Published online by Cambridge University Press: 13 April 2015
Let   $T$  be an ergodic measure-preserving transformation on a non-atomic probability space
 $T$  be an ergodic measure-preserving transformation on a non-atomic probability space   $(X,\unicode[STIX]{x1D6F4},\unicode[STIX]{x1D707})$ . We prove uniform extensions of the Wiener–Wintner theorem in two settings: for averages involving weights coming from Hardy field functions
 $(X,\unicode[STIX]{x1D6F4},\unicode[STIX]{x1D707})$ . We prove uniform extensions of the Wiener–Wintner theorem in two settings: for averages involving weights coming from Hardy field functions   $p$ ,
 $p$ ,  $$\begin{eqnarray}\displaystyle \bigg\{\frac{1}{N}\mathop{\sum }_{n\leq N}e(p(n))T^{n}f(x)\bigg\}; & & \displaystyle \nonumber\end{eqnarray}$$
 $$\begin{eqnarray}\displaystyle \bigg\{\frac{1}{N}\mathop{\sum }_{n\leq N}e(p(n))T^{n}f(x)\bigg\}; & & \displaystyle \nonumber\end{eqnarray}$$ $$\begin{eqnarray}\displaystyle \bigg\{\frac{1}{N}\mathop{\sum }_{n\leq N}e(n\unicode[STIX]{x1D703})T^{P(n)}f(x)\bigg\} & & \displaystyle \nonumber\end{eqnarray}$$
 $$\begin{eqnarray}\displaystyle \bigg\{\frac{1}{N}\mathop{\sum }_{n\leq N}e(n\unicode[STIX]{x1D703})T^{P(n)}f(x)\bigg\} & & \displaystyle \nonumber\end{eqnarray}$$ $\unicode[STIX]{x1D703}\in [0,1]$ . We also give an elementary proof that the above twisted polynomial averages converge pointwise
 $\unicode[STIX]{x1D703}\in [0,1]$ . We also give an elementary proof that the above twisted polynomial averages converge pointwise   $\unicode[STIX]{x1D707}$ -almost everywhere for
 $\unicode[STIX]{x1D707}$ -almost everywhere for   $f\in L^{p}(X),p>1,$  and arbitrary
 $f\in L^{p}(X),p>1,$  and arbitrary   $\unicode[STIX]{x1D703}\in [0,1]$ .
 $\unicode[STIX]{x1D703}\in [0,1]$ .