Published online by Cambridge University Press: 13 March 2017
We prove the existence of infinitely many solutions   $u\in W_{0}^{1,2}(\unicode[STIX]{x1D6FA})$  for the Kirchhoff equation
 $u\in W_{0}^{1,2}(\unicode[STIX]{x1D6FA})$  for the Kirchhoff equation  $$\begin{eqnarray}\displaystyle -\biggl(\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FD}\int _{\unicode[STIX]{x1D6FA}}|\unicode[STIX]{x1D6FB}u|^{2}\,dx\biggr)\unicode[STIX]{x1D6E5}u=a(x)|u|^{q-1}u+\unicode[STIX]{x1D707}f(x,u)\quad \text{in }\unicode[STIX]{x1D6FA}, & & \displaystyle \nonumber\end{eqnarray}$$
 $$\begin{eqnarray}\displaystyle -\biggl(\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FD}\int _{\unicode[STIX]{x1D6FA}}|\unicode[STIX]{x1D6FB}u|^{2}\,dx\biggr)\unicode[STIX]{x1D6E5}u=a(x)|u|^{q-1}u+\unicode[STIX]{x1D707}f(x,u)\quad \text{in }\unicode[STIX]{x1D6FA}, & & \displaystyle \nonumber\end{eqnarray}$$ $\unicode[STIX]{x1D6FA}\subset \mathbb{R}^{N}$  is a bounded smooth domain,
 $\unicode[STIX]{x1D6FA}\subset \mathbb{R}^{N}$  is a bounded smooth domain,   $a(x)$  is a (possibly) sign-changing potential,
 $a(x)$  is a (possibly) sign-changing potential,   $0<q<1$ ,
 $0<q<1$ ,   $\unicode[STIX]{x1D6FC}>0$ ,
 $\unicode[STIX]{x1D6FC}>0$ ,   $\unicode[STIX]{x1D6FD}\geq 0$ ,
 $\unicode[STIX]{x1D6FD}\geq 0$ ,   $\unicode[STIX]{x1D707}>0$  and the function
 $\unicode[STIX]{x1D707}>0$  and the function   $f$  has arbitrary growth at infinity. In the proof, we apply variational methods together with a truncation argument.
 $f$  has arbitrary growth at infinity. In the proof, we apply variational methods together with a truncation argument.
The first author was partially supported by the National Council for Scientific and Technological Development (CNPq), Brazil.