Published online by Cambridge University Press: 20 November 2018
Let  
 $w$  be either in the Muckenhoupt class of  
 ${{A}_{2}}\left( {{\mathbb{R}}^{n}} \right)$  weights or in the class of  
 $QC\left( {{\mathbb{R}}^{n}} \right)$  weights, and let  
 ${{L}_{w}}\,:=\,-{{w}^{-1}}\,\text{div}\left( A\nabla\right)$  be the degenerate elliptic operator on the Euclidean space  
 ${{\mathbb{R}}^{n}}$ ,  
 $n\,\ge \,2$ . In this article, the authors establish the non-tangential maximal function characterization of the Hardy space  
 $H_{{{L}_{w}}}^{p}\,\left( {{\mathbb{R}}^{n}} \right)$  associated with  
 ${{L}_{w}}$  for  
 $p\,\in \,(0,\,1]$ , and when  
 $p\,\in \,(\frac{n}{n+1},\,1]$  and  
 $w\,\in \,{{A}_{{{q}_{0}}}}\left( {{\mathbb{R}}^{n}} \right)$  with  
 ${{q}_{0}}\,\in \,[1,\,\frac{p(n+1)}{n})$ , the authors prove that the associated Riesz transform  
 $\nabla L_{w}^{-1/2}$  is bounded from  
 $H_{{{L}_{w}}}^{p}\,\left( {{\mathbb{R}}^{n}} \right)$  to the weighted classical Hardy space  
 $H_{w}^{p}\left( {{\mathbb{R}}^{n}} \right)$ .