 $ \mathbb{R} {\mathrm{P} }^{3} $
$ \mathbb{R} {\mathrm{P} }^{3} $Published online by Cambridge University Press: 11 April 2013
Khovanov homology, an invariant of links in  ${ \mathbb{R} }^{3} $, is a graded homology theory that categorifies the Jones polynomial in the sense that the graded Euler characteristic of the homology is the Jones polynomial. Asaeda et al. [‘Categorification of the Kauffman bracket skein module of
${ \mathbb{R} }^{3} $, is a graded homology theory that categorifies the Jones polynomial in the sense that the graded Euler characteristic of the homology is the Jones polynomial. Asaeda et al. [‘Categorification of the Kauffman bracket skein module of  $I$-bundles over surfaces’, Algebr. Geom. Topol. 4 (2004), 1177–1210]generalised this construction by defining a double graded homology theory that categorifies the Kauffman bracket skein module of links in
$I$-bundles over surfaces’, Algebr. Geom. Topol. 4 (2004), 1177–1210]generalised this construction by defining a double graded homology theory that categorifies the Kauffman bracket skein module of links in  $I$-bundles over surfaces, except for the surface
$I$-bundles over surfaces, except for the surface  $ \mathbb{R} {\mathrm{P} }^{2} $, where the construction fails due to strange behaviour of links when projected to the nonorientable surface
$ \mathbb{R} {\mathrm{P} }^{2} $, where the construction fails due to strange behaviour of links when projected to the nonorientable surface  $ \mathbb{R} {\mathrm{P} }^{2} $. This paper categorifies the missing case of the twisted
$ \mathbb{R} {\mathrm{P} }^{2} $. This paper categorifies the missing case of the twisted  $I$-bundle over
$I$-bundle over  $ \mathbb{R} {\mathrm{P} }^{2} $,
$ \mathbb{R} {\mathrm{P} }^{2} $,  $ \mathbb{R} {\mathrm{P} }^{2} \widetilde {\times } I\approx \mathbb{R} {\mathrm{P} }^{3} \setminus \{ \ast \} $, by redefining the differential in the Khovanov chain complex in a suitable manner.
$ \mathbb{R} {\mathrm{P} }^{2} \widetilde {\times } I\approx \mathbb{R} {\mathrm{P} }^{3} \setminus \{ \ast \} $, by redefining the differential in the Khovanov chain complex in a suitable manner.
 $I$-bundles over surfaces’, Algebr. Geom. Topol.  4  (2004), 1177–1210.CrossRefGoogle Scholar
$I$-bundles over surfaces’, Algebr. Geom. Topol.  4  (2004), 1177–1210.CrossRefGoogle Scholar $ \mathbb{R} {P}^{3} $ and a generalization of the Kauffman-Murasugi theorem’, Algebra i Analiz  2 (3) (1990), 171–191.Google Scholar
$ \mathbb{R} {P}^{3} $ and a generalization of the Kauffman-Murasugi theorem’, Algebra i Analiz  2 (3) (1990), 171–191.Google Scholar $(2, \infty )$-skein module of lens spaces; a generalization of the Jones polynomial’, J. Knot Theory Ramifications  2 (3)  (1993), 321–333.CrossRefGoogle Scholar
$(2, \infty )$-skein module of lens spaces; a generalization of the Jones polynomial’, J. Knot Theory Ramifications  2 (3)  (1993), 321–333.CrossRefGoogle Scholar ${S}^{1} \times {S}^{2} $’, Math. Z.  220 (1)  (1995), 63–73.Google Scholar
${S}^{1} \times {S}^{2} $’, Math. Z.  220 (1)  (1995), 63–73.Google Scholar ${S}^{1} $’, Topology Appl.  156 (10)  (2009), 1831–1849.CrossRefGoogle Scholar
${S}^{1} $’, Topology Appl.  156 (10)  (2009), 1831–1849.CrossRefGoogle Scholar