Hostname: page-component-7dd5485656-wlg5v Total loading time: 0 Render date: 2025-10-30T19:12:30.407Z Has data issue: false hasContentIssue false

EXISTENCE AND DEFORMABILITY OF TOPOLOGICAL MORSE FUNCTIONS

Published online by Cambridge University Press:  30 October 2025

INGRID IRMER*
Affiliation:
SUSTech International Center for Mathematics, and Department of Mathematics, Southern University of Science and Technology , Shenzhen, PR China

Abstract

In the 1950s, Morse defined the analogue of Morse functions for topological manifolds. In many instances, when mathematicians are using techniques on topological manifolds that appear to be Morse-theoretic in nature, there is a topological Morse function implicit in the argument. Topological Morse functions are known to inherit most of the familiar properties of the usual (smooth) Morse functions, with two crucial exceptions: existence and deformability. This paper gives a simple construction of continuous families of topological Morse functions.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Baryshnikov, Y., Bubenik, P. and Kahle, M., ‘Min-type Morse theory for configuration spaces of hard spheres’, Int. Math. Res. Not. IMRN 9 (2014), 25772592.10.1093/imrn/rnt012CrossRefGoogle Scholar
Bobrowski, O. and Adler, R., ‘Distance functions, critical points, and the topology of random Čech complexes’, Homology Homotopy Appl. 16(2) (2014), 311344.CrossRefGoogle Scholar
Burago, Y., Gromov, M. and Perelman, G., ‘Alexandrov spaces with curvatures bounded below’, Uspekhi Mat. Nauk 42(2) (1992), 351.Google Scholar
Cantwell, J., ‘Topological non-degenerate functions’, Tohoku Math. J. (2) 20(2) (1968), 120125.CrossRefGoogle Scholar
Cheeger, J., ‘Critical points of distance functions and applications to geometry’, in: Geometric Topology: Recent Developments (Montecatini Terme, 1990, Lecture Notes in Mathematics, 1504 (eds. Bartolomeis, P. and Tricerri, F.) (Springer, Berlin, 1991), 138.Google Scholar
Constantin, U., Convex Functions and Optimization Methods on Riemannian Manifolds, Mathematics and its Applications, 297 (Kluwer Academic Publishers Group, Dordrecht, 1994).Google Scholar
Eells, J. and Kuiper, N., ‘Manifolds which are like projective planes’, Publ. Math. Inst. Hautes Études Sci. 14 (1962), 546.CrossRefGoogle Scholar
Gershkovich, V. and Rubinstein, H., ‘Morse theory for Min-type functions’, Asian J. Math. 1(4) (1997), 696715.10.4310/AJM.1997.v1.n4.a3CrossRefGoogle Scholar
Gromov, M., ‘Curvature, diameter and Betti numbers’, Comment. Math. Helv. 56(2) (1981), 179195.CrossRefGoogle Scholar
Grove, K., ‘Critical point theory for distance functions’, in: Differential Geometry, Riemannian Geometry, Part 3, Proceedings of Symposia in Pure Mathematics, 54 (eds. Greene, R. E. and Yau, S.-T.) (American Mathematical Society, Providence, RI, 1993), 357385.10.1090/pspum/054.3/1216630CrossRefGoogle Scholar
Grove, K. and Shiohama, K., ‘A generalized sphere theorem’, Ann. of Math. (2) 106(2) (1977), 201211.CrossRefGoogle Scholar
Irmer, I., ‘The Morse–Smale property of the Thurston spine’, SIGMA Symmetry Integrability Geom. Methods Appl. 21 (2025), Article no. 027.Google Scholar
Itoh, J. and Tanaka, M., ‘A Sard theorem for the distance function’, Math. Ann. 1(320) (2001), 110.CrossRefGoogle Scholar
Katz, M., ‘Convexity, critical points, and connectivity radius’, Proc. Amer. Math. Soc. 148(3) (2020), 12791281.10.1090/proc/14892CrossRefGoogle Scholar
Kirby, R. and Siebenmann, L., Foundational Essays on Topological Manifolds, Smoothings, and Triangulations, Annals of Mathematics Studies, 88 (Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1977).CrossRefGoogle Scholar
Kuiper, N., ‘A continuous function with two critical points’, Bull. Amer. Math. Soc. (N.S.) 67(3) (1961), 281285.10.1090/S0002-9904-1961-10586-7CrossRefGoogle Scholar
Medvedev, T., Pochinka, O. and Zinina, S., ‘On existence of Morse energy function for topological flows’, Adv. Math. 378 (2021), Article no. 107518.CrossRefGoogle Scholar
Morse, M., ‘Topologically non-degenerate functions on a compact $n$ -manifold $M$ ’, J. Anal. Math. 7 (1959), 189208.10.1007/BF02787685CrossRefGoogle Scholar
Perelman, G., ‘Elements of Morse theory in Alexandrov spaces’, St. Petersburg Math. J. 5(1) (1994), 205213.Google Scholar
Rifford, L., ‘A Morse–Sard theorem for the distance function on Riemannian manifolds’, Manuscripta Math. 2(113) (2004), 251265.10.1007/s00229-003-0436-7CrossRefGoogle Scholar
Saeki, O., ‘Reeb spaces of smooth functions on manifolds II’, Res. Math. Sci. 11(2) (2024), Article no. 24, 12 pages.10.1007/s40687-024-00436-zCrossRefGoogle Scholar
Schmutz Schaller, P., ‘Systoles and topological Morse functions for Riemann surfaces’, J. Differential Geom. 52(3) (1999), 407452.10.4310/jdg/1214425347CrossRefGoogle Scholar