Hostname: page-component-857557d7f7-d5hhr Total loading time: 0 Render date: 2025-11-30T08:09:56.465Z Has data issue: false hasContentIssue false

Canonization of a random circulant graph by counting walks

Published online by Cambridge University Press:  26 November 2025

Oleg Verbitsky
Affiliation:
Institut für Informatik, Humboldt-Universität zu Berlin, Berlin, Germany
Maksim Zhukovskii*
Affiliation:
School of Computer Science, University of Sheffield, Sheffield, UK
*
Corresponding author: Maksim Zhukovskii; Email: m.zhukovskii@sheffield.ac.uk

Abstract

It is well known that almost all graphs are canonizable by a simple combinatorial routine known as colour refinement, also referred to as the 1-dimensional Weisfeiler–Leman algorithm. With high probability, this method assigns a unique label to each vertex of a random input graph and, hence, it is applicable only to asymmetric graphs. The strength of combinatorial refinement techniques becomes a subtle issue if the input graphs are highly symmetric. We prove that the combination of colour refinement and vertex individualization yields a canonical labelling for almost all circulant digraphs (i.e., Cayley digraphs of a cyclic group). This result provides first evidence of good average-case performance of combinatorial refinement within the class of vertex-transitive graphs. Remarkably, we do not even need the full power of the colour refinement algorithm. We show that the canonical label of a vertex $v$ can be obtained just by counting walks of each length from $v$ to an individualized vertex. Our analysis also implies that almost all circulant graphs are compact in the sense of Tinhofer, that is, their polytops of fractional automorphisms are integral. Finally, we show that a canonical Cayley representation can be constructed for almost all circulant graphs by the more powerful 2-dimensional Weisfeiler–Leman algorithm.

Information

Type
Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

*

A preliminary version of this paper was presented at WALCOM’24, the 18th International Conference and Workshops on Algorithms and Computation [45].

#

On leave from the IAPMM, Lviv, Ukraine

References

Apostol, T. M. (1998) Introduction to Analytic Number Theory. Springer, New York Google Scholar
Arvind, V., Köbler, J., Rattan, G. and Verbitsky, O. 2017) Graph isomorphism, color refinement, and compactness. Comput. Complex 26(3) 627685.10.1007/s00037-016-0147-6CrossRefGoogle Scholar
Babai, L. (1977) Isomorphism problem for a class of point-symmetric structures. Acta Math. Acad. Sci. Hungar. 29(3-4) 329336.10.1007/BF01895854CrossRefGoogle Scholar
Babai, L., Chen, X., Sun, X., Teng, S. and Wilmes, J. (2013) Faster canonical forms for strongly regular graphs. In 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS’13), IEEE Computer Society, pp. 157166.10.1109/FOCS.2013.25CrossRefGoogle Scholar
Babai, L., Erdős, P. and Selkow, S. M. (1980) Random graph isomorphism. SIAM J. Comput. 9(3) 628635.10.1137/0209047CrossRefGoogle Scholar
Bach, E. and Shallit, J. (1996) Algorithmic Number Theory, Vol. 1: Efficient Algorithms. The MIT Press, Cambridge.Google Scholar
Berkholz, C., Bonsma, P. S. and Grohe, M. (2017) Tight lower and upper bounds for the complexity of canonical colour refinement. Theory Comput. Syst. 60(4) 581614.10.1007/s00224-016-9686-0CrossRefGoogle Scholar
Bhoumik, S., Dobson, T. and Morris, J. (2014) On the automorphism groups of almost all circulant graphs and digraphs. ARS Math. Contemp. 7(2) 499518.10.26493/1855-3974.315.868CrossRefGoogle Scholar
Bollobás, B. (1982) Distinguishing vertices of random graphs. Ann. Discrete Math. 13 3349.Google Scholar
Bose, A. and Saha, K. (2019) Random Circulant Matrices. CRC Press, Boca Raton.Google Scholar
Cai, J., Fürer, M. and Immerman, N. (1992) An optimal lower bound on the number of variables for graph identifications. Combinatorica 12(4) 389410.10.1007/BF01305232CrossRefGoogle Scholar
Cardon, A. and Crochemore, M. (1982) Partitioning a graph in $O(|A| \log _2 |V|)$ . Theor. Comput. Sci. 19 8598.10.1016/0304-3975(82)90016-0CrossRefGoogle Scholar
Chen, G. and Ponomarenko, I. (2019) Coherent Configurations. Central China Normal University Press, Wuhan. A draft version is available at http://www.pdmi.ras.ru/∼inp/ccNOTES.pdf.Google Scholar
Davis, P. J. (1994) Circulant Matrices, 2nd ed.AMS Chelsea Publishing, New York.Google Scholar
Dobson, E., Spiga, P. and Verret, G. (2016) Cayley graphs on abelian groups. Combinatorica 36(4) 371393.10.1007/s00493-015-3136-5CrossRefGoogle Scholar
Dobson, T., Malnič, A. and Marušič, D. (2022) Symmetry in Graphs, , Volume 198 of Camb. Stud. Adv. Math. Cambridge University Press, Cambridge.10.1017/9781108553995CrossRefGoogle Scholar
Drozd, Y. A. and Kirichenko, V. V. (1994) Finite Dimensional Algebras. Springer-Verlag, Berlin.10.1007/978-3-642-76244-4CrossRefGoogle Scholar
Elspas, B. and Turner, J. (1970) Graphs with circulant adjacency matrices. J. Combin. Theory 9(3) 297307.10.1016/S0021-9800(70)80068-0CrossRefGoogle Scholar
Evdokimov, S. and Ponomarenko, I. (2004) Circulant graphs: recognizing and isomorphism testing in polynomial time. St. Petersbg. Math. J. 15(6) 813835.10.1090/S1061-0022-04-00833-7CrossRefGoogle Scholar
Evdokimov, S. A. and Ponomarenko, I. N. (1999) Two inequalities for the parameters of a cellular algebra. J. Math. Sci. 96(5) 34963504.10.1007/BF02175828CrossRefGoogle Scholar
Evdokimov, S. A. and Ponomarenko, I. N. (2003) Characterization of cyclotomic schemes and normal Schur rings over a cyclic group. St. Petersbg. Math. J. 14(2) 189221.Google Scholar
Friedland, S. (1989) Coherent algebras and the graph isomorphism problem. Discret. Appl. Math. 25(1-2) 7398.10.1016/0166-218X(89)90047-4CrossRefGoogle Scholar
Fuhlbrück, F., Köbler, J., Ponomarenko, I. and Verbitsky, O. (2021) The Weisfeiler–Leman algorithm and recognition of graph properties. Theor. Comput. Sci. 895 96114.10.1016/j.tcs.2021.09.033CrossRefGoogle Scholar
Godsil, C. (2012) Controllable subsets in graphs. Ann. Comb. 16(4) 733744.10.1007/s00026-012-0156-3CrossRefGoogle Scholar
Hagos, E. M. (2002) Some results on graph spectra. Linear Algebra Appl. 356(1-3) 103111.10.1016/S0024-3795(02)00324-5CrossRefGoogle Scholar
Immerman, N. and Lander, E. (1990) Describing graphs: A first-order approach to graph canonization. In Complexity Theory Retrospective. Springer, pp. 5981.10.1007/978-1-4612-4478-3_5CrossRefGoogle Scholar
Immerman, N. and Sengupta, R. (2019) The $k$ -dimensional Weisfeiler–Leman algorithm. Technical report, arXiv:1907.09582.Google Scholar
Kiefer, S., Ponomarenko, I. and Schweitzer, P. (2019) The Weisfeiler–Leman dimension of planar graphs is at most 3. J. ACM 66(6) 31.10.1145/3333003CrossRefGoogle Scholar
Kluge, L. (2024) Combinatorial refinement on circulant graphs. Comput. Complex 33(2) 9.10.1007/s00037-024-00255-2CrossRefGoogle Scholar
Kriege, N. M. (2022) Weisfeiler and Leman go walking: Random walk kernels revisited. In Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022 (NeurIPS’22).Google Scholar
Kucera, L. (1987) Canonical labeling of regular graphs in linear average time. In 28th Annual Symposium on Foundations of Computer Science (FOCS’87), pp. 271279.10.1109/SFCS.1987.11CrossRefGoogle Scholar
Liu, F. and Siemons, J. (2022) Unlocking the walk matrix of a graph. J. Algebr. Comb. 55(3) 663690.10.1007/s10801-021-01065-3CrossRefGoogle Scholar
McKay, B. D. and Piperno, A. (2014) Practical graph isomorphism, ii. J. Symb. Comput. 60 94112.10.1016/j.jsc.2013.09.003CrossRefGoogle Scholar
Meckes, M. W. (2009) Some results on random circulant matrices. In High Dimensional Probability. V: The Luminy Volume. IMS, Institute of Mathematical Statistics, Beachwood, pp. 213223.10.1214/09-IMSCOLL514CrossRefGoogle Scholar
Muzychuk, M. (2004) A solution of the isomorphism problem for circulant graphs. Proc. Lond. Math. Soc. 88(1) 141.10.1112/S0024611503014412CrossRefGoogle Scholar
Muzychuk, M. E., Klin, M. H. and Pöschel, R. (1999) The isomorphism problem for circulant graphs via Schur ring theory. In Codes and Association Schemes, Volume 56 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science. DIMACS/AMS, pp. 241264.Google Scholar
O’Rourke, S. and Touri, B. (2016) On a conjecture of Godsil concerning controllable random graphs. SIAM J. Control Optim. 54(6) 33473378.10.1137/15M1049622CrossRefGoogle Scholar
Ponomarenko, I. (2023) On the WL-dimension of circulant graphs of prime power order. Universitext 6(6) 14691490.Google Scholar
Powers, D. L. and Sulaiman, M. M. (1982) The walk partition and colorations of a graph. Linear Algebra Appl. 48 145159.10.1016/0024-3795(82)90104-5CrossRefGoogle Scholar
Rattan, G. and Seppelt, T. (2023) Weisfeiler–Leman and graph spectra. In Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms (SODA’23). SIAM, pp. 22682285.10.1137/1.9781611977554.ch87CrossRefGoogle Scholar
Schreck, H. and Tinhofer, G. (1988) A note on certain subpolytopes of the assignment polytope associated with circulant graphs. Linear Algebra Appl. 111 125134.10.1016/0024-3795(88)90054-7CrossRefGoogle Scholar
Tinhofer, G. (1986) Graph isomorphism and theorems of Birkhoff type. Computing 36 285300.10.1007/BF02240204CrossRefGoogle Scholar
Tinhofer, G. (1991) A note on compact graphs. Discrete Appl. Math. 30(2-3) 253264.10.1016/0166-218X(91)90049-3CrossRefGoogle Scholar
Verbitsky, O. and Zhukovskii, M. Canonization of a random graph by two matrix-vector multiplications. In 31st Annual European Symposium on Algorithms (ESA’23), volume 274 of LIPIcs, pp. 100:1, 100:13.Google Scholar
Verbitsky, O. and Zhukovskii, M. (2024) Canonization of a random circulant graph by counting walks. In WALCOM: Algorithms and Computation – 18th International Conference and Workshops on Algorithms and Computation (WALCOM’24), volume 14549 of Lecture Notes in Computer Science. Springer, pp. 319334.10.1007/978-981-97-0566-5_23CrossRefGoogle Scholar
Weisfeiler, B. and Leman, A. (1968) The reduction of a graph to canonical form and the algebra which appears therein. NTI Ser. 2 9 1216, English translation is available at https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf.Google Scholar
Wu, Y. and Ponomarenko, I. (2024) On the Weisfeiler–Leman dimension of circulant graphs. Technical report, arxiv.org/abs/2406.15822.Google Scholar