 $({\mathbb P}^2,E)$ and the Nekrasov-Shatashvili limit of local
$({\mathbb P}^2,E)$ and the Nekrasov-Shatashvili limit of local  ${\mathbb P}^2$
${\mathbb P}^2$Published online by Cambridge University Press: 03 May 2021
We prove a higher genus version of the genus  $0$ local-relative correspondence of van Garrel-Graber-Ruddat: for
$0$ local-relative correspondence of van Garrel-Graber-Ruddat: for  $(X,D)$ a pair with X a smooth projective variety and D a nef smooth divisor, maximal contact Gromov-Witten theory of
$(X,D)$ a pair with X a smooth projective variety and D a nef smooth divisor, maximal contact Gromov-Witten theory of  $(X,D)$ with
$(X,D)$ with  $\lambda _g$-insertion is related to Gromov-Witten theory of the total space of
$\lambda _g$-insertion is related to Gromov-Witten theory of the total space of  ${\mathcal O}_X(-D)$ and local Gromov-Witten theory of D.
${\mathcal O}_X(-D)$ and local Gromov-Witten theory of D.
Specializing to  $(X,D)=(S,E)$ for S a del Pezzo surface or a rational elliptic surface and E a smooth anticanonical divisor, we show that maximal contact Gromov-Witten theory of
$(X,D)=(S,E)$ for S a del Pezzo surface or a rational elliptic surface and E a smooth anticanonical divisor, we show that maximal contact Gromov-Witten theory of  $(S,E)$ is determined by the Gromov-Witten theory of the Calabi-Yau 3-fold
$(S,E)$ is determined by the Gromov-Witten theory of the Calabi-Yau 3-fold  ${\mathcal O}_S(-E)$ and the stationary Gromov-Witten theory of the elliptic curve E.
${\mathcal O}_S(-E)$ and the stationary Gromov-Witten theory of the elliptic curve E.
Specializing further to  $S={\mathbb P}^2$, we prove that higher genus generating series of maximal contact Gromov-Witten invariants of
$S={\mathbb P}^2$, we prove that higher genus generating series of maximal contact Gromov-Witten invariants of  $({\mathbb P}^2,E)$ are quasimodular and satisfy a holomorphic anomaly equation. The proof combines the quasimodularity results and the holomorphic anomaly equations previously known for local
$({\mathbb P}^2,E)$ are quasimodular and satisfy a holomorphic anomaly equation. The proof combines the quasimodularity results and the holomorphic anomaly equations previously known for local  ${\mathbb P}^2$ and the elliptic curve.
${\mathbb P}^2$ and the elliptic curve.
Furthermore, using the connection between maximal contact Gromov-Witten invariants of  $({\mathbb P}^2,E)$ and Betti numbers of moduli spaces of semistable one-dimensional sheaves on
$({\mathbb P}^2,E)$ and Betti numbers of moduli spaces of semistable one-dimensional sheaves on  ${\mathbb P}^2$, we obtain a proof of the quasimodularity and holomorphic anomaly equation predicted in the physics literature for the refined topological string free energy of local
${\mathbb P}^2$, we obtain a proof of the quasimodularity and holomorphic anomaly equation predicted in the physics literature for the refined topological string free energy of local  ${\mathbb P}^2$ in the Nekrasov-Shatashvili limit.
${\mathbb P}^2$ in the Nekrasov-Shatashvili limit.
 $\left({\mathbb{P}}^2,E\right)$ and a refined sheaves/Gromov–Witten correspondence, Preprint, 2019, arXiv:1909.02992.Google Scholar
$\left({\mathbb{P}}^2,E\right)$ and a refined sheaves/Gromov–Witten correspondence, Preprint, 2019, arXiv:1909.02992.Google Scholar ${\mathbb{P}}^2$, Preprint, 2019, arXiv:1909.02985.Google Scholar
${\mathbb{P}}^2$, Preprint, 2019, arXiv:1909.02985.Google Scholar ${\mathbb{P}}^2$ and Modular Forms, Preprint, 2018, arXiv:1804.03292Google Scholar
${\mathbb{P}}^2$ and Modular Forms, Preprint, 2018, arXiv:1804.03292Google Scholar ${K}_{{\mathbb{P}}^2}$,
${K}_{{\mathbb{P}}^2}$,  ${K}_{{\mathbb{P}}^1\times {\mathbb{P}}^1}$,
${K}_{{\mathbb{P}}^1\times {\mathbb{P}}^1}$,  ${K}_{W\mathbb{P}\left[1,1,2\right]}$,
${K}_{W\mathbb{P}\left[1,1,2\right]}$,  ${K}_{F_1}$and Jacobi forms, Comm. Math. Phys. 369 (2019), no. 2, 675–719.CrossRefGoogle Scholar
${K}_{F_1}$and Jacobi forms, Comm. Math. Phys. 369 (2019), no. 2, 675–719.CrossRefGoogle Scholar $\varOmega$-deformed B-model for rigid
$\varOmega$-deformed B-model for rigid  $N=2$ theories, Ann. Henri Poincaré 14 (2013), no. 2, 425–497.CrossRefGoogle Scholar
$N=2$ theories, Ann. Henri Poincaré 14 (2013), no. 2, 425–497.CrossRefGoogle Scholar $\left[{\mathbb{C}}^3/ {\mathbb{Z}}_3\right]$, Proc. Lond. Math. Soc. (3) 119 (2019), no. 3, 781–813.CrossRefGoogle Scholar
$\left[{\mathbb{C}}^3/ {\mathbb{Z}}_3\right]$, Proc. Lond. Math. Soc. (3) 119 (2019), no. 3, 781–813.CrossRefGoogle Scholar $\chi$-independence for moduli of one-dimensional sheaves and moduli of Higgs bundles, Preprint, 2020, arXiv:2012.06627.Google Scholar
$\chi$-independence for moduli of one-dimensional sheaves and moduli of Higgs bundles, Preprint, 2020, arXiv:2012.06627.Google Scholar ${\overline{M}}_{g,n}$ via
${\overline{M}}_{g,n}$ via  $3$-spin structures, J. Amer. Math. Soc. 28 (2015), no. 1, 279–309.CrossRefGoogle Scholar
$3$-spin structures, J. Amer. Math. Soc. 28 (2015), no. 1, 279–309.CrossRefGoogle Scholar ${K}_{{\mathbb{P}}^1\times {\mathbb{P}}^1}$, Preprint, 2019, arXiv:1908.03691.Google Scholar
${K}_{{\mathbb{P}}^1\times {\mathbb{P}}^1}$, Preprint, 2019, arXiv:1908.03691.Google Scholar $\mathbf{\mathcal{O}}(3)$ over
$\mathbf{\mathcal{O}}(3)$ over 
 ${\mathbb{P}}^2$, Acta Math. Sin. (Engl. Ser.) 35 (2019), no. 12, 1945–1962.CrossRefGoogle Scholar
${\mathbb{P}}^2$, Acta Math. Sin. (Engl. Ser.) 35 (2019), no. 12, 1945–1962.CrossRefGoogle Scholar