Hostname: page-component-7dd5485656-gs9qr Total loading time: 0 Render date: 2025-10-28T16:37:48.928Z Has data issue: false hasContentIssue false

A strong Frankel theorem for shrinkers

Published online by Cambridge University Press:  19 August 2025

Tobias Holck Colding
Affiliation:
Department of Mathematics, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA colding@math.mit.edu
William P. Minicozzi II
Affiliation:
Department of Mathematics, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA minicozz@math.mit.edu

Abstract

We prove a strong Frankel theorem for mean curvature flow shrinkers in all dimensions: Any two shrinkers in a sufficiently large ball must intersect. In particular, the shrinker itself must be connected in all large balls. The key to the proof is a strong Bernstein theorem for incomplete stable Gaussian surfaces.

Information

Type
Research Article
Copyright
© The Author(s), 2025. The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Andrews, B., Li, H. and Wei, Y., $\mathcal {F}$ -stability for self-shrinking solutions to mean curvature flow , Asian J. Math. 18 (2014), 757777.CrossRefGoogle Scholar
Arezzo, C. and Sun, J., Self-shrinkers for the mean curvature flow in arbitrary codimension , Math. Z. 274 (2013), 9931027.CrossRefGoogle Scholar
Bernstein, J. and Wang, L., A topological property of asymptotically conical self-shrinkers of small entropy , Duke Math. J. 166 (2017), 403435.CrossRefGoogle Scholar
Brendle, S., Embedded self-similar shrinkers of genus, 0 , Ann. Math. (2) 183 (2016), 715728.CrossRefGoogle Scholar
Cao, H. D. and Zhou, D., On complete gradient shrinking Ricci solitons , J. Differ. Geom. 85 (2010), 175186.Google Scholar
Cavalcante, M. P. and Espinar, J. M., Halfspace type theorems for self-shrinkers , Bull. Lond. Math. Soc. 48 (2016), 242250.CrossRefGoogle Scholar
Cheeger, J. and Naber, A., Quantitative stratification and the regularity of harmonic maps and minimal currents , Comm. Pure Appl. Math. 66 (2013), 965990.CrossRefGoogle Scholar
Cheng, X. and Zhou, D., Volume estimate about shrinkers , Proc. Amer. Math. Soc. 141 (2013), 687696.CrossRefGoogle Scholar
Chodosh, O., Choi, K., Mantoulidis, C. and Schulze, F., Mean curvature flow with generic initial data , Invent. Math. 237 (2024), 121220.CrossRefGoogle Scholar
Choi, K., Haslhofer, R., Hershkovits, O. and White, B., Ancient asymptotically cylindrical flows and applications , Invent. Math. 229 (2022), 139241.CrossRefGoogle Scholar
Colding, T. H. and Minicozzi, W. P. II, Generic mean curvature flow I; generic singularities , Ann. Math. 175 (2012), 755833.CrossRefGoogle Scholar
Colding, T. H. and Minicozzi, W. P. II, A course in minimal surfaces , Graduate Studies in Mathematics, vol. 121 (American Mathematical Society, Providence, RI, 2011).Google Scholar
Colding, T. H. and Minicozzi, W. P. II, The space of embedded minimal surfaces of fixed genus in a 3-manifold. IV. Locally simply connected, Ann. Math. (2) 160 (2004), 573615.CrossRefGoogle Scholar
Colding, T. H. and Minicozzi, W. P. II, Smooth compactness of self-shrinkers, Comment. Math. Helv. 87 (2012), 463475.CrossRefGoogle Scholar
Colding, T. H. and Minicozzi, W. P. II, Complexity of parabolic systems , Publ. Math. Inst. Hautes Études Sci. 132 (2020), 83135.CrossRefGoogle Scholar
Colding, T. H. and Minicozzi, W. P. II, Regularity of elliptic and parabolic systems , Ann. L’ENS 56 (2023), 18831921.Google Scholar
Colding, T. H. and Minicozzi, W. P. II. Singularities of Ricci flow and diffeomorphisms, Preprint (2025), arXiv:2109.06240.Google Scholar
Ding, Q. and Xin, Y. L., Volume growth, eigenvalue and compactness for self-shrinkers, Asian J. Math. 17 (2013), 443456.CrossRefGoogle Scholar
Federer, H.. Geometric measure theory, Die Grundlehren der Mathematischen Wissenschaften, band 153 (Springer-Verlag, New York, 1969).Google Scholar
Fraser, A. and Li, M. M.-C., Compactness of the space of embedded minimal surfaces with free boundary in three-manifolds with nonnegative Ricci curvature and convex boundary , J. Differ. Geom. 96 (2014), 183200.Google Scholar
Frankel, T., On the fundamental group of a compact minimal submanifold , Ann. Math. (2) 83 (1966), 6873.CrossRefGoogle Scholar
Hoffman, D. and Meeks, W. H. III, The strong halfspace theorem for minimal surfaces , Invent. Math. 101 (1990), 373377.CrossRefGoogle Scholar
Huisken, G., Asymptotic behavior for singularities of the mean curvature flow , J. Differ. Geom. 31 (1990), 285299.Google Scholar
Ilmanen, T.. Singularities of mean curvature flow of surfaces , Preprint (1995), https://people.math.ethz.ch/~ilmanen/papers/pub.html. Google Scholar
Impera, D., Pigola, S. and Rimoldi, M., The Frankel property for self-shrinkers from the viewpoint of elliptic PDEs , J. Reine Angew. Math. 773 (2021), 120.CrossRefGoogle Scholar
Lawson, H. B., The unknottedness of minimal embeddings, Invent. Math. 11 (1970), 183187.CrossRefGoogle Scholar
Lee, Y.-I. and Lue, Y.-K., The stability of self-shrinkers of mean curvature flow in higher co-dimension , Trans. Amer. Math. Soc. 367 (2015), 24112435.CrossRefGoogle Scholar
Mramor, A., On the unknottedness of self shrinkers in R3 , in Mean curvature flow (De Gruyter, Berlin, 2020), 120122.CrossRefGoogle Scholar
Mramor, A., An unknottedness result for noncompact self shrinkers , J. Reine Angew. Math. 810 (2024), 189215.Google Scholar
Mramor, A. and Wang, S., On the topological rigidity of compact self-shrinkers in $\mathbf {R}^3$ , Int. Math. Res. Not. IMRN (2020), 19331941.Google Scholar
Pigola, S. and Rimoldi, M., Complete self-shrinkers confined into some regions of the space , Ann. Global Anal. Geom. 45 (2014), 4765.CrossRefGoogle Scholar
Schoen, R. and Simon, L., Regularity of stable minimal hypersurfaces , Commun. Pure Appl. Math. 34 (1981), 741797.CrossRefGoogle Scholar
Simon, L., Lectures on geometric measure theory , in Proc. of the CMA , vol. 3 (The Australian National University, Canberra, 1983). Google Scholar
Wang, L., A Bernstein type theorem for self-similar shrinkers , Geom. Dedicata 151 (2011), 297303.CrossRefGoogle Scholar
Wang, L., Entropy in mean curvature flow, in International Congress of Mathematicians , vol. 4, Sections 5–8 (EMS Press, Berlin, 2023), 26562676.CrossRefGoogle Scholar
Wei, G. and Wylie, W., Comparison geometry for the Bakry-Emery Ricci tensor , J. Differ. Geom. 83 (2009), 377405.Google Scholar
White, B., Stratification of minimal surfaces, mean curvature flows, and harmonic maps , J. Reine Angew. Math. 488 (1997), 135.Google Scholar
Wickramasekera, N., A general regularity theory for stable codimension 1 integral varifolds , Ann. Math. 179 (2014), 8431007.CrossRefGoogle Scholar