Hostname: page-component-68c7f8b79f-lvtpz Total loading time: 0 Render date: 2025-12-17T17:34:11.735Z Has data issue: false hasContentIssue false

Meta-cognition for music as a solution to the fragmentation problem

Published online by Cambridge University Press:  27 November 2025

Psyche Loui*
Affiliation:
Northeastern University, Boston, MA, USA p.loui@northeastern.edu www.psycheloui.com
Elizabeth H. Margulis
Affiliation:
Princeton University, Princeton, NJ, USA margulis@princeton.edu www.elizabethmargulis.com
*
*Corresponding author.

Abstract

Meta-cognition enhances the social bonding hypothesis for musicality, integrating imagination, episodic simulation, causal inference, and inhibition. Music fosters group cohesion by engaging the endogenous opioid system, supporting intergroup understanding through vivid mental imagery, and facilitating socio-affective fiction. Additionally, causal inference enables contextual interpretation of music, while inhibition refines musical coordination and executive function, reinforcing cognitive flexibility for cooperative social behavior.

Information

Type
Open Peer Commentary
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aucouturier, J.-J., & Canonne, C. (2017). Musical friends and foes: The social cognition of affiliation and control in improvised interactions. Cognition, 161, 94108. https://doi.org/10.1016/j.cognition.2017.01.019 CrossRefGoogle ScholarPubMed
Belden, A., Zeng, T., Przysinda, E., Anteraper, S. A., Whitfield-Gabrieli, S., & Loui, P. (2019). Improvising at rest: Differentiating jazz and classical music training with resting state functional connectivity. NeuroImage, 207, 116384. https://doi.org/10.1016/j.neuroimage.2019.116384 CrossRefGoogle ScholarPubMed
Belfi, A. M., Chen, K. H., Schneider, B., & Tranel, D. (2016). Neurological damage disrupts normal sex differences in psychophysiological responsiveness to music. Psychophysiology, 53(1), 1420. https://doi.org/10.1111/psyp.12453 CrossRefGoogle ScholarPubMed
Cirelli, L. K., Einarson, K. M., & Trainor, L. J. (2014). Interpersonal synchrony increases prosocial behavior in infants. Developmental Science, 17(6), 10031011. https://doi.org/10.1111/desc.12193 CrossRefGoogle ScholarPubMed
Gamba, M., Torti, V., Estienne, V., Randrianarison, R. M., Valente, D., Rovara, P., Bonadonna, G., Friard, O., & Giacoma, C. (2016). The indris have got rhythm! timing and pitch variation of a primate song examined between sexes and age classes. Frontiers in Neuroscience, 10, 249. https://doi.org/10.3389/fnins.2016.00249 CrossRefGoogle ScholarPubMed
Hattori, Y., & Tomonaga, M. (2020). Rhythmic swaying induced by sound in chimpanzees (Pan troglodytes). Proceedings of the National Academy of Sciences, 117(2), 936. https://doi.org/10.1073/pnas.1910318116 CrossRefGoogle Scholar
Hayden, B. Y., Heilbronner, S. R., Pearson, J. M., & Platt, M. L. (2011). Surprise signals in anterior cingulate cortex: Neuronal encoding of unsigned reward prediction errors driving adjustment in behavior. Journal of Neuroscience, 31(11), 41784187. https://doi.org/10.1523/jneurosci.4652-10.2011 CrossRefGoogle ScholarPubMed
Hayden, B. Y., Pearson, J. M., & Platt, M. L. (2009). Fictive reward signals in the anterior cingulate cortex. Science, 324(5929), 948950. https://doi.org/10.1126/science.1168488 CrossRefGoogle ScholarPubMed
Hennessy, S. L., Sachs, M. E., Ilari, B., & Habibi, A. (2019). Effects of music training on inhibitory control and associated neural networks in school-aged children: A longitudinal study. Frontiers in Neuroscience, 13(1080). https://doi.org/10.3389/fnins.2019.01080 CrossRefGoogle Scholar
Hove, M. J., & Risen, J. L. (2009). It’s all in the timing: Interpersonal synchrony increases affiliation. Social Cognition, 27(6), 949960.CrossRefGoogle Scholar
Margulis, E. H., & Jakubowski, K. (2024). Music, memory, and imagination. Current Directions in Psychological Science, 09637214231217229. https://doi.org/10.1177/09637214231217229 CrossRefGoogle Scholar
Margulis, E. H., Wong, P. C. M., Turnbull, C., Kubit, B. M., & McAuley, J. D. (2022). Narratives imagined in response to instrumental music reveal culture-bounded intersubjectivity. Proceedings of the National Academy of Sciences, 119(4), e2110406119. https://doi.org/10.1073/pnas.2110406119 CrossRefGoogle Scholar
Mehr, S. A., Song, L. A., & Spelke, E. S. (2016). For 5-month-old infants, melodies are social. Psychological Science, 27(4), 486501. https://doi.org/10.1177/0956797615626691 CrossRefGoogle ScholarPubMed
Müllensiefen, D., Gingras, B., Musil, J., & Stewart, L. (2014). The musicality of non-musicians: An index for assessing musical sophistication in the general population. PLOS ONE, 9(2), e89642. https://doi.org/10.1371/journal.pone.0089642 CrossRefGoogle ScholarPubMed
Rabinowitch, T. C., & Meltzoff, A. N. (2017). Synchronized movement experience enhances peer cooperation in preschool children. Journal of Experimental Child Psychology, 160, 2132. https://doi.org/10.1016/j.jecp.2017.03.001 CrossRefGoogle ScholarPubMed
Sachs, M., Kaplan, J., Der Sarkissian, A., & Habibi, A. (2017). Increased engagement of the cognitive control network associated with music training in children during an fMRI Stroop task. PLOS ONE, 12(10), e0187254. https://doi.org/10.1371/journal.pone.0187254 CrossRefGoogle ScholarPubMed
Savage, P. E., Loui, P., Tarr, B., Schachner, A., Glowacki, L., Mithen, S., & Fitch, W. T. (2021). Music as a coevolved system for social bonding. Behavioral and Brain Sciences, 44, e59. Cambridge Core. https://doi.org/10.1017/S0140525X20000333 CrossRefGoogle Scholar
Thompson, W. F., Bullot, N. J., & Margulis, E. H. (2023). The psychological basis of music appreciation: Structure, self, source. Psychological Review, 130(1), 260284. https://doi.org/10.1037/rev0000364 CrossRefGoogle ScholarPubMed
Trevor, C., & Frühholz, S. (2024). Music as an evolved tool for socio-affective fiction. Emotion Review, 16(3), 180194. https://doi.org/10.1177/17540739241259562 CrossRefGoogle Scholar
Vergara, V. M., Norgaard, M., Miller, R., Beaty, R. E., Dhakal, K., Dhamala, M., & Calhoun, V. D. (2021). Functional network connectivity during Jazz improvisation. Scientific Reports, 11(1), 19036. https://doi.org/10.1038/s41598-021-98332-x CrossRefGoogle ScholarPubMed
Williams, J. A., Margulis, E. H., Nastase, S. A., Chen, J., Hasson, U., Norman, K. A., & Baldassano, C. (2022). High-order areas and auditory cortex both represent the high-level event structure of music. Journal of Cognitive Neuroscience, 34(4), 699714. https://doi.org/10.1162/jocn_a_01815 CrossRefGoogle ScholarPubMed
Zarate, J. M., Wood, S., & Zatorre, R. J. (2010). Neural networks involved in voluntary and involuntary vocal pitch regulation in experienced singers. Neuropsychologia, 48(2), 607618. https://doi.org/10.1016/j.neuropsychologia.2009.10.025 CrossRefGoogle ScholarPubMed
Zuk, J., Benjamin, C., Kenyon, A., & Gaab, N. (2014). Behavioral and neural correlates of executive functioning in musicians and non-musicians. PLoS One, 9(6), e99868. https://doi.org/10.1371/journal.pone.0099868 CrossRefGoogle ScholarPubMed