No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
If   $A$  is a
 $A$  is a   $\sigma $ -unital
 $\sigma $ -unital   ${{C}^{*}}$ -algebra and
 ${{C}^{*}}$ -algebra and   $a$  is a strictly positive element of
 $a$  is a strictly positive element of   $A$ , then for every compact subset
 $A$ , then for every compact subset   $K$  of the complete regularization Glimm
 $K$  of the complete regularization Glimm  $(A)$  of Prim
 $(A)$  of Prim  $(A)$  there exists
 $(A)$  there exists   $\alpha \,>\,0$  such that
 $\alpha \,>\,0$  such that   $K\,\subset \,\{G\,\in \,\text{Glimm(}A\text{)}\,\text{ }\!\!|\!\!\text{ }\,\left\| a\,+\,G \right\|\,\ge \,\alpha \}$ . This extends a result of J. Dauns to all
 $K\,\subset \,\{G\,\in \,\text{Glimm(}A\text{)}\,\text{ }\!\!|\!\!\text{ }\,\left\| a\,+\,G \right\|\,\ge \,\alpha \}$ . This extends a result of J. Dauns to all   $\sigma $ -unital
 $\sigma $ -unital   ${{C}^{*}}$ -algebras. However, there exist a
 ${{C}^{*}}$ -algebras. However, there exist a   ${{C}^{*}}$ -algebra
 ${{C}^{*}}$ -algebra   $A$  and a compact subset of Glimm
 $A$  and a compact subset of Glimm  $(A)$  that is not contained in any set of the form
 $(A)$  that is not contained in any set of the form   $\{G\,\in \,\text{Glimm(}A\text{)}\,\text{ }\!\!|\!\!\text{ }\,\left\| a+\,G \right\|\,\ge \,\alpha \},\,a\in \,A$  and
 $\{G\,\in \,\text{Glimm(}A\text{)}\,\text{ }\!\!|\!\!\text{ }\,\left\| a+\,G \right\|\,\ge \,\alpha \},\,a\in \,A$  and   $\alpha \,>\,0$ .
 $\alpha \,>\,0$ .