Hostname: page-component-7dd5485656-dk7s8 Total loading time: 0 Render date: 2025-10-26T17:00:26.263Z Has data issue: false hasContentIssue false

Lagrange and Markov spectra for typical smooth systems

Published online by Cambridge University Press:  23 October 2025

JAMERSON BEZERRA
Affiliation:
Faculty of Mathematics and Computer Science, Nicolaus Copernicus University , ul. Chopina 12/18, 87-100 Toruń, Poland (e-mail: jdbezerra@mat.umk.pl)
CARLOS GUSTAVO MOREIRA
Affiliation:
Instituto de Matemática Pura e Aplicada (IMPA) , Estrada Dona Castorina, 110, 22460-320 Rio de Janeiro, Brazil (e-mail: gugu@impa.br)
SANDOEL VIEIRA*
Affiliation:
Universidade Federal do Piauí (UFPI) , Rua Dirce Oliveira, 1450, 64048-550 Teresina, Brazil

Abstract

We prove that among the set of pairs ($C^2$-diffeomorphism, $C^1$-potential), there exists a $C^1$-open and dense subset such that either the Lagrange spectrum is finite and the dynamics is a Morse–Smale diffeomorphism or the Lagrange spectrum has positive Hausdorff dimension and the system has positive topological entropy. We also prove that such dichotomy does not hold for typical systems when replacing the Lagrange by the Markov spectrum.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Arnoux, P.. Le codage du flot géodésique sur la surface modulaire. Enseign. Math. 40(1–2) (1994), 2948.Google Scholar
Avila, A., Crovisier, S. and Wilkinson, A.. ${C}^1$ density of stable ergodicity. Adv. Math. 379 (2021), Paper no. 107496.10.1016/j.aim.2020.107496CrossRefGoogle Scholar
Bezerra, J. and Moreira, C. G.. Elementary proof for the existence of periodic points with real and simple spectrum for diffeomorphisms in any dimension. Discrete Contin. Dyn. Syst. 43(6) (2023), 24402456.10.3934/dcds.2023016CrossRefGoogle Scholar
Bowen, R.. A horseshoe with positive measure. Invent. Math. 29(3) (1975), 203204.10.1007/BF01389849CrossRefGoogle Scholar
Bowen, R.. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Lecture Notes in Mathematics, 470), revised edition. Springer-Verlag, Berlin, 2008; with a Preface by D. Ruelle.10.1007/978-3-540-77695-6CrossRefGoogle Scholar
Brin, M. I. and Pesin, J. B.. Partially hyperbolic dynamical systems. Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 170212.Google Scholar
Cerqueira, A., Matheus, C. and Moreira, C. G.. Continuity of Hausdorff dimension across generic dynamical Lagrange and Markov spectra. J. Mod. Dyn. 12 (2018), 151174.10.3934/jmd.2018006CrossRefGoogle Scholar
Cerqueira, A., Moreira, C. G. and Romaña, S.. Continuity of Hausdorff dimension across generic dynamical Lagrange and Markov spectra II. Ergod. Th. & Dynam. Sys. 42(6) (2022), 18981907.10.1017/etds.2021.18CrossRefGoogle Scholar
Crovisier, S.. Birth of homoclinic intersections: a model for the central dynamics of partially hyperbolic systems. Ann. of Math. (2) 172(3) (2010), 16411677.10.4007/annals.2010.172.1641CrossRefGoogle Scholar
Crovisier, S. and Potrie, R.. Introduction to Partially Hyperbolic Dynamics. School on Dynamical Systems. ICTP, Trieste, 2015.Google Scholar
Davenport, H. and Schmidt, W. M.. Dirichlet’s theorem on diophantine approximation. Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69). Academic Press, London, 1970, pp. 113132.Google Scholar
Devaney, R.. An Introduction to Chaotic Dynamical Systems. CRC Press, Boca Raton, FL, 2018.10.4324/9780429502309CrossRefGoogle Scholar
Erazo, H., Gutiérrez-Romo, R., Moreira, C. G. and Romana, S.. Fractal dimensions of the Markov and Lagrange spectra near $3$ . J. Eur. Math. Soc. (2024). Published online 3 October 2024.10.4171/jems/1545CrossRefGoogle Scholar
Ford, L. R.. A geometrical proof of a theorem of hurwitz. Proc. Edinb. Math. Soc. (2) 35 (1916), 5965.10.1017/S0013091500029692CrossRefGoogle Scholar
Freiman, G. A.. Diophantine Aproximation and the Geometry of Numbers (Markov’s Problem). Kalinin Gosudarstvennyy University, Moscow, 1975 (in Russian).Google Scholar
Hall, M. Jr. On the sum and product of continued fractions. Ann. of Math. (2) 48 (1947), 966993.10.2307/1969389CrossRefGoogle Scholar
Katok, A. and Hasselblatt, B.. Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge, 1995.10.1017/CBO9780511809187CrossRefGoogle Scholar
Lima, D., Matheus, C., Moreira, C. and Romana, S.. Classical and Dynamical Markov and Lagrange Spectra: Dynamical, Fractal and Arithmetic Aspects. World Scientific, Hackensack, NJ, 2020.10.1142/11965CrossRefGoogle Scholar
Lima, D. and Moreira, C. G.. Phase transitions on the Markov and Lagrange dynamical spectra. Ann. Inst. H. Poincaré C Anal. Non Linéaire 38(5) (2021), 14291459.10.1016/j.anihpc.2020.11.007CrossRefGoogle Scholar
Lima, D., Moreira, C. G. and Villamil, C.. Continuity of fractal dimensions in conservative generic Markov and Lagrange dynamical spectra. Preprint, 2023, arXiv:2305.07819.Google Scholar
Markoff, A.. Sur les formes quadratiques binaires indéfinies. Math. Ann. 15(3) (1879), 381406.10.1007/BF02086269CrossRefGoogle Scholar
Markoff, A.. Sur les formes quadratiques binaires indéfinies. II. Math. Ann. 17(3) (1880), 379399.10.1007/BF01446234CrossRefGoogle Scholar
Moreira, C. G.. Geometric properties of the Markov and Lagrange spectra. Ann. Math. 188(1) (2018), 145170.10.4007/annals.2018.188.1.3CrossRefGoogle Scholar
Moreira, C. G. and Villamil, C. C. S.. Concentration of dimension in extremal points of left-half lines in the Lagrange spectrum. Acta Math. Sin. (Engl. Ser.) 41(5) (2025), 13281352.10.1007/s10114-025-3683-7CrossRefGoogle Scholar
Moreira, C. G. and Yoccoz, J.-C.. Tangences homoclines stables pour des ensembles hyperboliques de grande dimension fractale. Ann. Sci. Éc. Norm. Supér. (4) 43(1) (2010), 168.10.24033/asens.2115CrossRefGoogle Scholar
Nicholls, P. J.. Diophantine approximation via the modular group. J. Lond. Math. Soc. (2) 17(1) (1978), 1117.10.1112/jlms/s2-17.1.11CrossRefGoogle Scholar
Palis, J. and Takens, F.. Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations: Fractal Dimensions and Infinitely Many Attractors in Dynamics (Cambridge Studies in Advanced Mathematics, 35). Cambridge University Press, Cambridge, 1993.Google Scholar
Palis, J. and Viana, M.. High dimension diffeomorphisms displaying infinitely many periodic attractors. Ann. of Math. (2) 140(1) (1994), 207250.10.2307/2118546CrossRefGoogle Scholar
Palis, J. and Yoccoz, J.-C.. Homoclinic tangencies for hyperbolic sets of large Hausdorff dimension. Acta Math. 172(1) (1994), 91136.10.1007/BF02392792CrossRefGoogle Scholar
Perron, O.. Über die Approximation irrationaler Zahlen durch rationale. Sitzungsb. d. Heidelb. Akad. d. Wiss. Math.-naturw. Kl. 1 (Winter) (1921).Google Scholar
Pugh, C., Shub, M. and Wilkinson, A.. Hölder foliations. Duke Math. J. 86(3) (1997), 517546.10.1215/S0012-7094-97-08616-6CrossRefGoogle Scholar
Robinson, C.. Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC Press, Boca Raton, FL, 1998.10.1201/9781482227871CrossRefGoogle Scholar
Romaña Ibarra, S. A. and de A. Moreira, C. G. T.. On the Lagrange and Markov dynamical spectra. Ergod. Th. & Dynam. Sys. 37(5) (2017), 15701591.10.1017/etds.2015.121CrossRefGoogle Scholar
Sell, G. R.. Smooth linearization near a fixed point. Amer. J. Math. 107(5) (1985), 10351091.10.2307/2374346CrossRefGoogle Scholar
Shub, M.. Global Stability of Dynamical Systems. Springer Science & Business Media, New York, 2013.Google Scholar
Whitney, H.. Analytic extensions of differentiable functions defined in closed sets. Hassler Whitney Collected Papers (Contemporary Mathematicians). Ed. J. Eells and D. Toledo. Birkhäuser, Boston, MA, 1992, pp. 228254.10.1007/978-1-4612-2972-8_2CrossRefGoogle Scholar