Hostname: page-component-54dcc4c588-sq2k7 Total loading time: 0 Render date: 2025-09-29T02:49:35.914Z Has data issue: false hasContentIssue false

On perfect weakly group-theoretical modular categories

Published online by Cambridge University Press:  11 September 2025

Fengshuo Xu
Affiliation:
College of Mathematics and Statistics, https://ror.org/02y0rxk19 Nanjing University of Information Science and Technology , Nanjing 210044, China e-mail: 3528935465@qq.com
Jingcheng Dong*
Affiliation:
Center for Applied Mathematics of Jiangsu Province, https://ror.org/02y0rxk19 Nanjing University of Information Science and Technology , Nanjing 210044, China

Abstract

We prove that the Drinfeld center $\mathcal {Z}(\operatorname {Vec}^{\omega }_{A_5})$ of the pointed category associated with the alternating group $A_5$ is the unique example of a perfect weakly group-theoretical modular category of Frobenius–Perron dimension less than $14400$.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alekseyev, M. A., Bruns, W., Palcoux, S., and Petrov, F. V., Classification of integral modular data up to rank 13. Preprint, 2024. arXiv:2302.01613.Google Scholar
Bruillard, P., Galindo, C., Ng, S.-H., Plavnik, J., Rowell, E. C., and Wang, Z., On the classification of weakly integral modular categories . J. Pure Appl. Algebra 220(2016), no. 6, 23642388.Google Scholar
Burciu, S. and Natale, S., Fusion rules of equivariantizations of fusion categories . J. Math. Phys. 54(2013), no. 1, 13511.Google Scholar
Burciu, S. and Palcoux, S., Burnside type results for fusion rings. Preprint. arXiv:2302.07604.Google Scholar
Chakravarthy, A., Czenky, A., and Plavnik, J., On modular categories with Frobenius-Perron dimension congruent to 2 modulo 4. Preprint. arXiv:2308.12546.Google Scholar
Czenky, A., Gvozdjak, W., and Plavnik, J., Classification of low-rank odd-dimensional modular categories . J. Algebra 655(2024), no. 1, 223293.Google Scholar
Czenky, A. and Plavnik, J., On odd-dimensional modular tensor categories . Algebra Number Theory 16(2022), no. 8, 19191939.Google Scholar
Dijkgraaf, R., Pasquier, V., and Roche, P., Quasi-quantum groups related to orbifold models . Nuclear Physics B (Proc. Suppl.) 18B(1990), 6072.Google Scholar
Drinfeld, V., Gelaki, S., Nikshych, D., and Ostrik, V., On braided fusion categories I . Selecta Math. 16(2010), 1119.Google Scholar
Etingof, P., Gelaki, S., Nikshych, D., and Ostrik, V., Tensor categories, mathematical surveys and monographs . Amer. Math. Soc. 205(2015).Google Scholar
Etingof, P., Nikshych, D., and Ostrik, V., Weakly group-theoretical and solvable fusion categories . Adv. Math. 226(2011), no. 1, 176205.Google Scholar
Gelaki, S. and Nikshych, D., Nilpotent fusion categories . Adv. Math. 217(2008), no. 3, 10531071.Google Scholar
Liu, Z., Palcoux, S., and Ren, Y., Classification of Grothendieck rings of complex fusion categories of multiplicity one up to rank six . Lett. Math. Phys. 112(2022), no. 54.Google Scholar
Natale, S., On weakly group-theoretical non-degenerate braided fusion categories . J. Noncommut. Geom. 8(2014), no. 4, 10431060.Google Scholar
Natale, S., A Jordan-Hölder theorem for weakly group-theoretical fusion categories . Math. Z. 283(2016), 367379.Google Scholar
Natale, S., The core of a weakly group-theoretical braided fusion category . Int. J. Math. 29(2018), no. 2, 1850012.Google Scholar
Ostrik, V. and Yu, Z., On the minimal extension and structure of braided weakly group-theoretical fusion categories . Adv. Math. 419(2023), 108961.Google Scholar
Zhang, L., Chen, G., Chen, S., and Liu, X., Notes on finite simple groups whose orders have three or four prime divisors . J. Algebra Appl. 8(2009), no. 03, 389399.Google Scholar
Zhou, D. and Dong, J., Modular categories of Frobenius-Perron dimension ${p}^2{q}^2{r}^2$ and perfect modular categories. Int. J. Math. 35(2024), no. 3, 2450001.Google Scholar