Hostname: page-component-54dcc4c588-54gsr Total loading time: 0 Render date: 2025-09-28T06:48:29.079Z Has data issue: false hasContentIssue false

Integer solutions of the generalized polynomial Pell equations and their finiteness: The quadratic case

Published online by Cambridge University Press:  27 August 2025

Akanksha Gupta
Affiliation:
Department of Mathematics, https://ror.org/049tgcd06Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India e-mail: maz218514@maths.iitd.ac.in
Ekata Saha*
Affiliation:
Department of Mathematics, https://ror.org/049tgcd06Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India e-mail: maz218514@maths.iitd.ac.in

Abstract

Determining the polynomials $D \in {\mathbb Z}[x]$ such that the polynomial Pell equation ${P^2-DQ^2=1}$ has nontrivial solutions $P,Q$ in ${\mathbb Q}[x]$ (and in ${\mathbb Z}[x]$) is an open question. In this article, we consider the generalized polynomial Pell equation $P^2-DQ^2=n$, where $D \in {\mathbb Z}[x]$ is a monic quadratic polynomial and n is a nonzero integer. For $n=1$, such an equation always has nontrivial solutions in ${\mathbb Q}[x]$, but for a non-square integer n, the generalized polynomial Pell equation $P^2-DQ^2=n$ may not always have a solution in ${\mathbb Q}[x]$. Depending on n, we determine the polynomials $D=x^2+cx+d$, for which the equation $P^2-DQ^2=n$ has nontrivial solutions in ${\mathbb Q}[x]$ and in ${\mathbb Z}[x]$. Taking $n=-1$, this allows us to solve the negative polynomial Pell equation completely for any such D. An interesting feature is that there are certain polynomials D for which the generalized polynomial Pell equation has nontrivial solutions in ${\mathbb Z}[x]$, but only finitely many, whereas the solutions in ${\mathbb Q}[x]$ are infinitely many. Finally, we determine the monic quadratic polynomials D for which the solutions of $P^2-DQ^2=n$ in ${\mathbb Z}[x]$ exhibit this finiteness phenomenon.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abel, N. H., Über die Integration der differential-formel $\rho dx/\sqrt{R}$ , wenn $R$ und $\rho$ ganze Funktionen sind . J. Reine Angew. Math. 1(1826), 185221.Google Scholar
Ballini, F. and Veneziano, F., Hyperelliptic continued fractions in the singular case of genus zero . Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 33(2022), no. 4, 795832.Google Scholar
Chebyshev, P. L., Sur l’intégration de la differential $\frac{x+A}{\sqrt{\left({x}^4+\alpha {x}^3+\beta {x}^2+\gamma \right.}} dx$ . J. Math. Pures Appl. 9(1864), no. 1, 225246.Google Scholar
Dubickas, A. and Steuding, J., The polynomial Pell equation . Elem. Math. 59(2004), no. 4, 133143.10.1007/s00017-004-0214-7CrossRefGoogle Scholar
Griffin, J. C. and Gunatillake, G., Orthogonal-type polynomials and Pell equations . Integral Transforms Spec. Funct. 24(2013), no. 10, 796806.10.1080/10652469.2012.760083CrossRefGoogle Scholar
Hazama, F., Pell equations for polynomials . Indag. Math. (N.S.) 8(1997), no. 3, 387397.10.1016/S0019-3577(97)81817-4CrossRefGoogle Scholar
Koymans, P. and Pagano, C., On Stevenhagen’s conjecture. Acta Mathematica (to appear).Google Scholar
McLaughlin, J., Polynomial solutions of Pell’s equation and fundamental units in real quadratic fields . J. London Math. Soc. (2) 67(2003), no. 1, 1628.10.1112/S002461070200371XCrossRefGoogle Scholar
Mollin, R. A., Polynomial solutions for Pell’s equation revisited . Indian J. Pure Appl. Math. 28(1997), no. 4, 429438.Google Scholar
Murru, N., A note on the use of Rédei polynomials for solving the polynomial Pell equation and its generalization to higher degrees . Ramanujan J. 53(2020), no. 3, 693703.10.1007/s11139-019-00233-1CrossRefGoogle Scholar
Nathanson, M. B., Polynomial Pell’s equations . Proc. Amer. Math. Soc. 56(1976), 8992.Google Scholar
Pastor, A. V., Generalized Chebyshev polynomials and the Pell-Abel equation . Fundam. Prikl. Mat. 7(2001), no. 4, 11231145.Google Scholar
Ramasamy, A. M. S., Polynomial solutions for the Pell’s equation . Indian J. Pure Appl. Math. 25(1994), no. 6, 577581.Google Scholar
Schinzel, A., On some problems of the arithmetical theory of continued fractions II . Acta Arith. 7(1961/62), 287298.10.4064/aa-7-3-287-298CrossRefGoogle Scholar
Scherr, Z. and Thompson, K., Quartic integral polynomial Pell equations . J. Number Theory 259(2024), 3856.10.1016/j.jnt.2023.12.009CrossRefGoogle Scholar
Webb, W. A. and Yokota, H., Polynomial Pell’s equation . Proc. Amer. Math. Soc. 131(2003), no. 4, 9931006.10.1090/S0002-9939-02-06934-4CrossRefGoogle Scholar
Webb, W. A. and Yokota, H., Polynomial Pell’s equation. II . J. Number Theory 106(2004), no. 1, 128141.10.1016/j.jnt.2003.12.005CrossRefGoogle Scholar
Yokota, H., Solutions of polynomial Pell’s equation . J. Number Theory 130(2010), no. 9, 20032010.10.1016/j.jnt.2009.12.006CrossRefGoogle Scholar
Zannier, U., Hyperelliptic continued fractions and generalized Jacobians . Amer. J. Math. 141(2019), no. 1, 140.10.1353/ajm.2019.0000CrossRefGoogle Scholar
Zapponi, L., Parametric solutions of Pell equations . Proc. Roman Number Theory Assoc. 1(2016), 4348.Google Scholar