Hostname: page-component-68c7f8b79f-lvtpz Total loading time: 0 Render date: 2025-12-18T08:33:38.836Z Has data issue: false hasContentIssue false

On the weak Harder–Narasimhan stratification on $B_{\mathrm{dR}}^+$-affine Grassmannian

Published online by Cambridge University Press:  15 December 2025

Miaofen Chen
Affiliation:
Shanghai Center for Mathematical Sciences, Fudan University, 2005 Songhu Road, Shanghai 20438, China miaofenchen@fudan.edu.cn
Jilong Tong
Affiliation:
School of Mathematical Sciences, Capital Normal University, 105, Xi San Huan Bei Lu, Beijing 100048, China jilong.tong@cnu.edu.cn

Abstract

We consider the Harder–Narasimhan formalism on the category of normed isocrystals and show that the Harder–Narasimhan filtration is compatible with tensor products which generalizes a result of Cornut. As an application of this result, we are able to define a (weak) Harder–Narasimhan stratification on the $B_{\mathrm{dR}}^+$-affine Grassmannian for arbitrary $(G, b, \mu)$. When $\mu$ is minuscule, it corresponds to the Harder–Narasimhan stratification on the flag varieties defined by Dat, Orlik and Rapoport. Moreover, when b is basic, it has been studied by Nguyen and Viehmann, and Shen. We study the basic geometric properties of the Harder–Narasimhan stratification, such as non-emptiness, dimension and its relation with other stratifications.

Information

Type
Research Article
Copyright
© The Author(s), 2025. The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

In memory of Professor Linsheng Yin

References

Beauville, A. and Laszlo, Y., Un lemme de descent , C. R. Math. Acad. Sci. Paris Sér. I. Math. 320 (1995), 335340.Google Scholar
Bridson, M. R. and Haefliger, A., Metric spaces of non-positive curvature , Grundlehren der Mathematischen Wissenschaften, vol. 319 (Springer-Verlag, Berlin, 1999).Google Scholar
Bruhat, F. and Tits, J., Schémas en groupes et immeubles des groupes classiques sur un corps local , Bull. Soc. Math. France 112 (1984), 259301 10.24033/bsmf.2006CrossRefGoogle Scholar
Caraiani, A. and Scholze, P., On the generic part of the cohomology of compact unitary Shimura varieties , Ann. of Math. (2) 186 (2017), 649766.10.4007/annals.2017.186.3.1CrossRefGoogle Scholar
Chen, M., Fargues-Rapoport conjecture for p-adic period domains in the non-basic case , J. Eur. Math. Soc. 25 (2023), 28792918.10.4171/jems/1253CrossRefGoogle Scholar
Chen, M., Fargues, L. and Shen, X., On the structure of some p-adic period domains , Camb. J. Math. 9 (2021), 213267.10.4310/CJM.2021.v9.n1.a4CrossRefGoogle Scholar
Chen, M. and Tong, J., Weakly admissible locus and Newton stratification in p-adic Hodge theory, Amer. J. Math., to appear. Preprint (2022), https://arxiv.org/abs/arXiv:2203.12293arXiv:2203.12293.Google Scholar
Colmez, P. and Fontaine, J.-M., Construction des représentations p-adiques semi-stables , Invent. Math. 140 (2000), 143.10.1007/s002220000042CrossRefGoogle Scholar
Cornut, C., On Harder–Narasimhan filtration and their compatibility with tensor products , Confluentes Math. 10 (2018), 349.10.5802/cml.49CrossRefGoogle Scholar
Cornut, C., Filtrations and Buildings , Mem. Amer. Math. Soc. 266 (2020), 150.Google Scholar
Cornut, C. and Peche Irissarry, M., Harder–Narasimhan filtrations for Breuil-Kisin-Fargues modules , Ann. H. Lebesgue 2 (2019), 415480.10.5802/ahl.22CrossRefGoogle Scholar
Dat, J.-F., Orlik, S. and Rapoport, M., Period domains over finite and p-adic fields , Cambridge Tracts in Mathematics, vol. 183 (Cambridge University Press, Cambridge, 2010).Google Scholar
Faltings, G., Mumford-Stabilität in der algebraischen Geometrie, in Proceedings of the international congress of mathematicians, vol. 1 and 2 (Birkhäuser, Zürich, 1994), 648655.10.1007/978-3-0348-9078-6_58CrossRefGoogle Scholar
Faltings, G., Coverings of p-adic period domains , J. Reine Angew. Math. 643 (2010), 111139.Google Scholar
Fargues, L., Théorie de la réduction pour les groupes p-divisibles, Preprint (2019), https://arxiv.org/abs/arXiv:1901.08270arXiv:1901.08270.Google Scholar
Fargues, L., G-torseurs en théorie de Hodge p-adique , Compositio Math. 156 (2020), 20762110.10.1112/S0010437X20007423CrossRefGoogle Scholar
Fargues, L., Geometrization of the local Langlands correspondence: an overview , J. Math. Sci. Univ. Tokyo 32 (2025), 157240.Google Scholar
Fargues, L. and Fontaine, J.-M., Courbes et fibrés vectoriels en théorie de Hodge p-adique, Astérisque, vol. 406 (Société Mathématique de France, 2018).Google Scholar
Fargues, L. and Scholze, P., Geometrization of the local Langlands correspondence, Astérisque, to appear. Preprint (2021), https://arxiv.org/abs/arXiv:2102.13459arXiv:2102.13459.Google Scholar
Fontaine, J.-M. and Rapoport, M., Existence de filtrations admissibles sur des isocristaux , Bull. Soc. Math. France 133 (2005), 7386.10.24033/bsmf.2479CrossRefGoogle Scholar
Görtz, U., Haines, Th. J., Kottwitz, R. E. and Reuman, D. C., Dimensions of some affine Deligne-Lusztig varieties , Ann. Sci. École Norm. Sup. 39 (2006), 467511.10.1016/j.ansens.2005.12.004CrossRefGoogle Scholar
Haines, T., Kapovich, M. and Millson, J., Ideal triangles in Euclidean buildings and branching to Levi subgroups , J. Algebra 361 (2012), 4178.10.1016/j.jalgebra.2012.04.001CrossRefGoogle Scholar
Hansen, D., On the supercuspidal cohomology of basic local Shimura varieties, J. Reine Angew. Math., to appear. Preprint, http://davidrenshawhansen.net/middlev2.pdfhttp://davidrenshawhansen.net/middlev2.pdf.Google Scholar
Hartl, U., On period spaces for p-divisible groups , C. R. Math. Acad. Sci. Paris 346 (2008), 11231128.10.1016/j.crma.2008.07.003CrossRefGoogle Scholar
Hartl, U., On a conjecture of Rapoport and Zink , Invent. Math. 193 (2013), 627696.10.1007/s00222-012-0437-9CrossRefGoogle Scholar
Huber, R., Étale cohomology of rigid analytic varieties and adic spaces , Aspects of Mathematics, vol. E30 (Friedrich Vieweg & Sohn, Braunschweig, 1996).Google Scholar
Kedlaya, K. S. and Liu, R., Relative p-adic Hodge theory: foundations, Astérisque, vol. 371 (Société Mathématique de France, 2015).Google Scholar
Kottwitz, R. E., Isocrystals with additional structure , Compositio Math. 56 (1985), 201220.Google Scholar
Kottwitz, R. E., Isocrystals with additional structure II , Compositio Math. 109 (1997), 255339.10.1023/A:1000102604688CrossRefGoogle Scholar
Mirković, I. and Vilonen, K., Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), 95143.10.4007/annals.2007.166.95CrossRefGoogle Scholar
Nguyen, K. H. and Viehmann, E., A Harder–Narasimhan stratification of the $B^+_{\textrm{dR}}$ -affine Grassmannian, Compositio Math. 159 (2023), 711745.10.1112/S0010437X23007066CrossRefGoogle Scholar
Orlik, S.. On Harder–Narasimhan strata in flag manifolds , Math. Z. 252 (2006), 209222.10.1007/s00209-005-0853-2CrossRefGoogle Scholar
Rapoport, M., Accessible and weakly accessible period domains, Appendix from On the p-adic cohomology of the Lubin-Tate tower by Scholze , Ann. Sci. Éc. Norm. Supér (4) 51 (2018), 856863.Google Scholar
Rapoport, M. and Richartz, M., On the classification and specialization of F-isocrystals with additional structure , Compositio Math. 103 (1996), 153181.Google Scholar
Rapoport, M. and Zink, T., Period spaces for p-divisible groups , Annals of Mathematical Studies, vol. 141 (Princeton University Press, Princeton, NJ, 1996).Google Scholar
Schieder, S., The Harder–Narasimhan stratification of the moduli stack of G-bundles via Drinfeld’s compatifications , Selecta Math. (N.S.) 21 (2015), 763831.10.1007/s00029-014-0161-yCrossRefGoogle Scholar
Scholze, P., On torsion in the cohomology of locally symmetric varieties , Ann. of Math. (2) 182 (2015), 9451066.10.4007/annals.2015.182.3.3CrossRefGoogle Scholar
Scholze, P., Étale cohomology of diamonds, Astérisque, to appear. Preprint (2017), https://arxiv.org/abs/arXiv:1709.07343arXiv:1709.07343.Google Scholar
Scholze, P. and Weinstein, J., Berkeley lectures on p-adic geometry , Annals of Mathematics Studies, vol. 207 (Princeton University Press, Princeton, NJ, 2020).Google Scholar
Serre, J.-P., Cohomologie galoisienne , Lecture Notes in Mathematics, vol. 5, cinquième édition (Springer-Verlag, Berlin, 1994).Google Scholar
Shen, X., Harder–Narasimhan strata and p-adic period domains , Trans. Amer. Math. Soc. 376 (2023), 33193376.10.1090/tran/8859CrossRefGoogle Scholar
Springer, T. A., Linear algebraic groups , Modern Birkhäuser Classics, second edition (Birkhäuser, Boston, MA, 2010).Google Scholar
Steinberg, R., Regular elements of semi-simple algebraic groups , Publ. Math. Inst. Hautes Études Sci. 25 (1965), 4980.10.1007/BF02684397CrossRefGoogle Scholar
Totaro, B., Tensor products of semi-stables are semi-stable , in Geometry and Analysis on Complex Manifolds (World Scientific, River Edge, NJ, 1994), 242250.10.1142/9789814350112_0012CrossRefGoogle Scholar
Totaro, B., Tensor products in p-adic Hodge theory , Duke Math. J. 83 (1996), 79104.10.1215/S0012-7094-96-08304-0CrossRefGoogle Scholar
Viehmann, E., On Newton strata in the $B_{\mathrm{dR}}^+$ -Grassmannian , Duke Math. J. 173 (2024), 177225.10.1215/00127094-2024-0005CrossRefGoogle Scholar
Zhu, X., An introduction to affine Grassmannians and the geometric Satake equivalence, in Geometry of moduli spaces and representation theory, IAS/Park City Mathematical Series, vol. 24 (American Mathematical Society, Providence, RI, 2017), 59154.Google Scholar