Hostname: page-component-68c7f8b79f-gnk9b Total loading time: 0 Render date: 2025-12-18T19:39:53.823Z Has data issue: false hasContentIssue false

In defense of attention: why perceptual selection cannot be replaced by decision boundaries

Published online by Cambridge University Press:  26 November 2025

Angus F. Chapman
Affiliation:
Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
Douglas A. Addleman
Affiliation:
Department of Psychology, Gonzaga University, Spokane, WA, USA
Viola S. Störmer*
Affiliation:
Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA Viola.S.Stoermer@dartmouth.edu
*
*Corresponding author.

Abstract

This commentary refutes Rosenholtz’s claim that visual attention lacks conceptual validity. We contend that attention remains important for elucidating capacity-limited perceptual processing and explaining phenomenological experience. Alternative frameworks centered on tasks and decision boundaries fail to account for perceptual effects that attentional mechanisms can capture. Thus, preserving attention as a theoretical construct is important, providing interpretive frameworks for empirical investigations.

Information

Type
Open Peer Commentary
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Addleman, D. A., & Lee, V. G. (2022). Simulated central vision loss does not impair implicit location probability learning when participants search through simple displays. Attention, Perception, & Psychophysics, 84(6), 19011912.CrossRefGoogle Scholar
Alvarez, G. A., & Cavanagh, P. (2004). Independent attention resources for the left and right visual hemifields. Journal of Vision, 4(8), 2929.CrossRefGoogle Scholar
Anderson, B. (2011). There is no such thing as attention. Frontiers in psychology, 2, 246.CrossRefGoogle Scholar
Carrasco, M., Ling, S., & Read, S. (2004). Attention alters appearance. Nature neuroscience, 7(3), 308313 CrossRefGoogle ScholarPubMed
Chapman, A. F., Chunharas, C., & Störmer, V. S. (2023). Feature-based attention warps the perception of visual features. Scientific Reports, 13(1), 6487.CrossRefGoogle ScholarPubMed
Chapman, A. F., & Störmer, V. S. (2024). Representational structures as a unifying framework for attention. Trends in cognitive sciences, 28(5), 416427.CrossRefGoogle ScholarPubMed
Duncan, D. H., Theeuwes, J., & Van Moorselaar, D. (2023). The electrophysiological markers of statistically learned attentional enhancement: evidence for a saliency-based mechanism. Journal of Cognitive Neuroscience, 35(12), 21102125. https://doi.org/10.1162/jocn_a_02066 CrossRefGoogle ScholarPubMed
Gobell, J., & Carrasco, M. (2005). Attention alters the appearance of spatial frequency and gap size. Psychological Science, 16(8), 644651.CrossRefGoogle ScholarPubMed
Golan, A., & Lamy, D. (2024). Attentional guidance by target-location probability cueing is largely inflexible, long-lasting, and distinct from inter-trial priming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 50(2), 244.Google ScholarPubMed
Hillyard, S. A., & Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. Proceedings of the National Academy of Sciences, 95(3), 781787.CrossRefGoogle Scholar
Hommel, B., Chapman, C. S., Cisek, P., Neyedli, H. F., Song, J. H., & Welsh, T. N. (2019). No one knows what attention is. Attention, Perception, & Psychophysics, 81, 22882303.CrossRefGoogle ScholarPubMed
Jiang, Y. V. (2018). Habitual versus goal-driven attention. Cortex, 102, 107120.CrossRefGoogle ScholarPubMed
Keefe, J. M., & Störmer, V. S. (2021). Lateralized alpha activity and slow potential shifts over visual cortex track the time course of both endogenous and exogenous orienting of attention. NeuroImage, 225, 117495.CrossRefGoogle ScholarPubMed
Martinez-Trujillo, JC, Treue, S (2002) Attentional modulation strength in cortical area MT depends on stimulus contrast. Neuron, 35, 365370.CrossRefGoogle ScholarPubMed
Navalpakkam, V., & Itti, L. (2007). Search goal tunes visual features optimally. Neuron, 53(4), 605617.CrossRefGoogle ScholarPubMed
Ortego, K., Addleman, D.A., & Störmer, V.S. (2025). Early cortical sensitivity and speeded target selection underlie incidentally learned prioritization of visual features. The Journal of Neuroscience, e0607252025. https://doi.org/10.1523/JNEUROSCI.0607-25.2025CrossRefGoogle Scholar
Reynolds, J. H., & Chelazzi, L. (2004). Attentional modulation of visual processing. Annual Review of Neuroscience, 27(1), 611647.CrossRefGoogle ScholarPubMed
Störmer, V. S. (2019). Orienting spatial attention to sounds enhances visual processing. Current Opinion in Psychology, 29, 193198.CrossRefGoogle ScholarPubMed
Störmer, V. S., & Alvarez, G. A. (2014). Feature-based attention elicits surround suppression in feature space. Current Biology, 24(17), 19851988.CrossRefGoogle ScholarPubMed
Störmer, V. S., & Alvarez, G. A. (2016). Attention alters perceived attractiveness. Psychological Science, 27(4), 563571.CrossRefGoogle ScholarPubMed
Störmer, V. S., Alvarez, G. A., & Cavanagh, P. (2014). Within-hemifield competition in early visual areas limits the ability to track multiple objects with attention. Journal of Neuroscience, 34(35), 1152611533.CrossRefGoogle ScholarPubMed
Störmer, V. S., McDonald, J. J., & Hillyard, S. A. (2009). Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli. Proceedings of the National Academy of Sciences, 106(52), 2245622461.CrossRefGoogle ScholarPubMed
Wu, W. (2024). We know what attention is! Trends in Cognitive Sciences, 28(4), 304318.CrossRefGoogle ScholarPubMed
Zivony, A., & Eimer, M. (2022). The diachronic account of attentional selectivity. Psychonomic Bulletin & Review, 29(4), 11181142.CrossRefGoogle ScholarPubMed