Hostname: page-component-7dd5485656-wlg5v Total loading time: 0 Render date: 2025-10-29T18:27:19.813Z Has data issue: false hasContentIssue false

Demographic features of arrhenotokous parthenogenesis and bisexual reproduction of Panonychus ulmi using two-sex and 3D life table analysis

Published online by Cambridge University Press:  27 October 2025

Said Ouassat*
Affiliation:
Laboratory of Health and Environment, Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
Latifa Allam
Affiliation:
Laboratory of Health and Environment, Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
*
Corresponding author: Said Ouassat; Email: s.ouassat@edu.umi.ac.ma

Abstract

The European red spider mite, Panonychus ulmi Koch (Acari: Tetranychidae), is a major mite pest affecting a wide range of crops globally. Its rapid development and extensive dispersal enable P. ulmi to form large colonies through arrhenotokous reproduction, which subsequently produces bisexual offspring following oedipal phase mating. In this study, life tables for arrhenotokous and bisexual P. ulmi populations were constructed and assessed using the age-stage two-sex life table theory. To assess whether maternal age affects the offspring sex ratio, 3D life table analysis was conducted for both groups. Population projection for P. ulmi bisexual and arrhenotokous was based on life table data to evaluate the effect of arrhenotokous reproduction on population growth. Bisexual population parameters were r = 0.1828 d−1, λ = 1.2006 d−1, R0 = 44.80 offspring, and T = 20.79 d. The theoretical calculation of these parameters cannot be performed solely based on the survival rate and female fecundity of the P. ulmi arrhenotokous population, as only male offspring were produced during the first seven days before the arrival of the bisexual population. Although arrhenotokous parthenogenesis yields fewer offspring than bisexual reproduction, it significantly influences population dynamics by enabling a single virgin female to establish a bisexual population. Controlling offspring sex ratios enables rapid population growth and colonisation of new habitats. A comprehensive understanding of arrhenotokous reproduction is crucial for developing effective management strategies for P. ulmi. Future research should integrate genomic, ecological, and evolutionary perspectives to bridge the gap between laboratory and field conditions.

Information

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Agut, B, Pastor, V, Jaques, JA and Flors, V (2018) Can plant defence mechanisms provide new approaches for the sustainable control of the two-spotted spider mite Tetranychus urticae? International Journal of Molecular Sciences 19(2), 614. https://doi.org/10.3390/ijms19020614CrossRefGoogle ScholarPubMed
Aizawa, M, Watanabe, T, Kumano, A, Tamagaki, K and Sonoda, S (2018) Biotic performances of thelytokous and arrhenotokous strains of Thrips tabaci (Thysanoptera: Thripidae) showing resistance to cypermethrin. Applied Entomology and Zoology 53(1), 1117. https://doi.org/10.1007/s13355-017-0522-zCrossRefGoogle Scholar
Ardeh, MJ, de Jong, PW and van Lenteren, JC (2005) Intra- and interspecific host discrimination in arrhenotokous and thelytokous Eretmocerus spp. Biological Control 33(1), 7480. https://doi.org/10.1016/j.biocontrol.2005.01.006CrossRefGoogle Scholar
Bustos, A, Rodríguez, D, Cure, JR and Cantor, F (2016) A simulation model of the mass rearing of Tetranychus urticae Koch (Acari: Tetranychidae) on beans. Neotropical Entomology 45(3), 291299. https://doi.org/10.1007/s13744-016-0366-1CrossRefGoogle ScholarPubMed
Cao, W, Sun, H, Shao, C, Wang, Y, Zhu, J, Long, H, Geng, X and Zhang, Y (2025) Progress in the study of plant nitrogen and potassium nutrition and their interaction mechanisms. Horticulturae 11(8), 930. https://doi.org/10.3390/horticulturae11080930CrossRefGoogle Scholar
Chen, Z, Luo, Y, Wang, L, Sun, D, Wang, Y, Zhou, J, Luo, B, Liu, H, Yan, R and Wang, L (2025) Advancements in life tables applied to integrated pest management with an emphasis on two-sex life tables. Insects 16(3), 261. https://doi.org/10.3390/insects16030261CrossRefGoogle ScholarPubMed
Chi, H (1988) Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology 17(1), 2634. https://doi.org/10.1093/ee/17.1.26CrossRefGoogle Scholar
Chi, H (2025a). TIMING-MSChart: A computer program for the population projection based on age-stage, two-sex life table. Available at: http://www.faas.cn/cms/sitemanage/index.shtml?siteId=810640925913080000 (accessed 20 September 2024).Google Scholar
Chi, H (2025b) TWOSEX-MSChart: A computer program for the age-stage, two-sex life table analysis. Available at: http://www.faas.cn/cms/sitemanage/index.shtml?siteId=810640925913080000 (accessed 20 September 2024).Google Scholar
Chi, H, Fu, JW and You, MS (2019) Age-stage, two-sex life table and its application in population ecology and integrated pest management. Acta Entomologica Sinica 62(2), 255262. https://doi.org/10.16380/j.kcxb.2019.02.012Google Scholar
Chi, H, Kavousi, A, Gharekhani, G, Atlihan, R, Salih Özgökçe, M, Güncan, A, Gökçe, A, Smith, CL, Benelli, G, Guedes, RNC, Amir-Maafi, M, Shirazi, J, Taghizadeh, R, Maroufpoor, M, Xu, YY, Zheng, FQ, Ye, BH, Chen, ZZ, You, MS, Fu, JW, Li, JY, Shi, MZ, Hu, ZQ, Zheng, CY, Luo, L, Yuan, ZL, Zang, LS, Chen, YM, Tuan, SJ, Lin, YY, Wang, HH, Gotoh, T, Shaef Ullah, M, Botto-Mahan, C, De Bona, S, Bussaman, P, Gabre, RM, Saska, P, Schneider, MI, Ullah, F and Desneux, N (2023) Advances in theory, data analysis, and application of the age-stage, two-sex life table for demographic research, biological control, and pest management. Entomologia Generalis 43, 705732. https://doi.org/10.1127/entomologia/2023/2048CrossRefGoogle Scholar
Chi, H and Liu, H (1985) Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology, Academia Sinica 24(2), 225240.Google Scholar
Cruickshank, RH (2002) Molecular markers for the phylogenetics of mites and ticks. Systematic and Applied Acarology 7(31), 314. https://doi.org/10.11158/saa.7.1.1CrossRefGoogle Scholar
Ding, T, Chi, H, Gökçe, A, Gao, Y and Zhang, B (2018) Demographic analysis of arrhenotokous parthenogenesis and bisexual reproduction of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Scientific Reports 8(1), 3346. https://doi.org/10.1038/s41598-018-21689-zCrossRefGoogle ScholarPubMed
Duan, CX, Li, WC, Zhu, ZD, Li, DD, Sun, SL and Wang, XM (2016) Genetic differentiation and diversity of Callosobruchus chinensis collections from China. Bulletin of Entomological Research 106(1), 124134. https://doi.org/10.1017/S0007485315000863CrossRefGoogle ScholarPubMed
Efron, B and Tibshirani, RJ (1994) An Introduction to the Bootstrap, 1st Edn. New York: Chapman and Hall/CRC, 456. https://doi.org/10.1201/9780429246593CrossRefGoogle Scholar
English-Loeb, G and Hesler, S (2004) Economic impact of the two-spotted spider mites (Tetranychus urticae) on strawberries grown as a perennial. New York Fruit Quarterly 12 4, 1720. Internet Resource. https://nyshs.org/winter-2004Google Scholar
Ferla, JJ, Granich, J and Ferla, NJ (2024) Reproduction in the spider mite Oligonychus yothersi (Acari: Tetranychidae). Anais Da Academia Brasileira de Ciências 96, e20230500. https://doi.org/10.1590/0001-3765202420230500Google Scholar
Gokhman, VE and Kuznetsova, VG (2018) Parthenogenesis in Hexapoda: Holometabolous insects. Journal of Zoological Systematics and Evolutionary Research 56(1), 2334. https://doi.org/10.1111/jzs.12183CrossRefGoogle Scholar
Gotoh, T, Ishikawa, Y and Kitashima, Y (2003) Life-history traits of the six Panonychus species from Japan (Acari: Tetranychidae). Experimental and Applied Acarology 29(3), 241252. https://doi.org/10.1023/A:1025810731386CrossRefGoogle Scholar
Guo, LH, Wu, SY, Gong, RN and Tang, LD (2023) Parthenogenesis affects interspecific competition between Megalurothrips usitatus and Frankliniella intonsa (Thysanoptera: Thripidae) in changing environment: Evidence from life table study. Journal of Economic Entomology 116(6), 20432051. https://doi.org/10.1093/jee/toad180CrossRefGoogle ScholarPubMed
Harper, KE, Bagley, RK, Thompson, KL and Linnen, CR (2016) Complementary sex determination, inbreeding depression and inbreeding avoidance in a gregarious sawfly. Heredity 117(5), 326335. https://doi.org/10.1038/hdy.2016.46CrossRefGoogle Scholar
Häußermann, CK, Giacobino, A, Munz, R, Ziegelmann, B, Palacio, MA and Rosenkranz, P (2020) Reproductive parameters of female Varroa destructor and the impact of mating in worker brood of Apis mellifera. Apidologie 51(3), 342355. https://doi.org/10.1007/s13592-019-00713-9CrossRefGoogle Scholar
Heimpel, GE and de Boer, JG (2008) Sex determination in the hymenoptera. Annual Review of Entomology 53(2008), 209230. https://doi.org/10.1146/annurev.ento.53.103106.093441CrossRefGoogle ScholarPubMed
Herbert, HJ (1981) Biology, life tables, and intrinsic rate of increase of the European red mite, Panonychus ulmi (Acarina: Tetranychidae). The Canadian Entomologist 113(1), 6571. https://doi.org/10.4039/Ent11365-1CrossRefGoogle Scholar
Huang, YB and Chi, H (2011) The age-stage, two-sex life table with an offspring sex ratio dependent on female age. Journal of Agriculture and Forestry 60(4), 337345. https://doi.org/10.30089/JAF.201112.0006Google Scholar
Huang, YB and Chi, H (2012) Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Science 19(2), 263273. https://doi.org/10.1111/j.1744-7917.2011.01424.xCrossRefGoogle Scholar
Jakubowska, M, Dobosz, R, Zawada, D and Kowalska, J (2022) A review of crop protection methods against the twospotted spider mite—Tetranychus urticae Koch (Acari: Tetranychidae)—with special reference to alternative methods. Agriculture 12(7), 898. https://doi.org/10.3390/agriculture12070898CrossRefGoogle Scholar
Johann, L, Do Nascimento, JM, da Silva, GL, da Silva Carvalho, G and Juarez Ferla, N (2019) Life history and life table parameters of Panonychus ulmi (Acari: Tetranychidae) on two European grape cultivars. Phytoparasitica 47(1), 7986. https://doi.org/10.1007/s12600-018-00709-8CrossRefGoogle Scholar
Kamayev, IO, Anorbayev, AR and Obidjanov, DA (2024) Review of the spider mite fauna of uzbekistan, with new records (Prostigmata: Tetranychidae). Acarina 32(2), 157167. https://doi.org/10.21684/0132-8077-2024-32-2-157-167CrossRefGoogle Scholar
Kreiter, S, Auger, P, Grissa, KL, Tixier, MS, Chermiti, B and Dali, M (2003) Plant inhabiting mites (Acari: Prostigmata and Mesostigmata) of some Northern Tunisian crops. Acarologia 42(4), 389402.Google Scholar
Li, GY and Zhang, ZQ (2021) Sex-specific response to delayed and repeated mating in spider mite Tetranychus urticae. Bulletin of Entomological Research 111(1), 4956. https://doi.org/10.1017/S0007485320000292CrossRefGoogle ScholarPubMed
Li, YC and Yang, Y (2015) On the paradox of pesticides. Communications in Nonlinear Science and Numerical Simulation 29(1), 179187. https://doi.org/10.1016/j.cnsns.2015.05.006CrossRefGoogle Scholar
Liu, J, Gao, M, Liu, J, Guo, Y, Liu, D, Zhu, X and Wu, D (2018) Spatial distribution patterns of soil mite communities and their relationships with edaphic factors in a 30-year tillage cornfield in northeast China. PLOS One 13(6), e0199093. https://doi.org/10.1371/journal.pone.0199093CrossRefGoogle Scholar
Liu, Z, Wu, F, Liang, W, Zhou, L and Huang, J (2022) Molecular mechanisms underlying metabolic resistance to cyflumetofen and bifenthrin in Tetranychus urticae Koch on Cowpea. International Journal of Molecular Sciences 23(24), 16220. https://doi.org/10.3390/ijms232416220CrossRefGoogle Scholar
Luikart, G, Kardos, M, Hand, BK, Rajora, OP, Aitken, SN and Hohenlohe, PA (2019) Population genomics: Advancing understanding of nature. In Rajora, OP (ed.), Population Genomics: Concepts, Approaches and Applications. Cham: Springer International Publishing, pp. 379.Google Scholar
Manrakhan, A, Verykouki, E, Serfontein, L, Goldshtein, E, Beck, RR, Kriticos, DJ, Szyniszewska, AM, Kozyra, K, Papadopoulos, NT and Nestel, D (2025) Temporal and spatial patterns of Bactrocera dorsalis (Diptera: Tephritidae) populations in its southern limits of distribution: Effects of climate and landscape on its range expansion. Bulletin of Entomological Research 115(5), 644659. https://doi.org/10.1017/S0007485325100230CrossRefGoogle ScholarPubMed
Marini, F, Weyl, P, Vidović, B, Petanović, R, Littlefield, J, Simoni, S, de Lillo, E, Cristofaro, M and Smith, L (2021) Eriophyid mites in classical biological control of weeds: Progress and challenges. Insects 12(6), 513. https://doi.org/10.3390/insects12060513CrossRefGoogle ScholarPubMed
Martínez-Villar, E, López-Manzanares, B, Legarrea, S, Pérez-Moreno, I and Marco-Mancebón, VS (2024) Influence of abiotic factors on diapause termination and temperature requirements for postdiapause development in the European red mite, Panonychus ulmi (Acari: Tetranychidae). Experimental and Applied Acarology 92(4), 777794. https://doi.org/10.1007/s10493-024-00904-9CrossRefGoogle Scholar
McCulloch, JB and Owen, JP (2012) Arrhenotoky and oedipal mating in the northern fowl mite (Ornithonyssus sylviarum) (Acari: Gamasida: Macronyssidae). Parasites and Vectors 5(1), 281. https://doi.org/10.1186/1756-3305-5-281CrossRefGoogle ScholarPubMed
Microsoft Corporation (2019) Office 2019 (Version 16.0.13127.20616). Internet Resource: Available at: https://www.microsoft.com/fr-fr/download/default.aspx (accessed 12 June 2022).Google Scholar
Migeon, A and Dorkeld, F (2025) Spider Mites Web: A comprehensive database for the Tetranychidae. Internet Resource: Available at https://www1.montpellier.inrae.fr/CBGP/spmweb (accessed 28 August 2025).Google Scholar
Mirsoleimani, A, Najafi-Ghiri, M, Heydari, H and Farokhzadeh, S (2021) Effect of nitrogen, phosphorus and potassium deficiencies on some morphological and physiological properties and nutrient uptake by two almond rootstocks. Folia Horticulturae 33(2), 235247. https://doi.org/10.2478/fhort-2021-0018CrossRefGoogle Scholar
Mozhaitseva, K, Tourrain, Z and Branca, A (2023) Population genomics of the mostly thelytokous Diplolepis rosae (Linnaeus, 1758) (Hymenoptera: Cynipidae) reveals population-specific selection for sex. Genome Biology and Evolution 15(10), evad185. https://doi.org/10.1093/gbe/evad185CrossRefGoogle ScholarPubMed
Nagelkerke, CJ and Sabelis, MW (1991) Precise sex-ratio control in the pseudo-arrhenotokous phytoseiid mite Typhlodromus occidentalis Nesbitt. In Schuster, R and Murphy, PW (eds.), The Acari: Reproduction, Development and Life-history Strategies. Dordrecht: Springer Netherlands, pp. 193207.10.1007/978-94-011-3102-5_12CrossRefGoogle Scholar
Navajas, M, Gutierrez, J, Lagnel, J and Boursot, P (1996) Mitochondrial cytochrome oxidase I in tetranychid mites: A comparison between molecular phylogeny and changes of morphological and life history traits. Bulletin of Entomological Research 86(4), 407417. https://doi.org/10.1017/S0007485300034994CrossRefGoogle Scholar
Naves, P, Nóbrega, F and Auger, P (2021) Updated and annotated review of Tetranychidae occurring in mainland Portugal, the Azores, and Madeira Archipelagos. Acarologia 61(2), 380393. https://doi.org/10.24349/acarologia/20214437CrossRefGoogle Scholar
Normark, BB and Kirkendall, LR (2009) Parthenogenesis in insects and mites. In Resh, VH and Cardé, RT (eds.), Encyclopedia of Insects 2nd Edn. San Diego: Academic Press, pp. 753757. https://doi.org/10.1016/B978-0-12-374144-8.00201-0CrossRefGoogle Scholar
Pereira, F, Carneiro, J and Amorim, A (2008) Identification of species with DNA-based technology: Current progress and challenges. Recent Patents on DNA & Gene Sequences 2(3), 187199. https://doi.org/10.2174/187221508786241738CrossRefGoogle ScholarPubMed
Picard, MAL, Vicoso, B, Bertrand, S and Escriva, H (2021) Diversity of modes of reproduction and sex determination systems in invertebrates, and the putative contribution of genetic conflict. Genes 12(8), 1136. https://doi.org/10.3390/genes12081136CrossRefGoogle ScholarPubMed
Ragauskas, A, Maziliauskaitė, E, Prakas, P and Butkauskas, D (2025) Population genetic structure: where, what, and why? Diversity 17(8), 584. https://doi.org/10.3390/d17080584CrossRefGoogle Scholar
Rameshgar, F, Khajehali, J, Nauen, R, Bajda, S, Jonckheere, W, Dermauw, W and Van Leeuwen, T (2019b) Point mutations in the voltage-gated sodium channel gene associated with pyrethroid resistance in Iranian populations of the European red mite Panonychus ulmi. Pesticide Biochemistry and Physiology 157, 8087. https://doi.org/10.1016/j.pestbp.2019.03.008CrossRefGoogle Scholar
Rameshgar, F, Khajehali, J, Nauen, R, Dermauw, W and Van Leeuwen, T (2019a) Characterization of abamectin resistance in Iranian populations of European red mite, Panonychus ulmi Koch (Acari: Tetranychidae). Crop Protection 125, 104903. https://doi.org/10.1016/j.cropro.2019.104903CrossRefGoogle Scholar
Raychoudhury, R, Desjardins, CA, Buellesbach, J, Loehlin, DW, Grillenberger, BK, Beukeboom, L, Schmitt, T and Werren, JH (2010) Behavioral and genetic characteristics of a new species of Nasonia. Heredity 104(3), 278288. https://doi.org/10.1038/hdy.2009.147CrossRefGoogle ScholarPubMed
Razuvaeva, AV, Ulyanova, EG, Skolotneva, ES and Andreeva, IV (2023) Species identification of spider mites (Tetranychidae: Tetranychinae): A review of methods. Vavilov Journal of Genetics and Breeding 27(3), 240249. https://doi.org/10.18699/VJGB-23-30CrossRefGoogle ScholarPubMed
Rode, PDA, Ferla, JJ, Bizarro, GL, Schussler, M and Ferla, NJ (2024b) Mite fauna (Acari) associated with apple orchards (Malus domestica) and spontaneous vegetation as reservoir for predatory mites. Biot Neotrop 24(1), e20231602. https://doi.org/10.1590/1676-0611-bn-2023-1602CrossRefGoogle Scholar
Rode, PDA, Schneider, JR, Mariano, CJC, Matthes, RD and Ferla, NJ (2024a) Injuries caused by phytophagous mites on apple trees (Malus domestica: Rosaceae). Systematic and Applied Acarology 29(12), 16221628. https://doi.org/10.11158/saa.29.12.4Google Scholar
Sarwar, M (2020) Mite (Acari Acarina) vectors involved in transmission of plant viruses. In Awasthi, LP (ed.), Applied Plant Virology. Oxford, UK: Academic Press, 257273. https://doi.org/10.1016/B978-0-12-818654-1.00020-7.CrossRefGoogle Scholar
Savi, PJ, Gonsaga, RF, de Matos, STS, Braz, LT, de Moraes, GJ and de Andrade, DJ (2021) Performance of Tetranychus urticae (Acari: Tetranychidae) on three hop cultivars (Humulus lupulus). Experimental and Applied Acarology 84(4), 733753. https://doi.org/10.1007/s10493-021-00643-1CrossRefGoogle ScholarPubMed
Smucker, MD, Allan, J and Carterette, B (2007) A comparison of statistical significance tests for information retrieval evaluation 623632 in: Proceedings of the Sixteenth ACM Conference. Conference on Information and Knowledge Management, Association for Computing Machinery, Lisbon, Portugal. https://doi.org/10.1145/1321440.1321528CrossRefGoogle Scholar
Sperling, AL and Glover, DM (2023) Parthenogenesis in dipterans: A genetic perspective. Proceedings of the Royal Society B: Biological Sciences 290(1995), 20230261. https://doi.org/10.1098/rspb.2023.0261CrossRefGoogle ScholarPubMed
Subramanian, S, Boopathi, T and Sagar, D (2022) Various modes of reproduction. In Omkar, GM (Ed.), Reproductive Strategies in Insects 1st Edn. Boca Raton: CRC Press, pp. 16.Google Scholar
Tang, LD, Guo, LH, Shen, Z, Chen, YM and Zang, LS (2023) Comparison of the biology of Frankliniella intonsa and Megalurothrips usitatus on cowpea pods under natural regimes through an age-stage, two-sex life table approach. Bulletin of Entomological Research 113(4), 555564. https://doi.org/10.1017/S0007485323000238CrossRefGoogle ScholarPubMed
Tixier, MS, Dos Santos Vicente, V, Douin, M, Duso, C and Kreiter, S (2017) Great molecular variation within the species Phytoseius finitimus (Acari: Phytoseiidae): Implications for diagnosis decision within the mite family Phytoseiidae. Acarologia 57(3), 493515. https://doi.org/10.24349/acarologia/20174168CrossRefGoogle Scholar
Tuan, SJ, Lin, YH, Yang, CM, Atlihan, R, Saska, P and Chi, H (2016) Survival and reproductive strategies in two-spotted spider mites: demographic analysis of arrhenotokous parthenogenesis of Tetranychus urticae (Acari: Tetranychidae). Journal of Economic Entomology 109(2), 502509. https://doi.org/10.1093/jee/tov386CrossRefGoogle Scholar
van der Kooi, CJ, Matthey-Doret, C and Schwander, T (2017) Evolution and comparative ecology of parthenogenesis in haplodiploid arthropods. Evolution Letters 1(6), 304316. https://doi.org/10.1002/evl3.30CrossRefGoogle ScholarPubMed
Walter, DE and Krantz, GW (2009) Collecting, rearing and preparing specimens. In Krantz, GW and Walter, DE (eds.), A Manual of Acarology. USA: Texas Tech University Press, pp. 9192.Google Scholar
Weerawansha, A (2023) Reproductive performance of a spider mite Tetranychus ludeni Zacher (Acari: Tetranychidae) in response to social environments. Thesis, Massey University, Palmerston North, New Zealand. Internet Resource: Available at: http://hdl.handle.net/10179/20057 (accessed 12 September 2025).Google Scholar
Woldemelak, WA (2021) Reproductive biology of thrips insect species and their reproductive manipulators. Journal of the Entomological Research Society 23(3), 287304. https://doi.org/10.51963/jers.v23i3.2090CrossRefGoogle Scholar
Zhang, YX, Chen, X, Wang, JP, Zhang, ZQ, Wei, H, Yu, HY, Zheng, HK, Chen, Y, Zhang, LS, Lin, JZ, Sun, L, Liu, DY, Tang, J, Lei, Y, Li, XM and Liu, M (2019) Genomic insights into mite phylogeny, fitness, development, and reproduction. BMC Genomics 20(1), 954. https://doi.org/10.1186/s12864-019-6281-1CrossRefGoogle ScholarPubMed
Zhou, P, He, XZ, Chen, C and Wang, Q (2021) Reproductive strategies that may facilitate invasion success: Evidence from a spider mite. Journal of Economic Entomology 114(2), 632637. https://doi.org/10.1093/jee/toaa313CrossRefGoogle ScholarPubMed