $F(\zeta _p)$
. Since there are only finitely many such extensions,
$F(\zeta _p)$
. Since there are only finitely many such extensions, 
 $U^{\mathrm {Kred}}$
 is closed in
$U^{\mathrm {Kred}}$
 is closed in 
 $U^{\mathrm {irr}}$
. We define the cyclotomic-reducible locus in
$U^{\mathrm {irr}}$
. We define the cyclotomic-reducible locus in 
 $U^{\mathrm {irr}}$
 as
$U^{\mathrm {irr}}$
 as 
 $$ \begin{align*}U^{\mathrm{Cred}}:= U^{\mathrm{irr}}\cap r^{-1}( \overline{X}^{\mathrm{ps}}_{F(\zeta_p)} \setminus U^{\mathrm{irr}}_{F(\zeta_p)}).\end{align*} $$
$$ \begin{align*}U^{\mathrm{Cred}}:= U^{\mathrm{irr}}\cap r^{-1}( \overline{X}^{\mathrm{ps}}_{F(\zeta_p)} \setminus U^{\mathrm{irr}}_{F(\zeta_p)}).\end{align*} $$
This is also a closed subset of 
 $U^{\mathrm {irr}}$
 and is contained in
$U^{\mathrm {irr}}$
 and is contained in 
 $U^{\mathrm {Kred}}$
. If F does not contain a primitive p-th root of unity, then
$U^{\mathrm {Kred}}$
. If F does not contain a primitive p-th root of unity, then 
 $U^{\mathrm {Cred}}=U^{\operatorname {\mathrm {spcl}}}$
, and
$U^{\mathrm {Cred}}=U^{\operatorname {\mathrm {spcl}}}$
, and 
 $U^{\mathrm {Cred}} = \emptyset $
 otherwise.
$U^{\mathrm {Cred}} = \emptyset $
 otherwise.
Lemma A.4. We have 
 $U^{\operatorname {\mathrm {spcl}}} \subset U^{\mathrm {Kred}}$
. Moreover, the inclusion is an equality if F contains a primitive p-th root of unity.
$U^{\operatorname {\mathrm {spcl}}} \subset U^{\mathrm {Kred}}$
. Moreover, the inclusion is an equality if F contains a primitive p-th root of unity.
Proof. If 
 $\zeta _p\in F$
, then the definitions of
$\zeta _p\in F$
, then the definitions of 
 $U^{\mathrm {Kred}}$
 and
$U^{\mathrm {Kred}}$
 and 
 $U^{\operatorname {\mathrm {spcl}}}$
 coincide. If
$U^{\operatorname {\mathrm {spcl}}}$
 coincide. If 
 $\zeta _p\not \in F$
, then
$\zeta _p\not \in F$
, then 
 $y\in U^{\operatorname {\mathrm {spcl}}}$
 if and only if
$y\in U^{\operatorname {\mathrm {spcl}}}$
 if and only if 
 $D_y$
 is irreducible and the restriction of
$D_y$
 is irreducible and the restriction of 
 $D_y$
 to
$D_y$
 to 
 $G_{F(\zeta _p)}$
 is reducible. If we further restrict
$G_{F(\zeta _p)}$
 is reducible. If we further restrict 
 $D_y$
 to
$D_y$
 to 
 $G_{F'}$
, where
$G_{F'}$
, where 
 $F'$
 is any degree p Galois extension of
$F'$
 is any degree p Galois extension of 
 $F(\zeta _p)$
, then the pseudocharacter remains reducible. Thus,
$F(\zeta _p)$
, then the pseudocharacter remains reducible. Thus, 
 $y\in U^{\mathrm {Kred}}$
.
$y\in U^{\mathrm {Kred}}$
.
Lemma A.5. Let T be a locally closed subset of 
 $U^{\mathrm {irr}}$
, let
$U^{\mathrm {irr}}$
, let 
 $\overline {T}$
 be its closure in
$\overline {T}$
 be its closure in 
 $U^{\mathrm {irr}}$
 and let Z be its closure in
$U^{\mathrm {irr}}$
 and let Z be its closure in 
 $\overline {X}^{\mathrm {ps}}$
. Then
$\overline {X}^{\mathrm {ps}}$
. Then 
 $\dim T = \dim \overline {T}$
 and
$\dim T = \dim \overline {T}$
 and 
 $\dim Z= \dim T+1$
.
$\dim Z= \dim T+1$
.
Proof. Since 
 $U^{\mathrm {irr}}$
 is open in
$U^{\mathrm {irr}}$
 is open in 
 $\overline {X}^{\mathrm {ps}}$
, T is locally closed in
$\overline {X}^{\mathrm {ps}}$
, T is locally closed in 
 $\overline {X}^{\mathrm {ps}}$
. Thus, T is open in Z. Lemma 3.18 (5) applied with
$\overline {X}^{\mathrm {ps}}$
. Thus, T is open in Z. Lemma 3.18 (5) applied with 
 $\operatorname {\mathrm {Spec}} R=\operatorname {\mathrm {Spec}} S= Z$
 and
$\operatorname {\mathrm {Spec}} R=\operatorname {\mathrm {Spec}} S= Z$
 and 
 $U=T$
 implies that
$U=T$
 implies that 
 $\dim Z = \dim T+1$
. Since
$\dim Z = \dim T+1$
. Since 
 $\overline {T}$
 is contained in
$\overline {T}$
 is contained in 
 $U^{\mathrm {irr}}$
, it does not contain the closed point of
$U^{\mathrm {irr}}$
, it does not contain the closed point of 
 $\overline {X}^{\mathrm {ps}}$
. Thus
$\overline {X}^{\mathrm {ps}}$
. Thus 
 $\overline {T}\subset Z\setminus \{{\mathfrak m}_{R^{\mathrm {ps}}}\}$
. Since Z is the spectrum of a local ring,
$\overline {T}\subset Z\setminus \{{\mathfrak m}_{R^{\mathrm {ps}}}\}$
. Since Z is the spectrum of a local ring, 
 $\dim ( Z\setminus \{{\mathfrak m}_{R^{\mathrm {ps}}}\}) = \dim Z -1$
. We conclude that
$\dim ( Z\setminus \{{\mathfrak m}_{R^{\mathrm {ps}}}\}) = \dim Z -1$
. We conclude that 
 $\dim \overline {T} \le \dim Z -1 = \dim T$
. Since
$\dim \overline {T} \le \dim Z -1 = \dim T$
. Since 
 $\overline {T}$
 contains T,
$\overline {T}$
 contains T, 
 $\dim T\le \dim \overline {T}$
.
$\dim T\le \dim \overline {T}$
.
Remark A.6. The equality 
 $\dim T= \dim \overline {T}$
 in Lemma A.5 may also be deduced from [48, Tag 0DRT], which applies in a more general context.
$\dim T= \dim \overline {T}$
 in Lemma A.5 may also be deduced from [48, Tag 0DRT], which applies in a more general context.
Lemma A.7. We have
 $$ \begin{align*}\dim U^{\mathrm{irr}}- \dim U^{\mathrm{Cred}} \ge \frac{1}{2} d^2[F:\mathbb{Q}_p]\ge 2.\end{align*} $$
$$ \begin{align*}\dim U^{\mathrm{irr}}- \dim U^{\mathrm{Cred}} \ge \frac{1}{2} d^2[F:\mathbb{Q}_p]\ge 2.\end{align*} $$
Proof. It follows from [Reference Böckle and Juschka9, Theorem 5.5.1] and Lemma A.5 that
 $$ \begin{align} \dim U^{\mathrm{irr}} = d^2[F:\mathbb{Q}_p]. \end{align} $$
$$ \begin{align} \dim U^{\mathrm{irr}} = d^2[F:\mathbb{Q}_p]. \end{align} $$
If 
 $\zeta _p\in F$
, then
$\zeta _p\in F$
, then 
 $U^{\mathrm {Cred}}$
 is empty and the required bound follows. If
$U^{\mathrm {Cred}}$
 is empty and the required bound follows. If 
 $\zeta _p\not \in F$
, then
$\zeta _p\not \in F$
, then 
 $U^{\mathrm {Cred}}=U^{\operatorname {\mathrm {spcl}}}$
, and it follows from [Reference Böckle and Juschka9, Theorem 5.4.1 (a)] and Lemma A.5 that
$U^{\mathrm {Cred}}=U^{\operatorname {\mathrm {spcl}}}$
, and it follows from [Reference Böckle and Juschka9, Theorem 5.4.1 (a)] and Lemma A.5 that 
 $\dim U^{\operatorname {\mathrm {spcl}}} \le \frac {1}{2} d^2[F:\mathbb {Q}_p]$
.
$\dim U^{\operatorname {\mathrm {spcl}}} \le \frac {1}{2} d^2[F:\mathbb {Q}_p]$
.
Lemma A.8. We have
 $$ \begin{align*}\dim U^{\mathrm{irr}} - \dim U^{\mathrm{Kred}} \ge d[F:\mathbb{Q}_p]\ge 2.\end{align*} $$
$$ \begin{align*}\dim U^{\mathrm{irr}} - \dim U^{\mathrm{Kred}} \ge d[F:\mathbb{Q}_p]\ge 2.\end{align*} $$
Proof. It follows from [Reference Böckle and Juschka9, Lemma 5.1.1] that the preimage of 
 $ U^{\operatorname {\mathrm {spcl}}}_{F(\zeta _p)}$
 in
$ U^{\operatorname {\mathrm {spcl}}}_{F(\zeta _p)}$
 in 
 $\overline {X}^{\mathrm {ps}}$
 under the morphism
$\overline {X}^{\mathrm {ps}}$
 under the morphism 
 $r: \overline {X}^{\mathrm {ps}}\rightarrow \overline {X}^{\mathrm {ps}}_{F(\zeta _p)}$
 from Lemma A.3 with
$r: \overline {X}^{\mathrm {ps}}\rightarrow \overline {X}^{\mathrm {ps}}_{F(\zeta _p)}$
 from Lemma A.3 with 
 $E=F(\zeta _p)$
 is equal to
$E=F(\zeta _p)$
 is equal to 
 $U^{\mathrm {Kred}}\setminus U^{\mathrm {Cred}}$
. Thus, the induced morphism
$U^{\mathrm {Kred}}\setminus U^{\mathrm {Cred}}$
. Thus, the induced morphism 
 $r: U^{\mathrm {Kred}}\setminus U^{\mathrm {Cred}} \rightarrow U^{\operatorname {\mathrm {spcl}}}_{F(\zeta _p)}$
 is also finite. We deduce
$r: U^{\mathrm {Kred}}\setminus U^{\mathrm {Cred}} \rightarrow U^{\operatorname {\mathrm {spcl}}}_{F(\zeta _p)}$
 is also finite. We deduce 
 $$ \begin{align*}\dim ( U^{\mathrm{Kred}}\setminus U^{\mathrm{Cred}}) \le \dim U^{\operatorname{\mathrm{spcl}}}_{F(\zeta_p)}\end{align*} $$
$$ \begin{align*}\dim ( U^{\mathrm{Kred}}\setminus U^{\mathrm{Cred}}) \le \dim U^{\operatorname{\mathrm{spcl}}}_{F(\zeta_p)}\end{align*} $$
 Since 
 $F(\zeta _p)$
 contains a primitive p-th root of unity, [Reference Böckle and Juschka9, Lemma 5.1.1] implies that if p does not divide d, then
$F(\zeta _p)$
 contains a primitive p-th root of unity, [Reference Böckle and Juschka9, Lemma 5.1.1] implies that if p does not divide d, then 
 $U^{\operatorname {\mathrm {spcl}}}_{F(\zeta _p)}$
 is empty; thus,
$U^{\operatorname {\mathrm {spcl}}}_{F(\zeta _p)}$
 is empty; thus, 
 $U^{\mathrm {Kred}}=U^{\mathrm {Cred}}$
, and the required bound follows from Lemma A.7.
$U^{\mathrm {Kred}}=U^{\mathrm {Cred}}$
, and the required bound follows from Lemma A.7.
 Let us assume that p divides d. Part (a) of [Reference Böckle and Juschka9, Theorem 5.4.1] applied with 
 $K=F(\zeta _p)$
 bounds the dimension of
$K=F(\zeta _p)$
 bounds the dimension of 
 $U^{\operatorname {\mathrm {spcl}}}_{F(\zeta _p)}$
 by
$U^{\operatorname {\mathrm {spcl}}}_{F(\zeta _p)}$
 by 
 $\frac {1}{2}d^2 [F(\zeta _p):\mathbb {Q}_p]$
 from above. The
$\frac {1}{2}d^2 [F(\zeta _p):\mathbb {Q}_p]$
 from above. The 
 $\frac {1}{2}$
 in this estimate appears by estimating
$\frac {1}{2}$
 in this estimate appears by estimating 
 $[K':K]\ge 2$
 (see the proof of [Reference Böckle and Juschka9, Theorem 5.4.1] for the notation;
$[K':K]\ge 2$
 (see the proof of [Reference Böckle and Juschka9, Theorem 5.4.1] for the notation; 
 $K'$
 corresponds to our
$K'$
 corresponds to our 
 $F'$
). If K contains a p-th root of unity, then it follows from Case II of [Reference Böckle and Juschka9, Lemma 5.1.1] that
$F'$
). If K contains a p-th root of unity, then it follows from Case II of [Reference Böckle and Juschka9, Lemma 5.1.1] that 
 $[K':K]=p$
. Since
$[K':K]=p$
. Since 
 $F(\zeta _p)$
 contains a p-th root of unity, the argument in the proof of [Reference Böckle and Juschka9, Theorem 5.4.1] gives us
$F(\zeta _p)$
 contains a p-th root of unity, the argument in the proof of [Reference Böckle and Juschka9, Theorem 5.4.1] gives us 
 $$ \begin{align*}\dim U^{\operatorname{\mathrm{spcl}}}_{F(\zeta_p)} \le (d/p)^2[F':\mathbb{Q}_p] = \frac{[F(\zeta_p):F]}{p} d^2[F:\mathbb{Q}_p].\end{align*} $$
$$ \begin{align*}\dim U^{\operatorname{\mathrm{spcl}}}_{F(\zeta_p)} \le (d/p)^2[F':\mathbb{Q}_p] = \frac{[F(\zeta_p):F]}{p} d^2[F:\mathbb{Q}_p].\end{align*} $$
Since 
 $[F(\zeta _p):F]\le p-1$
, we conclude that
$[F(\zeta _p):F]\le p-1$
, we conclude that 
 $$ \begin{align*}\dim ( U^{\mathrm{Kred}}\setminus U^{\mathrm{Cred}}) \le \frac{p-1}{p} d^2[F:\mathbb{Q}_p] .\end{align*} $$
$$ \begin{align*}\dim ( U^{\mathrm{Kred}}\setminus U^{\mathrm{Cred}}) \le \frac{p-1}{p} d^2[F:\mathbb{Q}_p] .\end{align*} $$
Lemma A.5 implies that the same bound holds for the dimension of the closure of 
 $U^{\mathrm {Kred}}\setminus U^{\mathrm {Cred}}$
 in
$U^{\mathrm {Kred}}\setminus U^{\mathrm {Cred}}$
 in 
 $U^{\mathrm {irr}}$
. Lemma A.7 gives the bound
$U^{\mathrm {irr}}$
. Lemma A.7 gives the bound 
 $$ \begin{align*}\dim U^{\mathrm{Cred}}\le \frac{1}{2} d^2[F:\mathbb{Q}_p] .\end{align*} $$
$$ \begin{align*}\dim U^{\mathrm{Cred}}\le \frac{1}{2} d^2[F:\mathbb{Q}_p] .\end{align*} $$
Thus,
 $$ \begin{align*}\dim U^{\mathrm{Kred}} \le \frac{p-1}{p} d^2[F:\mathbb{Q}_p] .\end{align*} $$
$$ \begin{align*}\dim U^{\mathrm{Kred}} \le \frac{p-1}{p} d^2[F:\mathbb{Q}_p] .\end{align*} $$
Since 
 $\dim U^{\mathrm {irr}} =d^2 [F:\mathbb {Q}_p]$
 by (36), we obtain
$\dim U^{\mathrm {irr}} =d^2 [F:\mathbb {Q}_p]$
 by (36), we obtain 
 $$ \begin{align*}\dim U^{\mathrm{irr}}-\dim U^{\mathrm{Kred}} \ge \frac{d}{p} d [F:\mathbb{Q}_p]\ge d[F:\mathbb{Q}_p]\ge 2,\end{align*} $$
$$ \begin{align*}\dim U^{\mathrm{irr}}-\dim U^{\mathrm{Kred}} \ge \frac{d}{p} d [F:\mathbb{Q}_p]\ge d[F:\mathbb{Q}_p]\ge 2,\end{align*} $$
where we have used that p divides d in the second inequality.
Proposition A.9. There exists an open dense subscheme 
 $U^{\mathrm {Kirr}}\subset U^{\mathrm {irr}}$
 such that
$U^{\mathrm {Kirr}}\subset U^{\mathrm {irr}}$
 such that 
 $x\in P_1(R^{\mathrm {ps}}/\varpi )$
 is Kummer-irreducible if and only if x is a closed point in
$x\in P_1(R^{\mathrm {ps}}/\varpi )$
 is Kummer-irreducible if and only if x is a closed point in 
 $U^{\mathrm {Kirr}}$
. Moreover,
$U^{\mathrm {Kirr}}$
. Moreover, 
 $$ \begin{align*}\dim U^{\mathrm {irr}} -\dim (U^{\mathrm {irr}}\setminus U^{\mathrm {Kirr}})\ge d[F:\mathbb {Q}_p]\ge 2.\end{align*} $$
$$ \begin{align*}\dim U^{\mathrm {irr}} -\dim (U^{\mathrm {irr}}\setminus U^{\mathrm {Kirr}})\ge d[F:\mathbb {Q}_p]\ge 2.\end{align*} $$
Proof. Let 
 $U^{\mathrm {Kirr}}$
 be the complement of
$U^{\mathrm {Kirr}}$
 be the complement of 
 $U^{\mathrm {Kred}}$
 in
$U^{\mathrm {Kred}}$
 in 
 $U^{\mathrm {irr}}$
. Since
$U^{\mathrm {irr}}$
. Since 
 $U^{\mathrm {Kred}}$
 is closed in
$U^{\mathrm {Kred}}$
 is closed in 
 $U^{\mathrm {irr}}$
,
$U^{\mathrm {irr}}$
, 
 $U^{\mathrm {Kirr}}$
 is open in
$U^{\mathrm {Kirr}}$
 is open in 
 $U^{\mathrm {irr}}$
. If
$U^{\mathrm {irr}}$
. If 
 $y\in U^{\mathrm {irr}}$
, then y lies in
$y\in U^{\mathrm {irr}}$
, then y lies in 
 $U^{\mathrm {Kred}}$
 if and only if there exists a degree p Galois extension
$U^{\mathrm {Kred}}$
 if and only if there exists a degree p Galois extension 
 $F'$
 of
$F'$
 of 
 $F(\zeta _p)$
 such that
$F(\zeta _p)$
 such that 
 $D_y|_{G_{F'}}$
 is reducible. If
$D_y|_{G_{F'}}$
 is reducible. If 
 $y\in \overline {X}^{\mathrm {ps}}$
 is not the closed point and
$y\in \overline {X}^{\mathrm {ps}}$
 is not the closed point and 
 $D_y |_{G_{F'}}$
 is irreducible for all such
$D_y |_{G_{F'}}$
 is irreducible for all such 
 $F'$
, then
$F'$
, then 
 $D_y$
 is irreducible, and hence
$D_y$
 is irreducible, and hence 
 $y\in U^{\mathrm {Kirr}}$
. It follows from Lemma 3.18 (4) that
$y\in U^{\mathrm {Kirr}}$
. It follows from Lemma 3.18 (4) that 
 $U^{\mathrm {Kirr}}\cap P_1(R^{\mathrm {ps}}/\varpi )$
 is the set of closed points in
$U^{\mathrm {Kirr}}\cap P_1(R^{\mathrm {ps}}/\varpi )$
 is the set of closed points in 
 $U^{\mathrm {Kirr}}$
. The bound for the difference of dimensions follows from Lemma A.8. Since
$U^{\mathrm {Kirr}}$
. The bound for the difference of dimensions follows from Lemma A.8. Since 
 $U^{\mathrm {irr}}$
 is equi-dimensional by [Reference Böckle and Juschka9, Theorem 5.5.1], this implies density.
$U^{\mathrm {irr}}$
 is equi-dimensional by [Reference Böckle and Juschka9, Theorem 5.5.1], this implies density.
Acknowledgements
A. I. would like to thank Carl Wang-Erickson for a discussion of [Reference Wang-Erickson50]. V. P. would like to thank Daniel Greb for a discussion on Geometric Invariant Theory and Toby Gee for stimulating correspondence. The authors would like to thank Toby Gee, James Newton, Julian Quast and Carl Wang-Erickson for their comments on an earlier draft as well as Frank Calegari, Søren Galatius and Akshay Venkatesh for organizing Oberwolfach Arbeitsgemeinschaft Derived Galois Deformation Rings and Cohomology of Arithmetic Groups in April 2021, which served as an impetus for this collaboration.
We thank the anonymous referee for a very thorough and careful reading of this article and for making a number of helpful suggestions to improve the exposition.
Competing interest
The authors have no competing interest to declare.
Financial support
GB acknowledges support by Deutsche Forschungsgemeinschaft (DFG) through CRC-TR 326 Geometry and Arithmetic of Uniformized Structures, project number 444845124.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
